| 6 | 
  | 
 * redistribute this software in source and binary code form, provided | 
| 7 | 
  | 
 * that the following conditions are met: | 
| 8 | 
  | 
 * | 
| 9 | 
< | 
 * 1. Acknowledgement of the program authors must be made in any | 
| 10 | 
< | 
 *    publication of scientific results based in part on use of the | 
| 11 | 
< | 
 *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | 
< | 
 *    the article in which the program was described (Matthew | 
| 13 | 
< | 
 *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | 
< | 
 *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | 
< | 
 *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | 
< | 
 *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | 
< | 
 * | 
| 18 | 
< | 
 * 2. Redistributions of source code must retain the above copyright | 
| 9 | 
> | 
 * 1. Redistributions of source code must retain the above copyright | 
| 10 | 
  | 
 *    notice, this list of conditions and the following disclaimer. | 
| 11 | 
  | 
 * | 
| 12 | 
< | 
 * 3. Redistributions in binary form must reproduce the above copyright | 
| 12 | 
> | 
 * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | 
  | 
 *    notice, this list of conditions and the following disclaimer in the | 
| 14 | 
  | 
 *    documentation and/or other materials provided with the | 
| 15 | 
  | 
 *    distribution. | 
| 28 | 
  | 
 * arising out of the use of or inability to use software, even if the | 
| 29 | 
  | 
 * University of Notre Dame has been advised of the possibility of | 
| 30 | 
  | 
 * such damages. | 
| 31 | 
+ | 
 * | 
| 32 | 
+ | 
 * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | 
+ | 
 * research, please cite the appropriate papers when you publish your | 
| 34 | 
+ | 
 * work.  Good starting points are: | 
| 35 | 
+ | 
 *                                                                       | 
| 36 | 
+ | 
 * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).              | 
| 37 | 
+ | 
 * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).           | 
| 38 | 
+ | 
 * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).           | 
| 39 | 
+ | 
 * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | 
+ | 
 * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | 
  | 
 */ | 
| 42 | 
  | 
  | 
| 43 | 
  | 
/** | 
| 54 | 
  | 
#include <list> | 
| 55 | 
  | 
#include <map> | 
| 56 | 
  | 
#include <utility> | 
| 57 | 
+ | 
#include <complex> | 
| 58 | 
+ | 
#include "config.h" | 
| 59 | 
+ | 
#include "math/Eigenvalue.hpp" | 
| 60 | 
  | 
 | 
| 61 | 
< | 
namespace oopse { | 
| 61 | 
> | 
namespace OpenMD { | 
| 62 | 
> | 
   | 
| 63 | 
> | 
  template<typename Real> Real fastpow(Real x, int N) { | 
| 64 | 
> | 
    Real result(1); //or 1.0? | 
| 65 | 
  | 
 | 
| 59 | 
– | 
  template<typename ElemType> ElemType pow(ElemType x, int N) { | 
| 60 | 
– | 
    ElemType result(1); | 
| 61 | 
– | 
 | 
| 66 | 
  | 
    for (int i = 0; i < N; ++i) { | 
| 67 | 
  | 
      result *= x; | 
| 68 | 
  | 
    } | 
| 74 | 
  | 
   * @class Polynomial Polynomial.hpp "math/Polynomial.hpp" | 
| 75 | 
  | 
   * A generic Polynomial class | 
| 76 | 
  | 
   */ | 
| 77 | 
< | 
  template<typename ElemType> | 
| 77 | 
> | 
  template<typename Real> | 
| 78 | 
  | 
  class Polynomial { | 
| 79 | 
  | 
 | 
| 80 | 
  | 
  public: | 
| 81 | 
< | 
         | 
| 81 | 
> | 
    typedef Polynomial<Real> PolynomialType;     | 
| 82 | 
  | 
    typedef int ExponentType; | 
| 83 | 
< | 
    typedef ElemType CoefficientType; | 
| 83 | 
> | 
    typedef Real CoefficientType; | 
| 84 | 
  | 
    typedef std::map<ExponentType, CoefficientType> PolynomialPairMap; | 
| 85 | 
  | 
    typedef typename PolynomialPairMap::iterator iterator; | 
| 86 | 
  | 
    typedef typename PolynomialPairMap::const_iterator const_iterator; | 
| 87 | 
+ | 
 | 
| 88 | 
+ | 
    Polynomial() {} | 
| 89 | 
+ | 
    Polynomial(Real v) {setCoefficient(0, v);} | 
| 90 | 
  | 
    /**  | 
| 91 | 
  | 
     * Calculates the value of this Polynomial evaluated at the given x value. | 
| 92 | 
< | 
     * @return The value of this Polynomial evaluates at the given x value | 
| 93 | 
< | 
     * @param x the value of the independent variable for this Polynomial function | 
| 92 | 
> | 
     * @return The value of this Polynomial evaluates at the given x value   | 
| 93 | 
> | 
     * @param x the value of the independent variable for this | 
| 94 | 
> | 
     * Polynomial function | 
| 95 | 
  | 
     */ | 
| 96 | 
< | 
    ElemType evaluate(const ElemType& x) { | 
| 97 | 
< | 
      ElemType result = ElemType(); | 
| 96 | 
> | 
    Real evaluate(const Real& x) { | 
| 97 | 
> | 
      Real result = Real(); | 
| 98 | 
  | 
      ExponentType exponent; | 
| 99 | 
  | 
      CoefficientType coefficient; | 
| 100 | 
  | 
             | 
| 101 | 
  | 
      for (iterator i = polyPairMap_.begin(); i != polyPairMap_.end(); ++i) { | 
| 102 | 
  | 
        exponent = i->first; | 
| 103 | 
  | 
        coefficient = i->second; | 
| 104 | 
< | 
        result  += pow(x, exponent) * coefficient; | 
| 104 | 
> | 
        result  += fastpow(x, exponent) * coefficient; | 
| 105 | 
  | 
      } | 
| 106 | 
  | 
 | 
| 107 | 
  | 
      return result; | 
| 112 | 
  | 
     * @return the first derivative of this polynomial | 
| 113 | 
  | 
     * @param x | 
| 114 | 
  | 
     */ | 
| 115 | 
< | 
    ElemType evaluateDerivative(const ElemType& x) { | 
| 116 | 
< | 
      ElemType result = ElemType(); | 
| 115 | 
> | 
    Real evaluateDerivative(const Real& x) { | 
| 116 | 
> | 
      Real result = Real(); | 
| 117 | 
  | 
      ExponentType exponent; | 
| 118 | 
  | 
      CoefficientType coefficient; | 
| 119 | 
  | 
             | 
| 120 | 
  | 
      for (iterator i = polyPairMap_.begin(); i != polyPairMap_.end(); ++i) { | 
| 121 | 
  | 
        exponent = i->first; | 
| 122 | 
  | 
        coefficient = i->second; | 
| 123 | 
< | 
        result  += pow(x, exponent - 1) * coefficient * exponent; | 
| 123 | 
> | 
        result  += fastpow(x, exponent - 1) * coefficient * exponent; | 
| 124 | 
  | 
      } | 
| 125 | 
  | 
 | 
| 126 | 
  | 
      return result; | 
| 127 | 
  | 
    } | 
| 128 | 
  | 
 | 
| 129 | 
+ | 
 | 
| 130 | 
  | 
    /** | 
| 131 | 
< | 
     * Set the coefficent of the specified exponent, if the coefficient is already there, it | 
| 132 | 
< | 
     * will be overwritten. | 
| 131 | 
> | 
     * Set the coefficent of the specified exponent, if the | 
| 132 | 
> | 
     * coefficient is already there, it will be overwritten. | 
| 133 | 
  | 
     * @param exponent exponent of a term in this Polynomial  | 
| 134 | 
  | 
     * @param coefficient multiplier of a term in this Polynomial  | 
| 135 | 
< | 
     */ | 
| 136 | 
< | 
         | 
| 137 | 
< | 
    void setCoefficient(int exponent, const ElemType& coefficient) { | 
| 129 | 
< | 
      polyPairMap_.insert(typename PolynomialPairMap::value_type(exponent, coefficient)); | 
| 135 | 
> | 
     */         | 
| 136 | 
> | 
    void setCoefficient(int exponent, const Real& coefficient) { | 
| 137 | 
> | 
      polyPairMap_[exponent] = coefficient; | 
| 138 | 
  | 
    } | 
| 139 | 
< | 
 | 
| 139 | 
> | 
     | 
| 140 | 
  | 
    /** | 
| 141 | 
< | 
     * Set the coefficent of the specified exponent. If the coefficient is already there,  just add the | 
| 142 | 
< | 
     * new coefficient to the old one, otherwise,  just call setCoefficent | 
| 141 | 
> | 
     * Set the coefficent of the specified exponent. If the | 
| 142 | 
> | 
     * coefficient is already there, just add the new coefficient to | 
| 143 | 
> | 
     * the old one, otherwise, just call setCoefficent | 
| 144 | 
  | 
     * @param exponent exponent of a term in this Polynomial  | 
| 145 | 
  | 
     * @param coefficient multiplier of a term in this Polynomial  | 
| 146 | 
< | 
     */ | 
| 147 | 
< | 
         | 
| 139 | 
< | 
    void addCoefficient(int exponent, const ElemType& coefficient) { | 
| 146 | 
> | 
     */         | 
| 147 | 
> | 
    void addCoefficient(int exponent, const Real& coefficient) { | 
| 148 | 
  | 
      iterator i = polyPairMap_.find(exponent); | 
| 149 | 
  | 
 | 
| 150 | 
  | 
      if (i != end()) { | 
| 154 | 
  | 
      } | 
| 155 | 
  | 
    } | 
| 156 | 
  | 
 | 
| 149 | 
– | 
 | 
| 157 | 
  | 
    /** | 
| 158 | 
< | 
     * Returns the coefficient associated with the given power for this Polynomial. | 
| 159 | 
< | 
     * @return the coefficient associated with the given power for this Polynomial | 
| 160 | 
< | 
     * @exponent exponent of any term in this Polynomial | 
| 158 | 
> | 
     * Returns the coefficient associated with the given power for | 
| 159 | 
> | 
     * this Polynomial. | 
| 160 | 
> | 
     * @return the coefficient associated with the given power for | 
| 161 | 
> | 
     * this Polynomial | 
| 162 | 
> | 
     * @param exponent exponent of any term in this Polynomial | 
| 163 | 
  | 
     */ | 
| 164 | 
< | 
    ElemType getCoefficient(ExponentType exponent) { | 
| 164 | 
> | 
    Real getCoefficient(ExponentType exponent) { | 
| 165 | 
  | 
      iterator i = polyPairMap_.find(exponent); | 
| 166 | 
  | 
 | 
| 167 | 
  | 
      if (i != end()) { | 
| 168 | 
  | 
        return i->second; | 
| 169 | 
  | 
      } else { | 
| 170 | 
< | 
        return ElemType(0); | 
| 170 | 
> | 
        return Real(0); | 
| 171 | 
  | 
      } | 
| 172 | 
  | 
    } | 
| 173 | 
  | 
 | 
| 193 | 
  | 
 | 
| 194 | 
  | 
    size_t size() { | 
| 195 | 
  | 
      return polyPairMap_.size(); | 
| 196 | 
+ | 
    } | 
| 197 | 
+ | 
 | 
| 198 | 
+ | 
    int degree() { | 
| 199 | 
+ | 
      int deg = 0; | 
| 200 | 
+ | 
      for (iterator i = polyPairMap_.begin(); i != polyPairMap_.end(); ++i) { | 
| 201 | 
+ | 
        if (i->first > deg) | 
| 202 | 
+ | 
          deg = i->first; | 
| 203 | 
+ | 
      } | 
| 204 | 
+ | 
      return deg; | 
| 205 | 
+ | 
    } | 
| 206 | 
+ | 
 | 
| 207 | 
+ | 
    PolynomialType& operator = (const PolynomialType& p) { | 
| 208 | 
+ | 
 | 
| 209 | 
+ | 
      if (this != &p)  // protect against invalid self-assignment | 
| 210 | 
+ | 
        { | 
| 211 | 
+ | 
          typename Polynomial<Real>::const_iterator i; | 
| 212 | 
+ | 
 | 
| 213 | 
+ | 
          polyPairMap_.clear();  // clear out the old map | 
| 214 | 
+ | 
       | 
| 215 | 
+ | 
          for (i =  p.begin(); i != p.end(); ++i) { | 
| 216 | 
+ | 
            this->setCoefficient(i->first, i->second); | 
| 217 | 
+ | 
          } | 
| 218 | 
+ | 
        } | 
| 219 | 
+ | 
      // by convention, always return *this | 
| 220 | 
+ | 
      return *this;  | 
| 221 | 
+ | 
    } | 
| 222 | 
+ | 
 | 
| 223 | 
+ | 
    PolynomialType& operator += (const PolynomialType& p) { | 
| 224 | 
+ | 
      typename Polynomial<Real>::const_iterator i; | 
| 225 | 
+ | 
 | 
| 226 | 
+ | 
      for (i =  p.begin(); i  != p.end(); ++i) { | 
| 227 | 
+ | 
        this->addCoefficient(i->first, i->second); | 
| 228 | 
+ | 
      } | 
| 229 | 
+ | 
 | 
| 230 | 
+ | 
      return *this;         | 
| 231 | 
+ | 
    } | 
| 232 | 
+ | 
 | 
| 233 | 
+ | 
    PolynomialType& operator -= (const PolynomialType& p) { | 
| 234 | 
+ | 
      typename Polynomial<Real>::const_iterator i; | 
| 235 | 
+ | 
      for (i =  p.begin(); i  != p.end(); ++i) { | 
| 236 | 
+ | 
        this->addCoefficient(i->first, -i->second); | 
| 237 | 
+ | 
      }         | 
| 238 | 
+ | 
      return *this; | 
| 239 | 
  | 
    } | 
| 240 | 
+ | 
     | 
| 241 | 
+ | 
    PolynomialType& operator *= (const PolynomialType& p) { | 
| 242 | 
+ | 
      typename Polynomial<Real>::const_iterator i; | 
| 243 | 
+ | 
      typename Polynomial<Real>::const_iterator j; | 
| 244 | 
+ | 
      Polynomial<Real> p2(*this); | 
| 245 | 
+ | 
       | 
| 246 | 
+ | 
      polyPairMap_.clear();  // clear out old map | 
| 247 | 
+ | 
      for (i = p2.begin(); i !=p2.end(); ++i) { | 
| 248 | 
+ | 
        for (j = p.begin(); j !=p.end(); ++j) { | 
| 249 | 
+ | 
          this->addCoefficient( i->first + j->first, i->second * j->second); | 
| 250 | 
+ | 
        } | 
| 251 | 
+ | 
      } | 
| 252 | 
+ | 
      return *this; | 
| 253 | 
+ | 
    } | 
| 254 | 
+ | 
 | 
| 255 | 
+ | 
    //PolynomialType& operator *= (const Real v) | 
| 256 | 
+ | 
    PolynomialType& operator *= (const Real v) { | 
| 257 | 
+ | 
      typename Polynomial<Real>::const_iterator i; | 
| 258 | 
+ | 
      //Polynomial<Real> result; | 
| 259 | 
+ | 
       | 
| 260 | 
+ | 
      for (i = this->begin(); i != this->end(); ++i) { | 
| 261 | 
+ | 
        this->setCoefficient( i->first, i->second*v); | 
| 262 | 
+ | 
      } | 
| 263 | 
+ | 
       | 
| 264 | 
+ | 
      return *this; | 
| 265 | 
+ | 
    } | 
| 266 | 
+ | 
 | 
| 267 | 
+ | 
    PolynomialType& operator += (const Real v) {     | 
| 268 | 
+ | 
      this->addCoefficient( 0, v); | 
| 269 | 
+ | 
      return *this; | 
| 270 | 
+ | 
    } | 
| 271 | 
+ | 
 | 
| 272 | 
+ | 
    /** | 
| 273 | 
+ | 
     * Returns the first derivative of this polynomial. | 
| 274 | 
+ | 
     * @return the first derivative of this polynomial | 
| 275 | 
+ | 
     */ | 
| 276 | 
+ | 
    PolynomialType* getDerivative() { | 
| 277 | 
+ | 
      Polynomial<Real>* p = new Polynomial<Real>(); | 
| 278 | 
+ | 
       | 
| 279 | 
+ | 
      typename Polynomial<Real>::const_iterator i; | 
| 280 | 
+ | 
      ExponentType exponent; | 
| 281 | 
+ | 
      CoefficientType coefficient; | 
| 282 | 
+ | 
       | 
| 283 | 
+ | 
      for (i =  this->begin(); i  != this->end(); ++i) { | 
| 284 | 
+ | 
        exponent = i->first; | 
| 285 | 
+ | 
        coefficient = i->second; | 
| 286 | 
+ | 
        p->setCoefficient(exponent-1, coefficient * exponent); | 
| 287 | 
+ | 
      } | 
| 288 | 
+ | 
     | 
| 289 | 
+ | 
      return p; | 
| 290 | 
+ | 
    } | 
| 291 | 
+ | 
 | 
| 292 | 
+ | 
    // Creates the Companion matrix for a given polynomial | 
| 293 | 
+ | 
    DynamicRectMatrix<Real> CreateCompanion() { | 
| 294 | 
+ | 
      int rank = degree(); | 
| 295 | 
+ | 
      DynamicRectMatrix<Real> mat(rank, rank); | 
| 296 | 
+ | 
      Real majorCoeff = getCoefficient(rank); | 
| 297 | 
+ | 
      for(int i = 0; i < rank; ++i) { | 
| 298 | 
+ | 
        for(int j = 0; j < rank; ++j) { | 
| 299 | 
+ | 
          if(i - j == 1) { | 
| 300 | 
+ | 
            mat(i, j) = 1; | 
| 301 | 
+ | 
          } else if(j == rank-1) { | 
| 302 | 
+ | 
            mat(i, j) = -1 * getCoefficient(i) / majorCoeff; | 
| 303 | 
+ | 
          } | 
| 304 | 
+ | 
        } | 
| 305 | 
+ | 
      } | 
| 306 | 
+ | 
      return mat; | 
| 307 | 
+ | 
    } | 
| 308 | 
+ | 
     | 
| 309 | 
+ | 
    // Find the Roots of a given polynomial | 
| 310 | 
+ | 
    std::vector<complex<Real> > FindRoots() { | 
| 311 | 
+ | 
      int rank = degree(); | 
| 312 | 
+ | 
      DynamicRectMatrix<Real> companion = CreateCompanion(); | 
| 313 | 
+ | 
      JAMA::Eigenvalue<Real> eig(companion); | 
| 314 | 
+ | 
      DynamicVector<Real> reals, imags; | 
| 315 | 
+ | 
      eig.getRealEigenvalues(reals); | 
| 316 | 
+ | 
      eig.getImagEigenvalues(imags); | 
| 317 | 
+ | 
       | 
| 318 | 
+ | 
      std::vector<complex<Real> > roots; | 
| 319 | 
+ | 
      for (int i = 0; i < rank; i++) { | 
| 320 | 
+ | 
        roots.push_back(complex<Real>(reals(i), imags(i))); | 
| 321 | 
+ | 
      } | 
| 322 | 
+ | 
 | 
| 323 | 
+ | 
      return roots; | 
| 324 | 
+ | 
    } | 
| 325 | 
+ | 
 | 
| 326 | 
+ | 
    std::vector<Real> FindRealRoots() { | 
| 327 | 
+ | 
       | 
| 328 | 
+ | 
      const Real fEpsilon = 1.0e-8; | 
| 329 | 
+ | 
      std::vector<Real> roots; | 
| 330 | 
+ | 
      roots.clear(); | 
| 331 | 
+ | 
       | 
| 332 | 
+ | 
      const int deg = degree(); | 
| 333 | 
+ | 
       | 
| 334 | 
+ | 
      switch (deg) { | 
| 335 | 
+ | 
      case 1: { | 
| 336 | 
+ | 
        Real fC1 = getCoefficient(1); | 
| 337 | 
+ | 
        Real fC0 = getCoefficient(0); | 
| 338 | 
+ | 
        roots.push_back( -fC0 / fC1); | 
| 339 | 
+ | 
        return roots; | 
| 340 | 
+ | 
      } | 
| 341 | 
+ | 
      case 2: { | 
| 342 | 
+ | 
        Real fC2 = getCoefficient(2); | 
| 343 | 
+ | 
        Real fC1 = getCoefficient(1); | 
| 344 | 
+ | 
        Real fC0 = getCoefficient(0); | 
| 345 | 
+ | 
        Real fDiscr = fC1*fC1 - 4.0*fC0*fC2; | 
| 346 | 
+ | 
        if (abs(fDiscr) <= fEpsilon) { | 
| 347 | 
+ | 
          fDiscr = (Real)0.0; | 
| 348 | 
+ | 
        } | 
| 349 | 
+ | 
         | 
| 350 | 
+ | 
        if (fDiscr < (Real)0.0) {  // complex roots only | 
| 351 | 
+ | 
          return roots; | 
| 352 | 
+ | 
        } | 
| 353 | 
+ | 
         | 
| 354 | 
+ | 
        Real fTmp = ((Real)0.5)/fC2; | 
| 355 | 
+ | 
         | 
| 356 | 
+ | 
        if (fDiscr > (Real)0.0) { // 2 real roots | 
| 357 | 
+ | 
          fDiscr = sqrt(fDiscr); | 
| 358 | 
+ | 
          roots.push_back(fTmp*(-fC1 - fDiscr)); | 
| 359 | 
+ | 
          roots.push_back(fTmp*(-fC1 + fDiscr)); | 
| 360 | 
+ | 
        } else { | 
| 361 | 
+ | 
          roots.push_back(-fTmp * fC1);  // 1 real root | 
| 362 | 
+ | 
        } | 
| 363 | 
+ | 
      } | 
| 364 | 
+ | 
        return roots;       | 
| 365 | 
+ | 
      case 3: { | 
| 366 | 
+ | 
        Real fC3 = getCoefficient(3); | 
| 367 | 
+ | 
        Real fC2 = getCoefficient(2); | 
| 368 | 
+ | 
        Real fC1 = getCoefficient(1); | 
| 369 | 
+ | 
        Real fC0 = getCoefficient(0); | 
| 370 | 
+ | 
       | 
| 371 | 
+ | 
        // make polynomial monic, x^3+c2*x^2+c1*x+c0 | 
| 372 | 
+ | 
        Real fInvC3 = ((Real)1.0)/fC3; | 
| 373 | 
+ | 
        fC0 *= fInvC3; | 
| 374 | 
+ | 
        fC1 *= fInvC3; | 
| 375 | 
+ | 
        fC2 *= fInvC3; | 
| 376 | 
+ | 
       | 
| 377 | 
+ | 
        // convert to y^3+a*y+b = 0 by x = y-c2/3 | 
| 378 | 
+ | 
        const Real fThird = (Real)1.0/(Real)3.0; | 
| 379 | 
+ | 
        const Real fTwentySeventh = (Real)1.0/(Real)27.0; | 
| 380 | 
+ | 
        Real fOffset = fThird*fC2; | 
| 381 | 
+ | 
        Real fA = fC1 - fC2*fOffset; | 
| 382 | 
+ | 
        Real fB = fC0+fC2*(((Real)2.0)*fC2*fC2-((Real)9.0)*fC1)*fTwentySeventh; | 
| 383 | 
+ | 
        Real fHalfB = ((Real)0.5)*fB; | 
| 384 | 
+ | 
       | 
| 385 | 
+ | 
        Real fDiscr = fHalfB*fHalfB + fA*fA*fA*fTwentySeventh; | 
| 386 | 
+ | 
        if (fabs(fDiscr) <= fEpsilon) { | 
| 387 | 
+ | 
          fDiscr = (Real)0.0; | 
| 388 | 
+ | 
        } | 
| 389 | 
+ | 
       | 
| 390 | 
+ | 
        if (fDiscr > (Real)0.0) {  // 1 real, 2 complex roots | 
| 391 | 
  | 
         | 
| 392 | 
+ | 
          fDiscr = sqrt(fDiscr); | 
| 393 | 
+ | 
          Real fTemp = -fHalfB + fDiscr; | 
| 394 | 
+ | 
          Real root; | 
| 395 | 
+ | 
          if (fTemp >= (Real)0.0) { | 
| 396 | 
+ | 
            root = pow(fTemp,fThird); | 
| 397 | 
+ | 
          } else { | 
| 398 | 
+ | 
            root = -pow(-fTemp,fThird); | 
| 399 | 
+ | 
          } | 
| 400 | 
+ | 
          fTemp = -fHalfB - fDiscr; | 
| 401 | 
+ | 
          if ( fTemp >= (Real)0.0 ) { | 
| 402 | 
+ | 
            root += pow(fTemp,fThird);           | 
| 403 | 
+ | 
          } else { | 
| 404 | 
+ | 
            root -= pow(-fTemp,fThird); | 
| 405 | 
+ | 
          } | 
| 406 | 
+ | 
          root -= fOffset; | 
| 407 | 
+ | 
         | 
| 408 | 
+ | 
          roots.push_back(root); | 
| 409 | 
+ | 
        } else if (fDiscr < (Real)0.0) { | 
| 410 | 
+ | 
          const Real fSqrt3 = sqrt((Real)3.0); | 
| 411 | 
+ | 
          Real fDist = sqrt(-fThird*fA); | 
| 412 | 
+ | 
          Real fAngle = fThird*atan2(sqrt(-fDiscr), -fHalfB); | 
| 413 | 
+ | 
          Real fCos = cos(fAngle); | 
| 414 | 
+ | 
          Real fSin = sin(fAngle); | 
| 415 | 
+ | 
          roots.push_back(((Real)2.0)*fDist*fCos-fOffset); | 
| 416 | 
+ | 
          roots.push_back(-fDist*(fCos+fSqrt3*fSin)-fOffset); | 
| 417 | 
+ | 
          roots.push_back(-fDist*(fCos-fSqrt3*fSin)-fOffset); | 
| 418 | 
+ | 
        } else { | 
| 419 | 
+ | 
          Real fTemp; | 
| 420 | 
+ | 
          if (fHalfB >= (Real)0.0) { | 
| 421 | 
+ | 
            fTemp = -pow(fHalfB,fThird); | 
| 422 | 
+ | 
          } else { | 
| 423 | 
+ | 
            fTemp = pow(-fHalfB,fThird); | 
| 424 | 
+ | 
          } | 
| 425 | 
+ | 
          roots.push_back(((Real)2.0)*fTemp-fOffset); | 
| 426 | 
+ | 
          roots.push_back(-fTemp-fOffset); | 
| 427 | 
+ | 
          roots.push_back(-fTemp-fOffset); | 
| 428 | 
+ | 
        } | 
| 429 | 
+ | 
      } | 
| 430 | 
+ | 
        return roots; | 
| 431 | 
+ | 
      case 4: { | 
| 432 | 
+ | 
        Real fC4 = getCoefficient(4); | 
| 433 | 
+ | 
        Real fC3 = getCoefficient(3); | 
| 434 | 
+ | 
        Real fC2 = getCoefficient(2); | 
| 435 | 
+ | 
        Real fC1 = getCoefficient(1); | 
| 436 | 
+ | 
        Real fC0 = getCoefficient(0); | 
| 437 | 
+ | 
       | 
| 438 | 
+ | 
        // make polynomial monic, x^4+c3*x^3+c2*x^2+c1*x+c0 | 
| 439 | 
+ | 
        Real fInvC4 = ((Real)1.0)/fC4; | 
| 440 | 
+ | 
        fC0 *= fInvC4; | 
| 441 | 
+ | 
        fC1 *= fInvC4; | 
| 442 | 
+ | 
        fC2 *= fInvC4; | 
| 443 | 
+ | 
        fC3 *= fInvC4; | 
| 444 | 
+ | 
   | 
| 445 | 
+ | 
        // reduction to resolvent cubic polynomial y^3+r2*y^2+r1*y+r0 = 0 | 
| 446 | 
+ | 
        Real fR0 = -fC3*fC3*fC0 + ((Real)4.0)*fC2*fC0 - fC1*fC1; | 
| 447 | 
+ | 
        Real fR1 = fC3*fC1 - ((Real)4.0)*fC0; | 
| 448 | 
+ | 
        Real fR2 = -fC2; | 
| 449 | 
+ | 
        Polynomial<Real> tempCubic; | 
| 450 | 
+ | 
        tempCubic.setCoefficient(0, fR0); | 
| 451 | 
+ | 
        tempCubic.setCoefficient(1, fR1); | 
| 452 | 
+ | 
        tempCubic.setCoefficient(2, fR2); | 
| 453 | 
+ | 
        tempCubic.setCoefficient(3, 1.0); | 
| 454 | 
+ | 
        std::vector<Real> cubeRoots = tempCubic.FindRealRoots(); // always | 
| 455 | 
+ | 
        // produces | 
| 456 | 
+ | 
        // at | 
| 457 | 
+ | 
        // least | 
| 458 | 
+ | 
        // one | 
| 459 | 
+ | 
        // root | 
| 460 | 
+ | 
        Real fY = cubeRoots[0]; | 
| 461 | 
+ | 
       | 
| 462 | 
+ | 
        Real fDiscr = ((Real)0.25)*fC3*fC3 - fC2 + fY; | 
| 463 | 
+ | 
        if (fabs(fDiscr) <= fEpsilon) { | 
| 464 | 
+ | 
          fDiscr = (Real)0.0; | 
| 465 | 
+ | 
        } | 
| 466 | 
+ | 
    | 
| 467 | 
+ | 
        if (fDiscr > (Real)0.0) { | 
| 468 | 
+ | 
          Real fR = sqrt(fDiscr); | 
| 469 | 
+ | 
          Real fT1 = ((Real)0.75)*fC3*fC3 - fR*fR - ((Real)2.0)*fC2; | 
| 470 | 
+ | 
          Real fT2 = (((Real)4.0)*fC3*fC2 - ((Real)8.0)*fC1 - fC3*fC3*fC3) / | 
| 471 | 
+ | 
            (((Real)4.0)*fR); | 
| 472 | 
+ | 
       | 
| 473 | 
+ | 
          Real fTplus = fT1+fT2; | 
| 474 | 
+ | 
          Real fTminus = fT1-fT2; | 
| 475 | 
+ | 
          if (fabs(fTplus) <= fEpsilon) { | 
| 476 | 
+ | 
            fTplus = (Real)0.0; | 
| 477 | 
+ | 
          } | 
| 478 | 
+ | 
          if (fabs(fTminus) <= fEpsilon) { | 
| 479 | 
+ | 
            fTminus = (Real)0.0; | 
| 480 | 
+ | 
          } | 
| 481 | 
+ | 
       | 
| 482 | 
+ | 
          if (fTplus >= (Real)0.0) { | 
| 483 | 
+ | 
            Real fD = sqrt(fTplus); | 
| 484 | 
+ | 
            roots.push_back(-((Real)0.25)*fC3+((Real)0.5)*(fR+fD)); | 
| 485 | 
+ | 
            roots.push_back(-((Real)0.25)*fC3+((Real)0.5)*(fR-fD)); | 
| 486 | 
+ | 
          } | 
| 487 | 
+ | 
          if (fTminus >= (Real)0.0) { | 
| 488 | 
+ | 
            Real fE = sqrt(fTminus); | 
| 489 | 
+ | 
            roots.push_back(-((Real)0.25)*fC3+((Real)0.5)*(fE-fR)); | 
| 490 | 
+ | 
            roots.push_back(-((Real)0.25)*fC3-((Real)0.5)*(fE+fR)); | 
| 491 | 
+ | 
          } | 
| 492 | 
+ | 
        } else if (fDiscr < (Real)0.0) { | 
| 493 | 
+ | 
          //roots.clear(); | 
| 494 | 
+ | 
        } else {         | 
| 495 | 
+ | 
          Real fT2 = fY*fY-((Real)4.0)*fC0; | 
| 496 | 
+ | 
          if (fT2 >= -fEpsilon) { | 
| 497 | 
+ | 
            if (fT2 < (Real)0.0) { // round to zero | 
| 498 | 
+ | 
              fT2 = (Real)0.0; | 
| 499 | 
+ | 
            } | 
| 500 | 
+ | 
            fT2 = ((Real)2.0)*sqrt(fT2); | 
| 501 | 
+ | 
            Real fT1 = ((Real)0.75)*fC3*fC3 - ((Real)2.0)*fC2; | 
| 502 | 
+ | 
            if (fT1+fT2 >= fEpsilon) { | 
| 503 | 
+ | 
              Real fD = sqrt(fT1+fT2); | 
| 504 | 
+ | 
              roots.push_back( -((Real)0.25)*fC3+((Real)0.5)*fD); | 
| 505 | 
+ | 
              roots.push_back( -((Real)0.25)*fC3-((Real)0.5)*fD); | 
| 506 | 
+ | 
            } | 
| 507 | 
+ | 
            if (fT1-fT2 >= fEpsilon) { | 
| 508 | 
+ | 
              Real fE = sqrt(fT1-fT2); | 
| 509 | 
+ | 
              roots.push_back( -((Real)0.25)*fC3+((Real)0.5)*fE); | 
| 510 | 
+ | 
              roots.push_back( -((Real)0.25)*fC3-((Real)0.5)*fE); | 
| 511 | 
+ | 
            } | 
| 512 | 
+ | 
          } | 
| 513 | 
+ | 
        } | 
| 514 | 
+ | 
      } | 
| 515 | 
+ | 
        return roots; | 
| 516 | 
+ | 
      default: { | 
| 517 | 
+ | 
        DynamicRectMatrix<Real> companion = CreateCompanion(); | 
| 518 | 
+ | 
        JAMA::Eigenvalue<Real> eig(companion); | 
| 519 | 
+ | 
        DynamicVector<Real> reals, imags; | 
| 520 | 
+ | 
        eig.getRealEigenvalues(reals); | 
| 521 | 
+ | 
        eig.getImagEigenvalues(imags); | 
| 522 | 
+ | 
       | 
| 523 | 
+ | 
        for (int i = 0; i < deg; i++) { | 
| 524 | 
+ | 
          if (fabs(imags(i)) < fEpsilon)  | 
| 525 | 
+ | 
            roots.push_back(reals(i));         | 
| 526 | 
+ | 
        }       | 
| 527 | 
+ | 
      } | 
| 528 | 
+ | 
        return roots; | 
| 529 | 
+ | 
      } | 
| 530 | 
+ | 
    } | 
| 531 | 
+ | 
     | 
| 532 | 
  | 
  private: | 
| 533 | 
  | 
         | 
| 534 | 
  | 
    PolynomialPairMap polyPairMap_; | 
| 535 | 
  | 
  }; | 
| 536 | 
  | 
 | 
| 537 | 
< | 
 | 
| 537 | 
> | 
   | 
| 538 | 
  | 
  /** | 
| 539 | 
  | 
   * Generates and returns the product of two given Polynomials. | 
| 540 | 
  | 
   * @return A Polynomial containing the product of the two given Polynomial parameters | 
| 541 | 
  | 
   */ | 
| 542 | 
< | 
  template<typename ElemType> | 
| 543 | 
< | 
  Polynomial<ElemType> operator *(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) { | 
| 544 | 
< | 
    typename Polynomial<ElemType>::const_iterator i; | 
| 545 | 
< | 
    typename Polynomial<ElemType>::const_iterator j; | 
| 546 | 
< | 
    Polynomial<ElemType> p; | 
| 542 | 
> | 
  template<typename Real> | 
| 543 | 
> | 
  Polynomial<Real> operator *(const Polynomial<Real>& p1, const Polynomial<Real>& p2) { | 
| 544 | 
> | 
    typename Polynomial<Real>::const_iterator i; | 
| 545 | 
> | 
    typename Polynomial<Real>::const_iterator j; | 
| 546 | 
> | 
    Polynomial<Real> p; | 
| 547 | 
  | 
     | 
| 548 | 
  | 
    for (i = p1.begin(); i !=p1.end(); ++i) { | 
| 549 | 
  | 
      for (j = p2.begin(); j !=p2.end(); ++j) { | 
| 554 | 
  | 
    return p; | 
| 555 | 
  | 
  } | 
| 556 | 
  | 
 | 
| 557 | 
+ | 
  template<typename Real> | 
| 558 | 
+ | 
  Polynomial<Real> operator *(const Polynomial<Real>& p, const Real v) { | 
| 559 | 
+ | 
    typename Polynomial<Real>::const_iterator i; | 
| 560 | 
+ | 
    Polynomial<Real> result; | 
| 561 | 
+ | 
     | 
| 562 | 
+ | 
    for (i = p.begin(); i !=p.end(); ++i) { | 
| 563 | 
+ | 
        result.setCoefficient( i->first , i->second * v); | 
| 564 | 
+ | 
    } | 
| 565 | 
+ | 
 | 
| 566 | 
+ | 
    return result; | 
| 567 | 
+ | 
  } | 
| 568 | 
+ | 
 | 
| 569 | 
+ | 
  template<typename Real> | 
| 570 | 
+ | 
  Polynomial<Real> operator *( const Real v, const Polynomial<Real>& p) { | 
| 571 | 
+ | 
    typename Polynomial<Real>::const_iterator i; | 
| 572 | 
+ | 
    Polynomial<Real> result; | 
| 573 | 
+ | 
     | 
| 574 | 
+ | 
    for (i = p.begin(); i !=p.end(); ++i) { | 
| 575 | 
+ | 
        result.setCoefficient( i->first , i->second * v); | 
| 576 | 
+ | 
    } | 
| 577 | 
+ | 
 | 
| 578 | 
+ | 
    return result; | 
| 579 | 
+ | 
  } | 
| 580 | 
+ | 
   | 
| 581 | 
  | 
  /** | 
| 582 | 
  | 
   * Generates and returns the sum of two given Polynomials. | 
| 583 | 
  | 
   * @param p1 the first polynomial | 
| 584 | 
  | 
   * @param p2 the second polynomial | 
| 585 | 
  | 
   */ | 
| 586 | 
< | 
  template<typename ElemType> | 
| 587 | 
< | 
  Polynomial<ElemType> operator +(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) { | 
| 588 | 
< | 
    Polynomial<ElemType> p(p1); | 
| 586 | 
> | 
  template<typename Real> | 
| 587 | 
> | 
  Polynomial<Real> operator +(const Polynomial<Real>& p1, const Polynomial<Real>& p2) { | 
| 588 | 
> | 
    Polynomial<Real> p(p1); | 
| 589 | 
  | 
 | 
| 590 | 
< | 
    typename Polynomial<ElemType>::const_iterator i; | 
| 590 | 
> | 
    typename Polynomial<Real>::const_iterator i; | 
| 591 | 
  | 
 | 
| 592 | 
  | 
    for (i =  p2.begin(); i  != p2.end(); ++i) { | 
| 593 | 
  | 
      p.addCoefficient(i->first, i->second); | 
| 603 | 
  | 
   * @param p1 the first polynomial | 
| 604 | 
  | 
   * @param p2 the second polynomial | 
| 605 | 
  | 
   */ | 
| 606 | 
< | 
  template<typename ElemType> | 
| 607 | 
< | 
  Polynomial<ElemType> operator -(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) { | 
| 608 | 
< | 
    Polynomial<ElemType> p(p1); | 
| 606 | 
> | 
  template<typename Real> | 
| 607 | 
> | 
  Polynomial<Real> operator -(const Polynomial<Real>& p1, const Polynomial<Real>& p2) { | 
| 608 | 
> | 
    Polynomial<Real> p(p1); | 
| 609 | 
  | 
 | 
| 610 | 
< | 
    typename Polynomial<ElemType>::const_iterator i; | 
| 610 | 
> | 
    typename Polynomial<Real>::const_iterator i; | 
| 611 | 
  | 
 | 
| 612 | 
  | 
    for (i =  p2.begin(); i  != p2.end(); ++i) { | 
| 613 | 
  | 
      p.addCoefficient(i->first, -i->second); | 
| 618 | 
  | 
  } | 
| 619 | 
  | 
 | 
| 620 | 
  | 
  /** | 
| 621 | 
+ | 
   * Returns the first derivative of this polynomial. | 
| 622 | 
+ | 
   * @return the first derivative of this polynomial | 
| 623 | 
+ | 
   */ | 
| 624 | 
+ | 
  template<typename Real> | 
| 625 | 
+ | 
  Polynomial<Real> * getDerivative(const Polynomial<Real>& p1) { | 
| 626 | 
+ | 
    Polynomial<Real> * p = new Polynomial<Real>(); | 
| 627 | 
+ | 
     | 
| 628 | 
+ | 
    typename Polynomial<Real>::const_iterator i; | 
| 629 | 
+ | 
    int exponent; | 
| 630 | 
+ | 
    Real coefficient; | 
| 631 | 
+ | 
     | 
| 632 | 
+ | 
    for (i =  p1.begin(); i  != p1.end(); ++i) { | 
| 633 | 
+ | 
      exponent = i->first; | 
| 634 | 
+ | 
      coefficient = i->second; | 
| 635 | 
+ | 
      p->setCoefficient(exponent-1, coefficient * exponent); | 
| 636 | 
+ | 
    } | 
| 637 | 
+ | 
     | 
| 638 | 
+ | 
    return p; | 
| 639 | 
+ | 
  } | 
| 640 | 
+ | 
 | 
| 641 | 
+ | 
  /** | 
| 642 | 
  | 
   * Tests if two polynomial have the same exponents | 
| 643 | 
< | 
   * @return true if these all of the exponents in these Polynomial are identical | 
| 643 | 
> | 
   * @return true if all of the exponents in these Polynomial are identical | 
| 644 | 
  | 
   * @param p1 the first polynomial | 
| 645 | 
  | 
   * @param p2 the second polynomial | 
| 646 | 
  | 
   * @note this function does not compare the coefficient | 
| 647 | 
  | 
   */ | 
| 648 | 
< | 
  template<typename ElemType> | 
| 649 | 
< | 
  bool equal(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) { | 
| 648 | 
> | 
  template<typename Real> | 
| 649 | 
> | 
  bool equal(const Polynomial<Real>& p1, const Polynomial<Real>& p2) { | 
| 650 | 
  | 
 | 
| 651 | 
< | 
    typename Polynomial<ElemType>::const_iterator i; | 
| 652 | 
< | 
    typename Polynomial<ElemType>::const_iterator j; | 
| 651 | 
> | 
    typename Polynomial<Real>::const_iterator i; | 
| 652 | 
> | 
    typename Polynomial<Real>::const_iterator j; | 
| 653 | 
  | 
 | 
| 654 | 
  | 
    if (p1.size() != p2.size() ) { | 
| 655 | 
  | 
      return false; | 
| 664 | 
  | 
    return true; | 
| 665 | 
  | 
  } | 
| 666 | 
  | 
 | 
| 279 | 
– | 
  typedef Polynomial<double> DoublePolynomial; | 
| 667 | 
  | 
 | 
| 668 | 
< | 
} //end namespace oopse | 
| 668 | 
> | 
 | 
| 669 | 
> | 
  typedef Polynomial<RealType> DoublePolynomial; | 
| 670 | 
> | 
 | 
| 671 | 
> | 
} //end namespace OpenMD | 
| 672 | 
  | 
#endif //MATH_POLYNOMIAL_HPP |