| 6 | 
  | 
 * redistribute this software in source and binary code form, provided | 
| 7 | 
  | 
 * that the following conditions are met: | 
| 8 | 
  | 
 * | 
| 9 | 
< | 
 * 1. Acknowledgement of the program authors must be made in any | 
| 10 | 
< | 
 *    publication of scientific results based in part on use of the | 
| 11 | 
< | 
 *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | 
< | 
 *    the article in which the program was described (Matthew | 
| 13 | 
< | 
 *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | 
< | 
 *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | 
< | 
 *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | 
< | 
 *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | 
< | 
 * | 
| 18 | 
< | 
 * 2. Redistributions of source code must retain the above copyright | 
| 9 | 
> | 
 * 1. Redistributions of source code must retain the above copyright | 
| 10 | 
  | 
 *    notice, this list of conditions and the following disclaimer. | 
| 11 | 
  | 
 * | 
| 12 | 
< | 
 * 3. Redistributions in binary form must reproduce the above copyright | 
| 12 | 
> | 
 * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | 
  | 
 *    notice, this list of conditions and the following disclaimer in the | 
| 14 | 
  | 
 *    documentation and/or other materials provided with the | 
| 15 | 
  | 
 *    distribution. | 
| 28 | 
  | 
 * arising out of the use of or inability to use software, even if the | 
| 29 | 
  | 
 * University of Notre Dame has been advised of the possibility of | 
| 30 | 
  | 
 * such damages. | 
| 31 | 
+ | 
 * | 
| 32 | 
+ | 
 * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | 
+ | 
 * research, please cite the appropriate papers when you publish your | 
| 34 | 
+ | 
 * work.  Good starting points are: | 
| 35 | 
+ | 
 *                                                                       | 
| 36 | 
+ | 
 * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).              | 
| 37 | 
+ | 
 * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).           | 
| 38 | 
+ | 
 * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).           | 
| 39 | 
+ | 
 * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | 
+ | 
 * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | 
  | 
 */ | 
| 42 | 
  | 
  | 
| 43 | 
  | 
/** | 
| 58 | 
  | 
#include "config.h" | 
| 59 | 
  | 
#include "math/Eigenvalue.hpp" | 
| 60 | 
  | 
 | 
| 61 | 
< | 
namespace oopse { | 
| 61 | 
> | 
namespace OpenMD { | 
| 62 | 
  | 
   | 
| 63 | 
  | 
  template<typename Real> Real fastpow(Real x, int N) { | 
| 64 | 
  | 
    Real result(1); //or 1.0? | 
| 159 | 
  | 
     * this Polynomial. | 
| 160 | 
  | 
     * @return the coefficient associated with the given power for | 
| 161 | 
  | 
     * this Polynomial | 
| 162 | 
< | 
     * @exponent exponent of any term in this Polynomial | 
| 162 | 
> | 
     * @param exponent exponent of any term in this Polynomial | 
| 163 | 
  | 
     */ | 
| 164 | 
  | 
    Real getCoefficient(ExponentType exponent) { | 
| 165 | 
  | 
      iterator i = polyPairMap_.find(exponent); | 
| 273 | 
  | 
     * Returns the first derivative of this polynomial. | 
| 274 | 
  | 
     * @return the first derivative of this polynomial | 
| 275 | 
  | 
     */ | 
| 276 | 
< | 
    PolynomialType & getDerivative() { | 
| 277 | 
< | 
      Polynomial<Real> p(); | 
| 276 | 
> | 
    PolynomialType* getDerivative() { | 
| 277 | 
> | 
      Polynomial<Real>* p = new Polynomial<Real>(); | 
| 278 | 
  | 
       | 
| 279 | 
  | 
      typename Polynomial<Real>::const_iterator i; | 
| 280 | 
  | 
      ExponentType exponent; | 
| 283 | 
  | 
      for (i =  this->begin(); i  != this->end(); ++i) { | 
| 284 | 
  | 
        exponent = i->first; | 
| 285 | 
  | 
        coefficient = i->second; | 
| 286 | 
< | 
        p.setCoefficient(exponent-1, coefficient * exponent); | 
| 286 | 
> | 
        p->setCoefficient(exponent-1, coefficient * exponent); | 
| 287 | 
  | 
      } | 
| 288 | 
  | 
     | 
| 289 | 
  | 
      return p; | 
| 338 | 
  | 
        roots.push_back( -fC0 / fC1); | 
| 339 | 
  | 
        return roots; | 
| 340 | 
  | 
      } | 
| 340 | 
– | 
        break;       | 
| 341 | 
  | 
      case 2: { | 
| 342 | 
  | 
        Real fC2 = getCoefficient(2); | 
| 343 | 
  | 
        Real fC1 = getCoefficient(1); | 
| 346 | 
  | 
        if (abs(fDiscr) <= fEpsilon) { | 
| 347 | 
  | 
          fDiscr = (Real)0.0; | 
| 348 | 
  | 
        } | 
| 349 | 
< | 
       | 
| 349 | 
> | 
         | 
| 350 | 
  | 
        if (fDiscr < (Real)0.0) {  // complex roots only | 
| 351 | 
  | 
          return roots; | 
| 352 | 
  | 
        } | 
| 353 | 
< | 
       | 
| 353 | 
> | 
         | 
| 354 | 
  | 
        Real fTmp = ((Real)0.5)/fC2; | 
| 355 | 
< | 
       | 
| 355 | 
> | 
         | 
| 356 | 
  | 
        if (fDiscr > (Real)0.0) { // 2 real roots | 
| 357 | 
  | 
          fDiscr = sqrt(fDiscr); | 
| 358 | 
  | 
          roots.push_back(fTmp*(-fC1 - fDiscr)); | 
| 361 | 
  | 
          roots.push_back(-fTmp * fC1);  // 1 real root | 
| 362 | 
  | 
        } | 
| 363 | 
  | 
      } | 
| 364 | 
< | 
        return roots; | 
| 365 | 
< | 
        break; | 
| 366 | 
< | 
       | 
| 364 | 
> | 
        return roots;       | 
| 365 | 
  | 
      case 3: { | 
| 366 | 
  | 
        Real fC3 = getCoefficient(3); | 
| 367 | 
  | 
        Real fC2 = getCoefficient(2); | 
| 428 | 
  | 
        } | 
| 429 | 
  | 
      } | 
| 430 | 
  | 
        return roots; | 
| 433 | 
– | 
        break; | 
| 431 | 
  | 
      case 4: { | 
| 432 | 
  | 
        Real fC4 = getCoefficient(4); | 
| 433 | 
  | 
        Real fC3 = getCoefficient(3); | 
| 513 | 
  | 
        } | 
| 514 | 
  | 
      } | 
| 515 | 
  | 
        return roots; | 
| 519 | 
– | 
        break; | 
| 516 | 
  | 
      default: { | 
| 517 | 
  | 
        DynamicRectMatrix<Real> companion = CreateCompanion(); | 
| 518 | 
  | 
        JAMA::Eigenvalue<Real> eig(companion); | 
| 526 | 
  | 
        }       | 
| 527 | 
  | 
      } | 
| 528 | 
  | 
        return roots; | 
| 533 | 
– | 
        break; | 
| 529 | 
  | 
      } | 
| 535 | 
– | 
 | 
| 536 | 
– | 
      return roots; // should be empty if you got here | 
| 530 | 
  | 
    } | 
| 531 | 
< | 
    | 
| 531 | 
> | 
     | 
| 532 | 
  | 
  private: | 
| 533 | 
  | 
         | 
| 534 | 
  | 
    PolynomialPairMap polyPairMap_; | 
| 622 | 
  | 
   * @return the first derivative of this polynomial | 
| 623 | 
  | 
   */ | 
| 624 | 
  | 
  template<typename Real> | 
| 625 | 
< | 
  Polynomial<Real> getDerivative(const Polynomial<Real>& p1) { | 
| 626 | 
< | 
    Polynomial<Real> p(); | 
| 625 | 
> | 
  Polynomial<Real> * getDerivative(const Polynomial<Real>& p1) { | 
| 626 | 
> | 
    Polynomial<Real> * p = new Polynomial<Real>(); | 
| 627 | 
  | 
     | 
| 628 | 
  | 
    typename Polynomial<Real>::const_iterator i; | 
| 629 | 
  | 
    int exponent; | 
| 632 | 
  | 
    for (i =  p1.begin(); i  != p1.end(); ++i) { | 
| 633 | 
  | 
      exponent = i->first; | 
| 634 | 
  | 
      coefficient = i->second; | 
| 635 | 
< | 
      p.setCoefficient(exponent-1, coefficient * exponent); | 
| 635 | 
> | 
      p->setCoefficient(exponent-1, coefficient * exponent); | 
| 636 | 
  | 
    } | 
| 637 | 
  | 
     | 
| 638 | 
  | 
    return p; | 
| 668 | 
  | 
 | 
| 669 | 
  | 
  typedef Polynomial<RealType> DoublePolynomial; | 
| 670 | 
  | 
 | 
| 671 | 
< | 
} //end namespace oopse | 
| 671 | 
> | 
} //end namespace OpenMD | 
| 672 | 
  | 
#endif //MATH_POLYNOMIAL_HPP |