| 33 | 
  | 
#ifndef MATH_QUATERNION_HPP | 
| 34 | 
  | 
#define MATH_QUATERNION_HPP | 
| 35 | 
  | 
 | 
| 36 | 
+ | 
#include "math/Vector.hpp" | 
| 37 | 
+ | 
 | 
| 38 | 
  | 
namespace oopse{ | 
| 39 | 
  | 
 | 
| 40 | 
  | 
    /** | 
| 41 | 
  | 
     * @class Quaternion Quaternion.hpp "math/Quaternion.hpp" | 
| 42 | 
< | 
     * @brief | 
| 42 | 
> | 
     * Quaternion is a sort of a higher-level complex number. | 
| 43 | 
> | 
     * It is defined as Q = w + x*i + y*j + z*k, | 
| 44 | 
> | 
     * where w, x, y, and z are numbers of type T (e.g. double), and | 
| 45 | 
> | 
     * i*i = -1; j*j = -1; k*k = -1; | 
| 46 | 
> | 
     * i*j = k; j*k = i; k*i = j; | 
| 47 | 
  | 
     */ | 
| 48 | 
  | 
    template<typename Real> | 
| 49 | 
  | 
    class Quaternion : public Vector<Real, 4> { | 
| 50 | 
+ | 
        public: | 
| 51 | 
+ | 
            Quaternion(); | 
| 52 | 
  | 
 | 
| 53 | 
< | 
    }; | 
| 53 | 
> | 
            /** Constructs and initializes a Quaternion from w, x, y, z values */      | 
| 54 | 
> | 
            Quaternion(Real w, Real x, Real y, Real z) { | 
| 55 | 
> | 
                data_[0] = w; | 
| 56 | 
> | 
                data_[1] = x; | 
| 57 | 
> | 
                data_[2] = y; | 
| 58 | 
> | 
                data_[3] = z;                 | 
| 59 | 
> | 
            } | 
| 60 | 
> | 
             | 
| 61 | 
> | 
            /** | 
| 62 | 
> | 
             *   | 
| 63 | 
> | 
             */ | 
| 64 | 
> | 
            Quaternion(const Vector<Real,4>& v)  | 
| 65 | 
> | 
                : Vector<Real, 4>(v){ | 
| 66 | 
> | 
            } | 
| 67 | 
  | 
 | 
| 68 | 
+ | 
            /** */ | 
| 69 | 
+ | 
            Quaternion& operator =(const Vector<Real, 4>& v){ | 
| 70 | 
+ | 
                if (this == & v) | 
| 71 | 
+ | 
                    return *this; | 
| 72 | 
+ | 
 | 
| 73 | 
+ | 
                Vector<Real, 4>::operator=(v); | 
| 74 | 
+ | 
                 | 
| 75 | 
+ | 
                return *this; | 
| 76 | 
+ | 
            } | 
| 77 | 
+ | 
 | 
| 78 | 
+ | 
            /** | 
| 79 | 
+ | 
             * Returns the value of the first element of this quaternion. | 
| 80 | 
+ | 
             * @return the value of the first element of this quaternion | 
| 81 | 
+ | 
             */ | 
| 82 | 
+ | 
            Real w() const { | 
| 83 | 
+ | 
                return data_[0]; | 
| 84 | 
+ | 
            } | 
| 85 | 
+ | 
 | 
| 86 | 
+ | 
            /** | 
| 87 | 
+ | 
             * Returns the reference of the first element of this quaternion. | 
| 88 | 
+ | 
             * @return the reference of the first element of this quaternion | 
| 89 | 
+ | 
             */ | 
| 90 | 
+ | 
            Real& w() { | 
| 91 | 
+ | 
                return data_[0];     | 
| 92 | 
+ | 
            } | 
| 93 | 
+ | 
 | 
| 94 | 
+ | 
            /** | 
| 95 | 
+ | 
             * Returns the value of the first element of this quaternion. | 
| 96 | 
+ | 
             * @return the value of the first element of this quaternion | 
| 97 | 
+ | 
             */ | 
| 98 | 
+ | 
            Real x() const { | 
| 99 | 
+ | 
                return data_[1]; | 
| 100 | 
+ | 
            } | 
| 101 | 
+ | 
 | 
| 102 | 
+ | 
            /** | 
| 103 | 
+ | 
             * Returns the reference of the second element of this quaternion. | 
| 104 | 
+ | 
             * @return the reference of the second element of this quaternion | 
| 105 | 
+ | 
             */ | 
| 106 | 
+ | 
            Real& x() { | 
| 107 | 
+ | 
                return data_[1];     | 
| 108 | 
+ | 
            } | 
| 109 | 
+ | 
 | 
| 110 | 
+ | 
            /** | 
| 111 | 
+ | 
             * Returns the value of the thirf element of this quaternion. | 
| 112 | 
+ | 
             * @return the value of the third element of this quaternion | 
| 113 | 
+ | 
             */ | 
| 114 | 
+ | 
            Real y() const { | 
| 115 | 
+ | 
                return data_[2]; | 
| 116 | 
+ | 
            } | 
| 117 | 
+ | 
 | 
| 118 | 
+ | 
            /** | 
| 119 | 
+ | 
             * Returns the reference of the third element of this quaternion. | 
| 120 | 
+ | 
             * @return the reference of the third element of this quaternion | 
| 121 | 
+ | 
             */            | 
| 122 | 
+ | 
            Real& y() { | 
| 123 | 
+ | 
                return data_[2];     | 
| 124 | 
+ | 
            } | 
| 125 | 
+ | 
 | 
| 126 | 
+ | 
            /** | 
| 127 | 
+ | 
             * Returns the value of the fourth element of this quaternion. | 
| 128 | 
+ | 
             * @return the value of the fourth element of this quaternion | 
| 129 | 
+ | 
             */ | 
| 130 | 
+ | 
            Real z() const { | 
| 131 | 
+ | 
                return data_[3]; | 
| 132 | 
+ | 
            } | 
| 133 | 
+ | 
            /** | 
| 134 | 
+ | 
             * Returns the reference of the fourth element of this quaternion. | 
| 135 | 
+ | 
             * @return the reference of the fourth element of this quaternion | 
| 136 | 
+ | 
             */ | 
| 137 | 
+ | 
            Real& z() { | 
| 138 | 
+ | 
                return data_[3];     | 
| 139 | 
+ | 
            } | 
| 140 | 
+ | 
 | 
| 141 | 
+ | 
            /** | 
| 142 | 
+ | 
             * Returns the inverse of this quaternion | 
| 143 | 
+ | 
             * @return inverse | 
| 144 | 
+ | 
             * @note since quaternion is a complex number, the inverse of quaternion | 
| 145 | 
+ | 
             * q = w + xi + yj+ zk is inv_q = (w -xi - yj - zk)/(|q|^2) | 
| 146 | 
+ | 
             */ | 
| 147 | 
+ | 
            Quaternion<Real> inverse(){ | 
| 148 | 
+ | 
                Quaternion<Real> q; | 
| 149 | 
+ | 
                Real d = this->lengthSquared(); | 
| 150 | 
+ | 
                 | 
| 151 | 
+ | 
                q.w() = w() / d; | 
| 152 | 
+ | 
                q.x() = -x() / d; | 
| 153 | 
+ | 
                q.y() = -y() / d; | 
| 154 | 
+ | 
                q.z() = -z() / d; | 
| 155 | 
+ | 
                 | 
| 156 | 
+ | 
                return q; | 
| 157 | 
+ | 
            } | 
| 158 | 
+ | 
 | 
| 159 | 
+ | 
            /** | 
| 160 | 
+ | 
             * Sets the value to the multiplication of itself and another quaternion | 
| 161 | 
+ | 
             * @param q the other quaternion | 
| 162 | 
+ | 
             */ | 
| 163 | 
+ | 
            void mul(const Quaternion<Real>& q) { | 
| 164 | 
+ | 
 | 
| 165 | 
+ | 
                Real a0( (z() - y()) * (q.y() - q.z()) ); | 
| 166 | 
+ | 
                Real a1( (w() + x()) * (q.w() + q.x()) ); | 
| 167 | 
+ | 
                Real a2( (w() - x()) * (q.y() + q.z()) ); | 
| 168 | 
+ | 
                Real a3( (y() + z()) * (q.w() - q.x()) ); | 
| 169 | 
+ | 
                Real b0( -(x() - z()) * (q.x() - q.y()) ); | 
| 170 | 
+ | 
                Real b1( -(x() + z()) * (q.x() + q.y()) ); | 
| 171 | 
+ | 
                Real b2( (w() + y()) * (q.w() - q.z()) ); | 
| 172 | 
+ | 
                Real b3( (w() - y()) * (q.w() + q.z()) ); | 
| 173 | 
+ | 
 | 
| 174 | 
+ | 
                data_[0] = a0 + 0.5*(b0 + b1 + b2 + b3),; | 
| 175 | 
+ | 
                data_[1] = a1 + 0.5*(b0 + b1 - b2 - b3); | 
| 176 | 
+ | 
                data_[2] = a2 + 0.5*(b0 - b1 + b2 - b3), | 
| 177 | 
+ | 
                data_[3] = a3 + 0.5*(b0 - b1 - b2 + b3) ); | 
| 178 | 
+ | 
            } | 
| 179 | 
+ | 
 | 
| 180 | 
+ | 
 | 
| 181 | 
+ | 
            /** Set the value of this quaternion to the division of itself by another quaternion */ | 
| 182 | 
+ | 
            void div(const Quaternion<Real>& q) { | 
| 183 | 
+ | 
                mul(q.inverse()); | 
| 184 | 
+ | 
            } | 
| 185 | 
+ | 
             | 
| 186 | 
+ | 
            Quaternion<Real>& operator *=(const Quaternion<Real>& q) { | 
| 187 | 
+ | 
                mul(q); | 
| 188 | 
+ | 
                return *this; | 
| 189 | 
+ | 
            } | 
| 190 | 
+ | 
                         | 
| 191 | 
+ | 
            Quaternion<Real>& operator /=(const Quaternion<Real>& q) { | 
| 192 | 
+ | 
                mul(q.inverse()); | 
| 193 | 
+ | 
                return *this; | 
| 194 | 
+ | 
            } | 
| 195 | 
+ | 
             | 
| 196 | 
+ | 
            /** | 
| 197 | 
+ | 
             * Returns the conjugate quaternion of this quaternion | 
| 198 | 
+ | 
             * @return the conjugate quaternion of this quaternion | 
| 199 | 
+ | 
             */ | 
| 200 | 
+ | 
            Quaternion<Real> conjugate() { | 
| 201 | 
+ | 
                return Quaternion<Real>(w(), -x(), -y(), -z());             | 
| 202 | 
+ | 
            } | 
| 203 | 
+ | 
 | 
| 204 | 
+ | 
            /** | 
| 205 | 
+ | 
             * Returns the corresponding rotation matrix (3x3) | 
| 206 | 
+ | 
             * @return a 3x3 rotation matrix | 
| 207 | 
+ | 
             */ | 
| 208 | 
+ | 
            SquareMatrix<Real, 3> toRotationMatrix3() { | 
| 209 | 
+ | 
                SquareMatrix<Real, 3> rotMat3; | 
| 210 | 
+ | 
 | 
| 211 | 
+ | 
                Real w2; | 
| 212 | 
+ | 
                Real x2; | 
| 213 | 
+ | 
                Real y2; | 
| 214 | 
+ | 
                Real z2; | 
| 215 | 
+ | 
 | 
| 216 | 
+ | 
                if (!isNormalized()) | 
| 217 | 
+ | 
                    normalize(); | 
| 218 | 
+ | 
                 | 
| 219 | 
+ | 
                w2 = w() * w(); | 
| 220 | 
+ | 
                x2 = x() * x(); | 
| 221 | 
+ | 
                y2 = y() * y(); | 
| 222 | 
+ | 
                z2 = z() * z(); | 
| 223 | 
+ | 
 | 
| 224 | 
+ | 
                rotMat3(0, 0) = w2 + x2 - y2 - z2; | 
| 225 | 
+ | 
                rotMat3(0, 1) = 2.0 * ( x() * y() + w() * z() ); | 
| 226 | 
+ | 
                rotMat3(0, 2) = 2.0 * ( x() * z() - w() * y() ); | 
| 227 | 
+ | 
 | 
| 228 | 
+ | 
                rotMat3(1, 0) = 2.0 * ( x() * y() - w() * z() ); | 
| 229 | 
+ | 
                rotMat3(1, 1) = w2 - x2 + y2 - z2; | 
| 230 | 
+ | 
                rotMat3(1, 2) = 2.0 * ( y() * z() + w() * x() ); | 
| 231 | 
+ | 
 | 
| 232 | 
+ | 
                rotMat3(2, 0) = 2.0 * ( x() * z() + w() * y() ); | 
| 233 | 
+ | 
                rotMat3(2, 1) = 2.0 * ( y() * z() - w() * x() ); | 
| 234 | 
+ | 
                rotMat3(2, 2) = w2 - x2 -y2 +z2; | 
| 235 | 
+ | 
            } | 
| 236 | 
+ | 
 | 
| 237 | 
+ | 
    };//end Quaternion | 
| 238 | 
+ | 
 | 
| 239 | 
+ | 
    /** | 
| 240 | 
+ | 
     * Returns the multiplication of two quaternion | 
| 241 | 
+ | 
     * @return the multiplication of two quaternion | 
| 242 | 
+ | 
     * @param q1 the first quaternion | 
| 243 | 
+ | 
     * @param q2 the second quaternion | 
| 244 | 
+ | 
     */ | 
| 245 | 
+ | 
    template<typename Real> | 
| 246 | 
+ | 
    inline Quaternion<Real> operator *(const Quaternion<Real>& q1, const Quaternion<Real>& q2) { | 
| 247 | 
+ | 
        Quaternion<Real> result(q1); | 
| 248 | 
+ | 
        result *= q2; | 
| 249 | 
+ | 
        return result; | 
| 250 | 
+ | 
    } | 
| 251 | 
+ | 
 | 
| 252 | 
+ | 
    /** | 
| 253 | 
+ | 
     * Returns the division of two quaternion | 
| 254 | 
+ | 
     * @param q1 divisor | 
| 255 | 
+ | 
     * @param q2 dividen | 
| 256 | 
+ | 
     */ | 
| 257 | 
+ | 
 | 
| 258 | 
+ | 
    template<typename Real> | 
| 259 | 
+ | 
    inline Quaternion<Real> operator /(const Quaternion<Real>& q1, const Quaternion<Real>& q2) { | 
| 260 | 
+ | 
        return q1 * q2.inverse(); | 
| 261 | 
+ | 
    } | 
| 262 | 
+ | 
 | 
| 263 | 
+ | 
    /** | 
| 264 | 
+ | 
     * Returns the value of the division of a scalar by a quaternion | 
| 265 | 
+ | 
     * @return the value of the division of a scalar by a quaternion | 
| 266 | 
+ | 
     * @param s scalar | 
| 267 | 
+ | 
     * @param q quaternion | 
| 268 | 
+ | 
     * @note for a quaternion q, 1/q = q.inverse() | 
| 269 | 
+ | 
     */ | 
| 270 | 
+ | 
    template<typename Real> | 
| 271 | 
+ | 
    Quaternion<Real> operator /(const Real& s, const Quaternion<Real>& q) { | 
| 272 | 
+ | 
 | 
| 273 | 
+ | 
        Quaternion<Real> x = q.inv(); | 
| 274 | 
+ | 
        return x * s; | 
| 275 | 
+ | 
    } | 
| 276 | 
+ | 
 | 
| 277 | 
+ | 
    typedef Quaternion<double> Quat4d; | 
| 278 | 
  | 
} | 
| 279 | 
  | 
#endif //MATH_QUATERNION_HPP  |