# | Line 6 | Line 6 | |
---|---|---|
6 | * redistribute this software in source and binary code form, provided | |
7 | * that the following conditions are met: | |
8 | * | |
9 | < | * 1. Acknowledgement of the program authors must be made in any |
10 | < | * publication of scientific results based in part on use of the |
11 | < | * program. An acceptable form of acknowledgement is citation of |
12 | < | * the article in which the program was described (Matthew |
13 | < | * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 | < | * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 | < | * Parallel Simulation Engine for Molecular Dynamics," |
16 | < | * J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 | < | * |
18 | < | * 2. Redistributions of source code must retain the above copyright |
9 | > | * 1. Redistributions of source code must retain the above copyright |
10 | * notice, this list of conditions and the following disclaimer. | |
11 | * | |
12 | < | * 3. Redistributions in binary form must reproduce the above copyright |
12 | > | * 2. Redistributions in binary form must reproduce the above copyright |
13 | * notice, this list of conditions and the following disclaimer in the | |
14 | * documentation and/or other materials provided with the | |
15 | * distribution. | |
# | Line 37 | Line 28 | |
28 | * arising out of the use of or inability to use software, even if the | |
29 | * University of Notre Dame has been advised of the possibility of | |
30 | * such damages. | |
31 | + | * |
32 | + | * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 | + | * research, please cite the appropriate papers when you publish your |
34 | + | * work. Good starting points are: |
35 | + | * |
36 | + | * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 | + | * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 | + | * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 | + | * [4] Vardeman & Gezelter, in progress (2009). |
40 | */ | |
41 | ||
42 | #include <stdio.h> | |
43 | #include <cmath> | |
44 | < | |
44 | > | #include <limits> |
45 | #include "math/RealSphericalHarmonic.hpp" | |
46 | ||
47 | < | using namespace oopse; |
47 | > | using namespace OpenMD; |
48 | ||
49 | RealSphericalHarmonic::RealSphericalHarmonic() { | |
50 | } | |
51 | ||
52 | < | double RealSphericalHarmonic::getValueAt(double costheta, double phi) { |
52 | > | RealType RealSphericalHarmonic::getValueAt(RealType costheta, RealType phi) { |
53 | ||
54 | < | double p, phase; |
54 | > | RealType p, phase; |
55 | ||
56 | // associated Legendre polynomial | |
57 | p = LegendreP(L,M,costheta); | |
58 | ||
59 | if (functionType == RSH_SIN) { | |
60 | < | phase = sin((double)M * phi); |
60 | > | phase = sin((RealType)M * phi); |
61 | } else { | |
62 | < | phase = cos((double)M * phi); |
62 | > | phase = cos((RealType)M * phi); |
63 | } | |
64 | ||
65 | return coefficient*p*phase; | |
# | Line 68 | Line 68 | double RealSphericalHarmonic::getValueAt(double costhe | |
68 | ||
69 | //---------------------------------------------------------------------------// | |
70 | // | |
71 | < | // double LegendreP (int l, int m, double x); |
71 | > | // RealType LegendreP (int l, int m, RealType x); |
72 | // | |
73 | // Computes the value of the associated Legendre polynomial P_lm (x) | |
74 | // of order l at a given point. | |
# | Line 81 | Line 81 | double RealSphericalHarmonic::getValueAt(double costhe | |
81 | // value of the polynomial in x | |
82 | // | |
83 | //---------------------------------------------------------------------------// | |
84 | < | double RealSphericalHarmonic::LegendreP (int l, int m, double x) { |
84 | > | RealType RealSphericalHarmonic::LegendreP (int l, int m, RealType x) { |
85 | // check parameters | |
86 | if (m < 0 || m > l || fabs(x) > 1.0) { | |
87 | printf("LegendreP got a bad argument: l = %d\tm = %d\tx = %lf\n", l, m, x); | |
88 | < | return NAN; |
88 | > | // return NAN; |
89 | > | return std::numeric_limits <RealType>:: quiet_NaN(); |
90 | } | |
91 | ||
92 | < | double pmm = 1.0; |
92 | > | RealType pmm = 1.0; |
93 | if (m > 0) { | |
94 | < | double h = sqrt((1.0-x)*(1.0+x)), |
94 | > | RealType h = sqrt((1.0-x)*(1.0+x)), |
95 | f = 1.0; | |
96 | for (int i = 1; i <= m; i++) { | |
97 | pmm *= -f * h; | |
# | Line 100 | Line 101 | double RealSphericalHarmonic::LegendreP (int l, int m, | |
101 | if (l == m) | |
102 | return pmm; | |
103 | else { | |
104 | < | double pmmp1 = x * (2 * m + 1) * pmm; |
104 | > | RealType pmmp1 = x * (2 * m + 1) * pmm; |
105 | if (l == (m+1)) | |
106 | return pmmp1; | |
107 | else { | |
108 | < | double pll = 0.0; |
108 | > | RealType pll = 0.0; |
109 | for (int ll = m+2; ll <= l; ll++) { | |
110 | pll = (x * (2 * ll - 1) * pmmp1 - (ll + m - 1) * pmm) / (ll - m); | |
111 | pmm = pmmp1; |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |