| 204 | 
  | 
        for (i =  p.begin(); i  != p.end(); ++i) { | 
| 205 | 
  | 
          this->addCoefficient(i->first, -i->second); | 
| 206 | 
  | 
        }         | 
| 207 | 
+ | 
        return *this; | 
| 208 | 
  | 
    } | 
| 209 | 
  | 
 | 
| 210 | 
  | 
    PolynomialType& operator *= (const PolynomialType& p) { | 
| 246 | 
  | 
    return p; | 
| 247 | 
  | 
  } | 
| 248 | 
  | 
 | 
| 249 | 
+ | 
  template<typename ElemType> | 
| 250 | 
+ | 
  Polynomial<ElemType> operator *(const Polynomial<ElemType>& p, const ElemType v) { | 
| 251 | 
+ | 
    typename Polynomial<ElemType>::const_iterator i; | 
| 252 | 
+ | 
    Polynomial<ElemType> result; | 
| 253 | 
+ | 
     | 
| 254 | 
+ | 
    for (i = p.begin(); i !=p.end(); ++i) { | 
| 255 | 
+ | 
        result.addCoefficient( i->first , i->second * v); | 
| 256 | 
+ | 
    } | 
| 257 | 
+ | 
 | 
| 258 | 
+ | 
    return result; | 
| 259 | 
+ | 
  } | 
| 260 | 
+ | 
 | 
| 261 | 
+ | 
  template<typename ElemType> | 
| 262 | 
+ | 
  Polynomial<ElemType> operator *( const ElemType v, const Polynomial<ElemType>& p) { | 
| 263 | 
+ | 
    typename Polynomial<ElemType>::const_iterator i; | 
| 264 | 
+ | 
    Polynomial<ElemType> result; | 
| 265 | 
+ | 
     | 
| 266 | 
+ | 
    for (i = p.begin(); i !=p.end(); ++i) { | 
| 267 | 
+ | 
        result.addCoefficient( i->first , i->second * v); | 
| 268 | 
+ | 
    } | 
| 269 | 
+ | 
 | 
| 270 | 
+ | 
    return result; | 
| 271 | 
+ | 
  } | 
| 272 | 
+ | 
   | 
| 273 | 
  | 
  /** | 
| 274 | 
  | 
   * Generates and returns the sum of two given Polynomials. | 
| 275 | 
  | 
   * @param p1 the first polynomial |