# | Line 33 | Line 33 | |
---|---|---|
33 | #ifndef MATH_QUATERNION_HPP | |
34 | #define MATH_QUATERNION_HPP | |
35 | ||
36 | + | #include "math/Vector.hpp" |
37 | + | |
38 | namespace oopse{ | |
39 | ||
40 | /** | |
41 | * @class Quaternion Quaternion.hpp "math/Quaternion.hpp" | |
42 | < | * @brief |
42 | > | * Quaternion is a sort of a higher-level complex number. |
43 | > | * It is defined as Q = w + x*i + y*j + z*k, |
44 | > | * where w, x, y, and z are numbers of type T (e.g. double), and |
45 | > | * i*i = -1; j*j = -1; k*k = -1; |
46 | > | * i*j = k; j*k = i; k*i = j; |
47 | */ | |
48 | template<typename Real> | |
49 | class Quaternion : public Vector<Real, 4> { | |
50 | + | public: |
51 | + | Quaternion(); |
52 | ||
53 | < | }; |
53 | > | /** Constructs and initializes a Quaternion from w, x, y, z values */ |
54 | > | Quaternion(Real w, Real x, Real y, Real z) { |
55 | > | data_[0] = w; |
56 | > | data_[1] = x; |
57 | > | data_[2] = y; |
58 | > | data_[3] = z; |
59 | > | } |
60 | > | |
61 | > | /** |
62 | > | * |
63 | > | */ |
64 | > | Quaternion(const Vector<Real,4>& v) |
65 | > | : Vector<Real, 4>(v){ |
66 | > | } |
67 | ||
68 | + | /** */ |
69 | + | Quaternion& operator =(const Vector<Real, 4>& v){ |
70 | + | if (this == & v) |
71 | + | return *this; |
72 | + | |
73 | + | Vector<Real, 4>::operator=(v); |
74 | + | |
75 | + | return *this; |
76 | + | } |
77 | + | |
78 | + | /** |
79 | + | * Returns the value of the first element of this quaternion. |
80 | + | * @return the value of the first element of this quaternion |
81 | + | */ |
82 | + | Real w() const { |
83 | + | return data_[0]; |
84 | + | } |
85 | + | |
86 | + | /** |
87 | + | * Returns the reference of the first element of this quaternion. |
88 | + | * @return the reference of the first element of this quaternion |
89 | + | */ |
90 | + | Real& w() { |
91 | + | return data_[0]; |
92 | + | } |
93 | + | |
94 | + | /** |
95 | + | * Returns the value of the first element of this quaternion. |
96 | + | * @return the value of the first element of this quaternion |
97 | + | */ |
98 | + | Real x() const { |
99 | + | return data_[1]; |
100 | + | } |
101 | + | |
102 | + | /** |
103 | + | * Returns the reference of the second element of this quaternion. |
104 | + | * @return the reference of the second element of this quaternion |
105 | + | */ |
106 | + | Real& x() { |
107 | + | return data_[1]; |
108 | + | } |
109 | + | |
110 | + | /** |
111 | + | * Returns the value of the thirf element of this quaternion. |
112 | + | * @return the value of the third element of this quaternion |
113 | + | */ |
114 | + | Real y() const { |
115 | + | return data_[2]; |
116 | + | } |
117 | + | |
118 | + | /** |
119 | + | * Returns the reference of the third element of this quaternion. |
120 | + | * @return the reference of the third element of this quaternion |
121 | + | */ |
122 | + | Real& y() { |
123 | + | return data_[2]; |
124 | + | } |
125 | + | |
126 | + | /** |
127 | + | * Returns the value of the fourth element of this quaternion. |
128 | + | * @return the value of the fourth element of this quaternion |
129 | + | */ |
130 | + | Real z() const { |
131 | + | return data_[3]; |
132 | + | } |
133 | + | /** |
134 | + | * Returns the reference of the fourth element of this quaternion. |
135 | + | * @return the reference of the fourth element of this quaternion |
136 | + | */ |
137 | + | Real& z() { |
138 | + | return data_[3]; |
139 | + | } |
140 | + | |
141 | + | /** |
142 | + | * Returns the inverse of this quaternion |
143 | + | * @return inverse |
144 | + | * @note since quaternion is a complex number, the inverse of quaternion |
145 | + | * q = w + xi + yj+ zk is inv_q = (w -xi - yj - zk)/(|q|^2) |
146 | + | */ |
147 | + | Quaternion<Real> inverse(){ |
148 | + | Quaternion<Real> q; |
149 | + | Real d = this->lengthSquared(); |
150 | + | |
151 | + | q.w() = w() / d; |
152 | + | q.x() = -x() / d; |
153 | + | q.y() = -y() / d; |
154 | + | q.z() = -z() / d; |
155 | + | |
156 | + | return q; |
157 | + | } |
158 | + | |
159 | + | /** |
160 | + | * Sets the value to the multiplication of itself and another quaternion |
161 | + | * @param q the other quaternion |
162 | + | */ |
163 | + | void mul(const Quaternion<Real>& q) { |
164 | + | |
165 | + | Real a0( (z() - y()) * (q.y() - q.z()) ); |
166 | + | Real a1( (w() + x()) * (q.w() + q.x()) ); |
167 | + | Real a2( (w() - x()) * (q.y() + q.z()) ); |
168 | + | Real a3( (y() + z()) * (q.w() - q.x()) ); |
169 | + | Real b0( -(x() - z()) * (q.x() - q.y()) ); |
170 | + | Real b1( -(x() + z()) * (q.x() + q.y()) ); |
171 | + | Real b2( (w() + y()) * (q.w() - q.z()) ); |
172 | + | Real b3( (w() - y()) * (q.w() + q.z()) ); |
173 | + | |
174 | + | data_[0] = a0 + 0.5*(b0 + b1 + b2 + b3),; |
175 | + | data_[1] = a1 + 0.5*(b0 + b1 - b2 - b3); |
176 | + | data_[2] = a2 + 0.5*(b0 - b1 + b2 - b3), |
177 | + | data_[3] = a3 + 0.5*(b0 - b1 - b2 + b3) ); |
178 | + | } |
179 | + | |
180 | + | |
181 | + | /** Set the value of this quaternion to the division of itself by another quaternion */ |
182 | + | void div(const Quaternion<Real>& q) { |
183 | + | mul(q.inverse()); |
184 | + | } |
185 | + | |
186 | + | Quaternion<Real>& operator *=(const Quaternion<Real>& q) { |
187 | + | mul(q); |
188 | + | return *this; |
189 | + | } |
190 | + | |
191 | + | Quaternion<Real>& operator /=(const Quaternion<Real>& q) { |
192 | + | mul(q.inverse()); |
193 | + | return *this; |
194 | + | } |
195 | + | |
196 | + | /** |
197 | + | * Returns the conjugate quaternion of this quaternion |
198 | + | * @return the conjugate quaternion of this quaternion |
199 | + | */ |
200 | + | Quaternion<Real> conjugate() { |
201 | + | return Quaternion<Real>(w(), -x(), -y(), -z()); |
202 | + | } |
203 | + | |
204 | + | /** |
205 | + | * Returns the corresponding rotation matrix (3x3) |
206 | + | * @return a 3x3 rotation matrix |
207 | + | */ |
208 | + | SquareMatrix<Real, 3, 3> toRotationMatrix3() { |
209 | + | SquareMatrix<Real, 3, 3> rotMat3; |
210 | + | |
211 | + | Real w2; |
212 | + | Real x2; |
213 | + | Real y2; |
214 | + | Real z2; |
215 | + | |
216 | + | if (!isNormalized()) |
217 | + | normalize(); |
218 | + | |
219 | + | w2 = w() * w(); |
220 | + | x2 = x() * x(); |
221 | + | y2 = y() * y(); |
222 | + | z2 = z() * z(); |
223 | + | |
224 | + | rotMat3(0, 0) = w2 + x2 - y2 - z2; |
225 | + | rotMat3(0, 1) = 2.0 * ( x() * y() + w() * z() ); |
226 | + | rotMat3(0, 2) = 2.0 * ( x() * z() - w() * y() ); |
227 | + | |
228 | + | rotMat3(1, 0) = 2.0 * ( x() * y() - w() * z() ); |
229 | + | rotMat3(1, 1) = w2 - x2 + y2 - z2; |
230 | + | rotMat3(1, 2) = 2.0 * ( y() * z() + w() * x() ); |
231 | + | |
232 | + | rotMat3(2, 0) = 2.0 * ( x() * z() + w() * y() ); |
233 | + | rotMat3(2, 1) = 2.0 * ( y() * z() - w() * x() ); |
234 | + | rotMat3(2, 2) = w2 - x2 -y2 +z2; |
235 | + | } |
236 | + | |
237 | + | };//end Quaternion |
238 | + | |
239 | + | /** |
240 | + | * Returns the multiplication of two quaternion |
241 | + | * @return the multiplication of two quaternion |
242 | + | * @param q1 the first quaternion |
243 | + | * @param q2 the second quaternion |
244 | + | */ |
245 | + | template<typename Real> |
246 | + | inline Quaternion<Real> operator *(const Quaternion<Real>& q1, const Quaternion<Real>& q2) { |
247 | + | Quaternion<Real> result(q1); |
248 | + | result *= q2; |
249 | + | return result; |
250 | + | } |
251 | + | |
252 | + | /** |
253 | + | * Returns the division of two quaternion |
254 | + | * @param q1 divisor |
255 | + | * @param q2 dividen |
256 | + | */ |
257 | + | |
258 | + | template<typename Real> |
259 | + | inline Quaternion<Real> operator /(const Quaternion<Real>& q1, const Quaternion<Real>& q2) { |
260 | + | return q1 * q2.inverse(); |
261 | + | } |
262 | + | |
263 | + | /** |
264 | + | * Returns the value of the division of a scalar by a quaternion |
265 | + | * @return the value of the division of a scalar by a quaternion |
266 | + | * @param s scalar |
267 | + | * @param q quaternion |
268 | + | * @note for a quaternion q, 1/q = q.inverse() |
269 | + | */ |
270 | + | template<typename Real> |
271 | + | Quaternion<Real> operator /(const Quaternion<Real>& s, const Quaternion<Real>& q) { |
272 | + | |
273 | + | Quaternion<Real> x = q.inv(); |
274 | + | return x * s; |
275 | + | } |
276 | + | |
277 | + | typedef Quaternion<double> Quat4d; |
278 | } | |
279 | #endif //MATH_QUATERNION_HPP |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |