| 1 | 
gezelter | 
246 | 
 /* | 
| 2 | 
  | 
  | 
 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | 
  | 
  | 
 * | 
| 4 | 
  | 
  | 
 * The University of Notre Dame grants you ("Licensee") a | 
| 5 | 
  | 
  | 
 * non-exclusive, royalty free, license to use, modify and | 
| 6 | 
  | 
  | 
 * redistribute this software in source and binary code form, provided | 
| 7 | 
  | 
  | 
 * that the following conditions are met: | 
| 8 | 
  | 
  | 
 * | 
| 9 | 
  | 
  | 
 * 1. Acknowledgement of the program authors must be made in any | 
| 10 | 
  | 
  | 
 *    publication of scientific results based in part on use of the | 
| 11 | 
  | 
  | 
 *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | 
  | 
  | 
 *    the article in which the program was described (Matthew | 
| 13 | 
  | 
  | 
 *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | 
  | 
  | 
 *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | 
  | 
  | 
 *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | 
  | 
  | 
 *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | 
  | 
  | 
 * | 
| 18 | 
  | 
  | 
 * 2. Redistributions of source code must retain the above copyright | 
| 19 | 
  | 
  | 
 *    notice, this list of conditions and the following disclaimer. | 
| 20 | 
  | 
  | 
 * | 
| 21 | 
  | 
  | 
 * 3. Redistributions in binary form must reproduce the above copyright | 
| 22 | 
  | 
  | 
 *    notice, this list of conditions and the following disclaimer in the | 
| 23 | 
  | 
  | 
 *    documentation and/or other materials provided with the | 
| 24 | 
  | 
  | 
 *    distribution. | 
| 25 | 
  | 
  | 
 * | 
| 26 | 
  | 
  | 
 * This software is provided "AS IS," without a warranty of any | 
| 27 | 
  | 
  | 
 * kind. All express or implied conditions, representations and | 
| 28 | 
  | 
  | 
 * warranties, including any implied warranty of merchantability, | 
| 29 | 
  | 
  | 
 * fitness for a particular purpose or non-infringement, are hereby | 
| 30 | 
  | 
  | 
 * excluded.  The University of Notre Dame and its licensors shall not | 
| 31 | 
  | 
  | 
 * be liable for any damages suffered by licensee as a result of | 
| 32 | 
  | 
  | 
 * using, modifying or distributing the software or its | 
| 33 | 
  | 
  | 
 * derivatives. In no event will the University of Notre Dame or its | 
| 34 | 
  | 
  | 
 * licensors be liable for any lost revenue, profit or data, or for | 
| 35 | 
  | 
  | 
 * direct, indirect, special, consequential, incidental or punitive | 
| 36 | 
  | 
  | 
 * damages, however caused and regardless of the theory of liability, | 
| 37 | 
  | 
  | 
 * arising out of the use of or inability to use software, even if the | 
| 38 | 
  | 
  | 
 * University of Notre Dame has been advised of the possibility of | 
| 39 | 
  | 
  | 
 * such damages. | 
| 40 | 
  | 
  | 
 */ | 
| 41 | 
  | 
  | 
  | 
| 42 | 
  | 
  | 
/** | 
| 43 | 
  | 
  | 
 * @file Polynomial.hpp | 
| 44 | 
  | 
  | 
 * @author    teng lin | 
| 45 | 
  | 
  | 
 * @date  11/16/2004 | 
| 46 | 
  | 
  | 
 * @version 1.0 | 
| 47 | 
  | 
  | 
 */  | 
| 48 | 
  | 
  | 
 | 
| 49 | 
  | 
  | 
#ifndef MATH_POLYNOMIAL_HPP | 
| 50 | 
  | 
  | 
#define MATH_POLYNOMIAL_HPP | 
| 51 | 
  | 
  | 
 | 
| 52 | 
  | 
  | 
#include <iostream> | 
| 53 | 
  | 
  | 
#include <list> | 
| 54 | 
  | 
  | 
#include <map> | 
| 55 | 
  | 
  | 
#include <utility> | 
| 56 | 
  | 
  | 
 | 
| 57 | 
  | 
  | 
namespace oopse { | 
| 58 | 
  | 
  | 
 | 
| 59 | 
  | 
  | 
template<typename ElemType> ElemType pow(ElemType x, int N) { | 
| 60 | 
  | 
  | 
    ElemType result(1); | 
| 61 | 
  | 
  | 
 | 
| 62 | 
  | 
  | 
    for (int i = 0; i < N; ++i) { | 
| 63 | 
  | 
  | 
        result *= x; | 
| 64 | 
  | 
  | 
    } | 
| 65 | 
  | 
  | 
 | 
| 66 | 
  | 
  | 
    return result; | 
| 67 | 
  | 
  | 
} | 
| 68 | 
  | 
  | 
 | 
| 69 | 
  | 
  | 
/** | 
| 70 | 
  | 
  | 
 * @class Polynomial Polynomial.hpp "math/Polynomial.hpp" | 
| 71 | 
  | 
  | 
 * A generic Polynomial class | 
| 72 | 
  | 
  | 
 */ | 
| 73 | 
  | 
  | 
template<typename ElemType> | 
| 74 | 
  | 
  | 
class Polynomial { | 
| 75 | 
  | 
  | 
 | 
| 76 | 
  | 
  | 
    public: | 
| 77 | 
  | 
  | 
         | 
| 78 | 
  | 
  | 
        typedef int ExponentType; | 
| 79 | 
  | 
  | 
        typedef ElemType CoefficientType; | 
| 80 | 
  | 
  | 
        typedef std::map<ExponentType, CoefficientType> PolynomialPairMap; | 
| 81 | 
  | 
  | 
        typedef typename PolynomialPairMap::iterator iterator; | 
| 82 | 
  | 
  | 
        typedef typename PolynomialPairMap::const_iterator const_iterator; | 
| 83 | 
  | 
  | 
        /**  | 
| 84 | 
  | 
  | 
         * Calculates the value of this Polynomial evaluated at the given x value. | 
| 85 | 
  | 
  | 
         * @return The value of this Polynomial evaluates at the given x value | 
| 86 | 
  | 
  | 
         * @param x the value of the independent variable for this Polynomial function | 
| 87 | 
  | 
  | 
         */ | 
| 88 | 
  | 
  | 
        ElemType evaluate(const ElemType& x) { | 
| 89 | 
  | 
  | 
            ElemType result = ElemType(); | 
| 90 | 
  | 
  | 
            ExponentType exponent; | 
| 91 | 
  | 
  | 
            CoefficientType coefficient; | 
| 92 | 
  | 
  | 
             | 
| 93 | 
  | 
  | 
            for (iterator i = polyPairMap_.begin(); i != polyPairMap_.end(); ++i) { | 
| 94 | 
  | 
  | 
                exponent = i->first; | 
| 95 | 
  | 
  | 
                coefficient = i->second; | 
| 96 | 
  | 
  | 
                result  += pow(x, exponent) * coefficient; | 
| 97 | 
  | 
  | 
            } | 
| 98 | 
  | 
  | 
 | 
| 99 | 
  | 
  | 
            return result; | 
| 100 | 
  | 
  | 
        } | 
| 101 | 
  | 
  | 
 | 
| 102 | 
  | 
  | 
        /** | 
| 103 | 
  | 
  | 
         * Returns the first derivative of this polynomial. | 
| 104 | 
  | 
  | 
         * @return the first derivative of this polynomial | 
| 105 | 
  | 
  | 
         * @param x | 
| 106 | 
  | 
  | 
         */ | 
| 107 | 
  | 
  | 
        ElemType evaluateDerivative(const ElemType& x) { | 
| 108 | 
  | 
  | 
            ElemType result = ElemType(); | 
| 109 | 
  | 
  | 
            ExponentType exponent; | 
| 110 | 
  | 
  | 
            CoefficientType coefficient; | 
| 111 | 
  | 
  | 
             | 
| 112 | 
  | 
  | 
            for (iterator i = polyPairMap_.begin(); i != polyPairMap_.end(); ++i) { | 
| 113 | 
  | 
  | 
                exponent = i->first; | 
| 114 | 
  | 
  | 
                coefficient = i->second; | 
| 115 | 
  | 
  | 
                result  += pow(x, exponent - 1) * coefficient * exponent; | 
| 116 | 
  | 
  | 
            } | 
| 117 | 
  | 
  | 
 | 
| 118 | 
  | 
  | 
            return result; | 
| 119 | 
  | 
  | 
        } | 
| 120 | 
  | 
  | 
 | 
| 121 | 
  | 
  | 
        /** | 
| 122 | 
  | 
  | 
         * Set the coefficent of the specified exponent, if the coefficient is already there, it | 
| 123 | 
  | 
  | 
         * will be overwritten. | 
| 124 | 
  | 
  | 
         * @param exponent exponent of a term in this Polynomial  | 
| 125 | 
  | 
  | 
         * @param coefficient multiplier of a term in this Polynomial  | 
| 126 | 
  | 
  | 
         */ | 
| 127 | 
  | 
  | 
         | 
| 128 | 
  | 
  | 
        void setCoefficient(int exponent, const ElemType& coefficient) { | 
| 129 | 
  | 
  | 
            polyPairMap_.insert(PolynomialPairMap::value_type(exponent, coefficient)); | 
| 130 | 
  | 
  | 
        } | 
| 131 | 
  | 
  | 
 | 
| 132 | 
  | 
  | 
        /** | 
| 133 | 
  | 
  | 
         * Set the coefficent of the specified exponent. If the coefficient is already there,  just add the | 
| 134 | 
  | 
  | 
         * new coefficient to the old one, otherwise,  just call setCoefficent | 
| 135 | 
  | 
  | 
         * @param exponent exponent of a term in this Polynomial  | 
| 136 | 
  | 
  | 
         * @param coefficient multiplier of a term in this Polynomial  | 
| 137 | 
  | 
  | 
         */ | 
| 138 | 
  | 
  | 
         | 
| 139 | 
  | 
  | 
        void addCoefficient(int exponent, const ElemType& coefficient) { | 
| 140 | 
  | 
  | 
            iterator i = polyPairMap_.find(exponent); | 
| 141 | 
  | 
  | 
 | 
| 142 | 
  | 
  | 
            if (i != end()) { | 
| 143 | 
  | 
  | 
                i->second += coefficient; | 
| 144 | 
  | 
  | 
            } else { | 
| 145 | 
  | 
  | 
                setCoefficient(exponent, coefficient); | 
| 146 | 
  | 
  | 
            } | 
| 147 | 
  | 
  | 
        } | 
| 148 | 
  | 
  | 
 | 
| 149 | 
  | 
  | 
 | 
| 150 | 
  | 
  | 
        /** | 
| 151 | 
  | 
  | 
         * Returns the coefficient associated with the given power for this Polynomial. | 
| 152 | 
  | 
  | 
         * @return the coefficient associated with the given power for this Polynomial | 
| 153 | 
  | 
  | 
         * @exponent exponent of any term in this Polynomial | 
| 154 | 
  | 
  | 
         */ | 
| 155 | 
  | 
  | 
        ElemType getCoefficient(ExponentType exponent) { | 
| 156 | 
  | 
  | 
            iterator i = polyPairMap_.find(exponent); | 
| 157 | 
  | 
  | 
 | 
| 158 | 
  | 
  | 
            if (i != end()) { | 
| 159 | 
  | 
  | 
                return i->second; | 
| 160 | 
  | 
  | 
            } else { | 
| 161 | 
  | 
  | 
                return ElemType(0); | 
| 162 | 
  | 
  | 
            } | 
| 163 | 
  | 
  | 
        } | 
| 164 | 
  | 
  | 
 | 
| 165 | 
  | 
  | 
        iterator begin() { | 
| 166 | 
  | 
  | 
            return polyPairMap_.begin(); | 
| 167 | 
  | 
  | 
        } | 
| 168 | 
  | 
  | 
 | 
| 169 | 
  | 
  | 
        const_iterator begin() const{ | 
| 170 | 
  | 
  | 
            return polyPairMap_.begin(); | 
| 171 | 
  | 
  | 
        } | 
| 172 | 
  | 
  | 
         | 
| 173 | 
  | 
  | 
        iterator end() { | 
| 174 | 
  | 
  | 
            return polyPairMap_.end(); | 
| 175 | 
  | 
  | 
        } | 
| 176 | 
  | 
  | 
 | 
| 177 | 
  | 
  | 
        const_iterator end() const{ | 
| 178 | 
  | 
  | 
            return polyPairMap_.end(); | 
| 179 | 
  | 
  | 
        } | 
| 180 | 
  | 
  | 
 | 
| 181 | 
  | 
  | 
        iterator find(ExponentType exponent) { | 
| 182 | 
  | 
  | 
            return polyPairMap_.find(exponent); | 
| 183 | 
  | 
  | 
        } | 
| 184 | 
  | 
  | 
 | 
| 185 | 
  | 
  | 
        size_t size() { | 
| 186 | 
  | 
  | 
            return polyPairMap_.size(); | 
| 187 | 
  | 
  | 
        } | 
| 188 | 
  | 
  | 
         | 
| 189 | 
  | 
  | 
    private: | 
| 190 | 
  | 
  | 
         | 
| 191 | 
  | 
  | 
        PolynomialPairMap polyPairMap_; | 
| 192 | 
  | 
  | 
}; | 
| 193 | 
  | 
  | 
 | 
| 194 | 
  | 
  | 
 | 
| 195 | 
  | 
  | 
/** | 
| 196 | 
  | 
  | 
 * Generates and returns the product of two given Polynomials. | 
| 197 | 
  | 
  | 
 * @return A Polynomial containing the product of the two given Polynomial parameters | 
| 198 | 
  | 
  | 
 */ | 
| 199 | 
  | 
  | 
template<typename ElemType> | 
| 200 | 
  | 
  | 
Polynomial<ElemType> operator *(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) { | 
| 201 | 
  | 
  | 
    typename Polynomial<ElemType>::const_iterator i; | 
| 202 | 
  | 
  | 
    typename Polynomial<ElemType>::const_iterator j; | 
| 203 | 
  | 
  | 
    Polynomial<ElemType> p; | 
| 204 | 
  | 
  | 
     | 
| 205 | 
  | 
  | 
    for (i = p1.begin(); i !=p1.end(); ++i) { | 
| 206 | 
  | 
  | 
        for (j = p2.begin(); j !=p2.end(); ++j) { | 
| 207 | 
  | 
  | 
            p.addCoefficient( i->first + j->first, i->second * j->second); | 
| 208 | 
  | 
  | 
        } | 
| 209 | 
  | 
  | 
    } | 
| 210 | 
  | 
  | 
 | 
| 211 | 
  | 
  | 
    return p; | 
| 212 | 
  | 
  | 
} | 
| 213 | 
  | 
  | 
 | 
| 214 | 
  | 
  | 
/** | 
| 215 | 
  | 
  | 
 * Generates and returns the sum of two given Polynomials. | 
| 216 | 
  | 
  | 
 * @param p1 the first polynomial | 
| 217 | 
  | 
  | 
 * @param p2 the second polynomial | 
| 218 | 
  | 
  | 
 */ | 
| 219 | 
  | 
  | 
template<typename ElemType> | 
| 220 | 
  | 
  | 
Polynomial<ElemType> operator +(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) { | 
| 221 | 
  | 
  | 
    Polynomial<ElemType> p(p1); | 
| 222 | 
  | 
  | 
 | 
| 223 | 
  | 
  | 
    typename Polynomial<ElemType>::const_iterator i; | 
| 224 | 
  | 
  | 
 | 
| 225 | 
  | 
  | 
    for (i =  p2.begin(); i  != p2.end(); ++i) { | 
| 226 | 
  | 
  | 
        p.addCoefficient(i->first, i->second); | 
| 227 | 
  | 
  | 
    } | 
| 228 | 
  | 
  | 
 | 
| 229 | 
  | 
  | 
    return p; | 
| 230 | 
  | 
  | 
 | 
| 231 | 
  | 
  | 
} | 
| 232 | 
  | 
  | 
 | 
| 233 | 
  | 
  | 
/** | 
| 234 | 
  | 
  | 
 * Generates and returns the difference of two given Polynomials.  | 
| 235 | 
  | 
  | 
 * @return | 
| 236 | 
  | 
  | 
 * @param p1 the first polynomial | 
| 237 | 
  | 
  | 
 * @param p2 the second polynomial | 
| 238 | 
  | 
  | 
 */ | 
| 239 | 
  | 
  | 
template<typename ElemType> | 
| 240 | 
  | 
  | 
Polynomial<ElemType> operator -(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) { | 
| 241 | 
  | 
  | 
    Polynomial<ElemType> p(p1); | 
| 242 | 
  | 
  | 
 | 
| 243 | 
  | 
  | 
    typename Polynomial<ElemType>::const_iterator i; | 
| 244 | 
  | 
  | 
 | 
| 245 | 
  | 
  | 
    for (i =  p2.begin(); i  != p2.end(); ++i) { | 
| 246 | 
  | 
  | 
        p.addCoefficient(i->first, -i->second); | 
| 247 | 
  | 
  | 
    } | 
| 248 | 
  | 
  | 
 | 
| 249 | 
  | 
  | 
    return p; | 
| 250 | 
  | 
  | 
 | 
| 251 | 
  | 
  | 
} | 
| 252 | 
  | 
  | 
 | 
| 253 | 
  | 
  | 
/** | 
| 254 | 
  | 
  | 
 * Tests if two polynomial have the same exponents | 
| 255 | 
  | 
  | 
 * @return true if these all of the exponents in these Polynomial are identical | 
| 256 | 
  | 
  | 
 * @param p1 the first polynomial | 
| 257 | 
  | 
  | 
 * @param p2 the second polynomial | 
| 258 | 
  | 
  | 
 * @note this function does not compare the coefficient | 
| 259 | 
  | 
  | 
 */ | 
| 260 | 
  | 
  | 
template<typename ElemType> | 
| 261 | 
  | 
  | 
bool equal(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) { | 
| 262 | 
  | 
  | 
 | 
| 263 | 
  | 
  | 
    typename Polynomial<ElemType>::const_iterator i; | 
| 264 | 
  | 
  | 
    typename Polynomial<ElemType>::const_iterator j; | 
| 265 | 
  | 
  | 
 | 
| 266 | 
  | 
  | 
    if (p1.size() != p2.size() ) { | 
| 267 | 
  | 
  | 
        return false; | 
| 268 | 
  | 
  | 
    } | 
| 269 | 
  | 
  | 
     | 
| 270 | 
  | 
  | 
    for (i =  p1.begin(), j = p2.begin(); i  != p1.end() && j != p2.end(); ++i, ++j) { | 
| 271 | 
  | 
  | 
        if (i->first != j->first) { | 
| 272 | 
  | 
  | 
            return false; | 
| 273 | 
  | 
  | 
        } | 
| 274 | 
  | 
  | 
    } | 
| 275 | 
  | 
  | 
 | 
| 276 | 
  | 
  | 
    return true; | 
| 277 | 
  | 
  | 
} | 
| 278 | 
  | 
  | 
 | 
| 279 | 
  | 
  | 
typedef Polynomial<double> DoublePolynomial; | 
| 280 | 
  | 
  | 
 | 
| 281 | 
  | 
  | 
} //end namespace oopse | 
| 282 | 
  | 
  | 
#endif //MATH_POLYNOMIAL_HPP |