# | Line 1 | Line 1 | |
---|---|---|
1 | /* | |
2 | < | * Copyright (C) 2000-2004 Object Oriented Parallel Simulation Engine (OOPSE) project |
3 | < | * |
4 | < | * Contact: oopse@oopse.org |
5 | < | * |
6 | < | * This program is free software; you can redistribute it and/or |
7 | < | * modify it under the terms of the GNU Lesser General Public License |
8 | < | * as published by the Free Software Foundation; either version 2.1 |
9 | < | * of the License, or (at your option) any later version. |
10 | < | * All we ask is that proper credit is given for our work, which includes |
11 | < | * - but is not limited to - adding the above copyright notice to the beginning |
12 | < | * of your source code files, and to any copyright notice that you may distribute |
13 | < | * with programs based on this work. |
14 | < | * |
15 | < | * This program is distributed in the hope that it will be useful, |
16 | < | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
17 | < | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
18 | < | * GNU Lesser General Public License for more details. |
19 | < | * |
20 | < | * You should have received a copy of the GNU Lesser General Public License |
21 | < | * along with this program; if not, write to the Free Software |
22 | < | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
2 | > | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 | * | |
4 | + | * The University of Notre Dame grants you ("Licensee") a |
5 | + | * non-exclusive, royalty free, license to use, modify and |
6 | + | * redistribute this software in source and binary code form, provided |
7 | + | * that the following conditions are met: |
8 | + | * |
9 | + | * 1. Acknowledgement of the program authors must be made in any |
10 | + | * publication of scientific results based in part on use of the |
11 | + | * program. An acceptable form of acknowledgement is citation of |
12 | + | * the article in which the program was described (Matthew |
13 | + | * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 | + | * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 | + | * Parallel Simulation Engine for Molecular Dynamics," |
16 | + | * J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 | + | * |
18 | + | * 2. Redistributions of source code must retain the above copyright |
19 | + | * notice, this list of conditions and the following disclaimer. |
20 | + | * |
21 | + | * 3. Redistributions in binary form must reproduce the above copyright |
22 | + | * notice, this list of conditions and the following disclaimer in the |
23 | + | * documentation and/or other materials provided with the |
24 | + | * distribution. |
25 | + | * |
26 | + | * This software is provided "AS IS," without a warranty of any |
27 | + | * kind. All express or implied conditions, representations and |
28 | + | * warranties, including any implied warranty of merchantability, |
29 | + | * fitness for a particular purpose or non-infringement, are hereby |
30 | + | * excluded. The University of Notre Dame and its licensors shall not |
31 | + | * be liable for any damages suffered by licensee as a result of |
32 | + | * using, modifying or distributing the software or its |
33 | + | * derivatives. In no event will the University of Notre Dame or its |
34 | + | * licensors be liable for any lost revenue, profit or data, or for |
35 | + | * direct, indirect, special, consequential, incidental or punitive |
36 | + | * damages, however caused and regardless of the theory of liability, |
37 | + | * arising out of the use of or inability to use software, even if the |
38 | + | * University of Notre Dame has been advised of the possibility of |
39 | + | * such damages. |
40 | */ | |
41 | < | |
26 | < | |
41 | > | |
42 | /** | |
43 | * @file RectMatrix.hpp | |
44 | * @author Teng Lin | |
# | Line 33 | Line 48 | |
48 | ||
49 | #ifndef MATH_RECTMATRIX_HPP | |
50 | #define MATH_RECTMATRIX_HPP | |
51 | < | |
51 | > | #include <math.h> |
52 | #include <cmath> | |
53 | #include "Vector.hpp" | |
54 | ||
55 | namespace oopse { | |
56 | ||
57 | < | /** |
58 | < | * @class RectMatrix RectMatrix.hpp "math/RectMatrix.hpp" |
59 | < | * @brief rectangular matrix class |
60 | < | */ |
61 | < | template<typename Real, unsigned int Row, unsigned int Col> |
62 | < | class RectMatrix { |
63 | < | public: |
57 | > | /** |
58 | > | * @class RectMatrix RectMatrix.hpp "math/RectMatrix.hpp" |
59 | > | * @brief rectangular matrix class |
60 | > | */ |
61 | > | template<typename Real, unsigned int Row, unsigned int Col> |
62 | > | class RectMatrix { |
63 | > | public: |
64 | > | typedef Real ElemType; |
65 | > | typedef Real* ElemPoinerType; |
66 | > | |
67 | > | /** default constructor */ |
68 | > | RectMatrix() { |
69 | > | for (unsigned int i = 0; i < Row; i++) |
70 | > | for (unsigned int j = 0; j < Col; j++) |
71 | > | this->data_[i][j] = 0.0; |
72 | > | } |
73 | ||
74 | < | /** default constructor */ |
75 | < | RectMatrix() { |
76 | < | for (unsigned int i = 0; i < Row; i++) |
77 | < | for (unsigned int j = 0; j < Col; j++) |
78 | < | data_[i][j] = 0.0; |
79 | < | } |
74 | > | /** Constructs and initializes every element of this matrix to a scalar */ |
75 | > | RectMatrix(Real s) { |
76 | > | for (unsigned int i = 0; i < Row; i++) |
77 | > | for (unsigned int j = 0; j < Col; j++) |
78 | > | this->data_[i][j] = s; |
79 | > | } |
80 | ||
81 | < | /** Constructs and initializes every element of this matrix to a scalar */ |
82 | < | RectMatrix(Real s) { |
83 | < | for (unsigned int i = 0; i < Row; i++) |
84 | < | for (unsigned int j = 0; j < Col; j++) |
85 | < | data_[i][j] = s; |
62 | < | } |
81 | > | RectMatrix(Real* array) { |
82 | > | for (unsigned int i = 0; i < Row; i++) |
83 | > | for (unsigned int j = 0; j < Col; j++) |
84 | > | this->data_[i][j] = array[i * Row + j]; |
85 | > | } |
86 | ||
87 | < | /** copy constructor */ |
88 | < | RectMatrix(const RectMatrix<Real, Row, Col>& m) { |
89 | < | *this = m; |
90 | < | } |
68 | < | |
69 | < | /** destructor*/ |
70 | < | ~RectMatrix() {} |
71 | < | |
72 | < | /** copy assignment operator */ |
73 | < | RectMatrix<Real, Row, Col>& operator =(const RectMatrix<Real, Row, Col>& m) { |
74 | < | if (this == &m) |
75 | < | return *this; |
87 | > | /** copy constructor */ |
88 | > | RectMatrix(const RectMatrix<Real, Row, Col>& m) { |
89 | > | *this = m; |
90 | > | } |
91 | ||
92 | < | for (unsigned int i = 0; i < Row; i++) |
93 | < | for (unsigned int j = 0; j < Col; j++) |
79 | < | data_[i][j] = m.data_[i][j]; |
80 | < | return *this; |
81 | < | } |
82 | < | |
83 | < | /** |
84 | < | * Return the reference of a single element of this matrix. |
85 | < | * @return the reference of a single element of this matrix |
86 | < | * @param i row index |
87 | < | * @param j colum index |
88 | < | */ |
89 | < | double& operator()(unsigned int i, unsigned int j) { |
90 | < | //assert( i < Row && j < Col); |
91 | < | return data_[i][j]; |
92 | < | } |
92 | > | /** destructor*/ |
93 | > | ~RectMatrix() {} |
94 | ||
95 | < | /** |
96 | < | * Return the value of a single element of this matrix. |
97 | < | * @return the value of a single element of this matrix |
98 | < | * @param i row index |
99 | < | * @param j colum index |
100 | < | */ |
101 | < | double operator()(unsigned int i, unsigned int j) const { |
95 | > | /** copy assignment operator */ |
96 | > | RectMatrix<Real, Row, Col>& operator =(const RectMatrix<Real, Row, Col>& m) { |
97 | > | if (this == &m) |
98 | > | return *this; |
99 | > | |
100 | > | for (unsigned int i = 0; i < Row; i++) |
101 | > | for (unsigned int j = 0; j < Col; j++) |
102 | > | this->data_[i][j] = m.data_[i][j]; |
103 | > | return *this; |
104 | > | } |
105 | ||
106 | < | return data_[i][j]; |
107 | < | } |
106 | > | /** |
107 | > | * Return the reference of a single element of this matrix. |
108 | > | * @return the reference of a single element of this matrix |
109 | > | * @param i row index |
110 | > | * @param j Column index |
111 | > | */ |
112 | > | Real& operator()(unsigned int i, unsigned int j) { |
113 | > | //assert( i < Row && j < Col); |
114 | > | return this->data_[i][j]; |
115 | > | } |
116 | ||
117 | < | /** |
118 | < | * Returns a row of this matrix as a vector. |
119 | < | * @return a row of this matrix as a vector |
120 | < | * @param row the row index |
121 | < | */ |
122 | < | Vector<Real, Row> getRow(unsigned int row) { |
123 | < | Vector<Real, Row> v; |
117 | > | /** |
118 | > | * Return the value of a single element of this matrix. |
119 | > | * @return the value of a single element of this matrix |
120 | > | * @param i row index |
121 | > | * @param j Column index |
122 | > | */ |
123 | > | Real operator()(unsigned int i, unsigned int j) const { |
124 | > | |
125 | > | return this->data_[i][j]; |
126 | > | } |
127 | ||
128 | < | for (unsigned int i = 0; i < Row; i++) |
129 | < | v[i] = data_[row][i]; |
128 | > | /** |
129 | > | * Copy the internal data to an array |
130 | > | * @param array the pointer of destination array |
131 | > | */ |
132 | > | void getArray(Real* array) { |
133 | > | for (unsigned int i = 0; i < Row; i++) { |
134 | > | for (unsigned int j = 0; j < Col; j++) { |
135 | > | array[i * Row + j] = this->data_[i][j]; |
136 | > | } |
137 | > | } |
138 | > | } |
139 | ||
116 | – | return v; |
117 | – | } |
140 | ||
141 | < | /** |
142 | < | * Sets a row of this matrix |
143 | < | * @param row the row index |
144 | < | * @param v the vector to be set |
123 | < | */ |
124 | < | void setRow(unsigned int row, const Vector<Real, Row>& v) { |
141 | > | /** Returns the pointer of internal array */ |
142 | > | Real* getArrayPointer() { |
143 | > | return &this->data_[0][0]; |
144 | > | } |
145 | ||
146 | < | for (unsigned int i = 0; i < Row; i++) |
147 | < | data_[row][i] = v[i]; |
148 | < | } |
146 | > | /** |
147 | > | * Returns a row of this matrix as a vector. |
148 | > | * @return a row of this matrix as a vector |
149 | > | * @param row the row index |
150 | > | */ |
151 | > | Vector<Real, Row> getRow(unsigned int row) { |
152 | > | Vector<Real, Row> v; |
153 | ||
154 | < | /** |
155 | < | * Returns a column of this matrix as a vector. |
132 | < | * @return a column of this matrix as a vector |
133 | < | * @param col the column index |
134 | < | */ |
135 | < | Vector<Real, Col> getColum(unsigned int col) { |
136 | < | Vector<Real, Col> v; |
154 | > | for (unsigned int i = 0; i < Row; i++) |
155 | > | v[i] = this->data_[row][i]; |
156 | ||
157 | < | for (unsigned int j = 0; j < Col; j++) |
158 | < | v[j] = data_[j][col]; |
157 | > | return v; |
158 | > | } |
159 | ||
160 | < | return v; |
161 | < | } |
160 | > | /** |
161 | > | * Sets a row of this matrix |
162 | > | * @param row the row index |
163 | > | * @param v the vector to be set |
164 | > | */ |
165 | > | void setRow(unsigned int row, const Vector<Real, Row>& v) { |
166 | ||
167 | < | /** |
168 | < | * Sets a column of this matrix |
169 | < | * @param col the column index |
147 | < | * @param v the vector to be set |
148 | < | */ |
149 | < | void setColum(unsigned int col, const Vector<Real, Col>& v){ |
167 | > | for (unsigned int i = 0; i < Row; i++) |
168 | > | this->data_[row][i] = v[i]; |
169 | > | } |
170 | ||
171 | < | for (unsigned int j = 0; j < Col; j++) |
172 | < | data_[j][col] = v[j]; |
173 | < | } |
171 | > | /** |
172 | > | * Returns a column of this matrix as a vector. |
173 | > | * @return a column of this matrix as a vector |
174 | > | * @param col the column index |
175 | > | */ |
176 | > | Vector<Real, Col> getColumn(unsigned int col) { |
177 | > | Vector<Real, Col> v; |
178 | ||
179 | < | /** |
180 | < | * Tests if this matrix is identical to matrix m |
157 | < | * @return true if this matrix is equal to the matrix m, return false otherwise |
158 | < | * @m matrix to be compared |
159 | < | * |
160 | < | * @todo replace operator == by template function equal |
161 | < | */ |
162 | < | bool operator ==(const RectMatrix<Real, Row, Col>& m) { |
163 | < | for (unsigned int i = 0; i < Row; i++) |
164 | < | for (unsigned int j = 0; j < Col; j++) |
165 | < | if (!equal(data_[i][j], m.data_[i][j])) |
166 | < | return false; |
179 | > | for (unsigned int j = 0; j < Col; j++) |
180 | > | v[j] = this->data_[j][col]; |
181 | ||
182 | < | return true; |
183 | < | } |
182 | > | return v; |
183 | > | } |
184 | ||
185 | < | /** |
186 | < | * Tests if this matrix is not equal to matrix m |
187 | < | * @return true if this matrix is not equal to the matrix m, return false otherwise |
188 | < | * @m matrix to be compared |
189 | < | */ |
190 | < | bool operator !=(const RectMatrix<Real, Row, Col>& m) { |
177 | < | return !(*this == m); |
178 | < | } |
185 | > | /** |
186 | > | * Sets a column of this matrix |
187 | > | * @param col the column index |
188 | > | * @param v the vector to be set |
189 | > | */ |
190 | > | void setColumn(unsigned int col, const Vector<Real, Col>& v){ |
191 | ||
192 | < | /** Negates the value of this matrix in place. */ |
193 | < | inline void negate() { |
194 | < | for (unsigned int i = 0; i < Row; i++) |
183 | < | for (unsigned int j = 0; j < Col; j++) |
184 | < | data_[i][j] = -data_[i][j]; |
185 | < | } |
186 | < | |
187 | < | /** |
188 | < | * Sets the value of this matrix to the negation of matrix m. |
189 | < | * @param m the source matrix |
190 | < | */ |
191 | < | inline void negate(const RectMatrix<Real, Row, Col>& m) { |
192 | < | for (unsigned int i = 0; i < Row; i++) |
193 | < | for (unsigned int j = 0; j < Col; j++) |
194 | < | data_[i][j] = -m.data_[i][j]; |
195 | < | } |
196 | < | |
197 | < | /** |
198 | < | * Sets the value of this matrix to the sum of itself and m (*this += m). |
199 | < | * @param m the other matrix |
200 | < | */ |
201 | < | inline void add( const RectMatrix<Real, Row, Col>& m ) { |
202 | < | for (unsigned int i = 0; i < Row; i++) |
203 | < | for (unsigned int j = 0; j < Col; j++) |
204 | < | data_[i][j] += m.data_[i][j]; |
205 | < | } |
206 | < | |
207 | < | /** |
208 | < | * Sets the value of this matrix to the sum of m1 and m2 (*this = m1 + m2). |
209 | < | * @param m1 the first matrix |
210 | < | * @param m2 the second matrix |
211 | < | */ |
212 | < | inline void add( const RectMatrix<Real, Row, Col>& m1, const RectMatrix<Real, Row, Col>& m2 ) { |
213 | < | for (unsigned int i = 0; i < Row; i++) |
214 | < | for (unsigned int j = 0; j < Col; j++) |
215 | < | data_[i][j] = m1.data_[i][j] + m2.data_[i][j]; |
216 | < | } |
217 | < | |
218 | < | /** |
219 | < | * Sets the value of this matrix to the difference of itself and m (*this -= m). |
220 | < | * @param m the other matrix |
221 | < | */ |
222 | < | inline void sub( const RectMatrix<Real, Row, Col>& m ) { |
223 | < | for (unsigned int i = 0; i < Row; i++) |
224 | < | for (unsigned int j = 0; j < Col; j++) |
225 | < | data_[i][j] -= m.data_[i][j]; |
226 | < | } |
227 | < | |
228 | < | /** |
229 | < | * Sets the value of this matrix to the difference of matrix m1 and m2 (*this = m1 - m2). |
230 | < | * @param m1 the first matrix |
231 | < | * @param m2 the second matrix |
232 | < | */ |
233 | < | inline void sub( const RectMatrix<Real, Row, Col>& m1, const RectMatrix<Real, Row, Col>& m2){ |
234 | < | for (unsigned int i = 0; i < Row; i++) |
235 | < | for (unsigned int j = 0; j < Col; j++) |
236 | < | data_[i][j] = m1.data_[i][j] - m2.data_[i][j]; |
237 | < | } |
192 | > | for (unsigned int j = 0; j < Col; j++) |
193 | > | this->data_[j][col] = v[j]; |
194 | > | } |
195 | ||
196 | < | /** |
197 | < | * Sets the value of this matrix to the scalar multiplication of itself (*this *= s). |
198 | < | * @param s the scalar value |
199 | < | */ |
200 | < | inline void mul( double s ) { |
201 | < | for (unsigned int i = 0; i < Row; i++) |
202 | < | for (unsigned int j = 0; j < Col; j++) |
246 | < | data_[i][j] *= s; |
247 | < | } |
196 | > | /** |
197 | > | * swap two rows of this matrix |
198 | > | * @param i the first row |
199 | > | * @param j the second row |
200 | > | */ |
201 | > | void swapRow(unsigned int i, unsigned int j){ |
202 | > | assert(i < Row && j < Row); |
203 | ||
204 | < | /** |
205 | < | * Sets the value of this matrix to the scalar multiplication of matrix m (*this = s * m). |
206 | < | * @param s the scalar value |
252 | < | * @param m the matrix |
253 | < | */ |
254 | < | inline void mul( double s, const RectMatrix<Real, Row, Col>& m ) { |
255 | < | for (unsigned int i = 0; i < Row; i++) |
256 | < | for (unsigned int j = 0; j < Col; j++) |
257 | < | data_[i][j] = s * m.data_[i][j]; |
258 | < | } |
204 | > | for (unsigned int k = 0; k < Col; k++) |
205 | > | std::swap(this->data_[i][k], this->data_[j][k]); |
206 | > | } |
207 | ||
208 | < | /** |
209 | < | * Sets the value of this matrix to the scalar division of itself (*this /= s ). |
210 | < | * @param s the scalar value |
211 | < | */ |
212 | < | inline void div( double s) { |
213 | < | for (unsigned int i = 0; i < Row; i++) |
214 | < | for (unsigned int j = 0; j < Col; j++) |
215 | < | data_[i][j] /= s; |
216 | < | } |
208 | > | /** |
209 | > | * swap two Columns of this matrix |
210 | > | * @param i the first Column |
211 | > | * @param j the second Column |
212 | > | */ |
213 | > | void swapColumn(unsigned int i, unsigned int j){ |
214 | > | assert(i < Col && j < Col); |
215 | > | |
216 | > | for (unsigned int k = 0; k < Row; k++) |
217 | > | std::swap(this->data_[k][i], this->data_[k][j]); |
218 | > | } |
219 | ||
220 | < | /** |
221 | < | * Sets the value of this matrix to the scalar division of matrix m (*this = m /s). |
222 | < | * @param s the scalar value |
223 | < | * @param m the matrix |
224 | < | */ |
225 | < | inline void div( double s, const RectMatrix<Real, Row, Col>& m ) { |
226 | < | for (unsigned int i = 0; i < Row; i++) |
227 | < | for (unsigned int j = 0; j < Col; j++) |
228 | < | data_[i][j] = m.data_[i][j] / s; |
229 | < | } |
220 | > | /** |
221 | > | * Tests if this matrix is identical to matrix m |
222 | > | * @return true if this matrix is equal to the matrix m, return false otherwise |
223 | > | * @m matrix to be compared |
224 | > | * |
225 | > | * @todo replace operator == by template function equal |
226 | > | */ |
227 | > | bool operator ==(const RectMatrix<Real, Row, Col>& m) { |
228 | > | for (unsigned int i = 0; i < Row; i++) |
229 | > | for (unsigned int j = 0; j < Col; j++) |
230 | > | if (!equal(this->data_[i][j], m.data_[i][j])) |
231 | > | return false; |
232 | ||
233 | < | /** |
234 | < | * Multiples a scalar into every element of this matrix. |
283 | < | * @param s the scalar value |
284 | < | */ |
285 | < | RectMatrix<Real, Row, Col>& operator *=(const double s) { |
286 | < | this->mul(s); |
287 | < | return *this; |
288 | < | } |
233 | > | return true; |
234 | > | } |
235 | ||
236 | < | /** |
237 | < | * Divides every element of this matrix by a scalar. |
238 | < | * @param s the scalar value |
239 | < | */ |
240 | < | RectMatrix<Real, Row, Col>& operator /=(const double s) { |
241 | < | this->div(s); |
242 | < | return *this; |
243 | < | } |
236 | > | /** |
237 | > | * Tests if this matrix is not equal to matrix m |
238 | > | * @return true if this matrix is not equal to the matrix m, return false otherwise |
239 | > | * @m matrix to be compared |
240 | > | */ |
241 | > | bool operator !=(const RectMatrix<Real, Row, Col>& m) { |
242 | > | return !(*this == m); |
243 | > | } |
244 | ||
245 | < | /** |
246 | < | * Sets the value of this matrix to the sum of the other matrix and itself (*this += m). |
247 | < | * @param m the other matrix |
248 | < | */ |
249 | < | RectMatrix<Real, Row, Col>& operator += (const RectMatrix<Real, Row, Col>& m) { |
250 | < | add(m); |
305 | < | return *this; |
306 | < | } |
307 | < | |
308 | < | /** |
309 | < | * Sets the value of this matrix to the differerence of itself and the other matrix (*this -= m) |
310 | < | * @param m the other matrix |
311 | < | */ |
312 | < | RectMatrix<Real, Row, Col>& operator -= (const RectMatrix<Real, Row, Col>& m){ |
313 | < | sub(m); |
314 | < | return *this; |
315 | < | } |
316 | < | |
317 | < | /** Return the transpose of this matrix */ |
318 | < | RectMatrix<Real, Col, Row> transpose(){ |
319 | < | RectMatrix<Real, Col, Row> result; |
245 | > | /** Negates the value of this matrix in place. */ |
246 | > | inline void negate() { |
247 | > | for (unsigned int i = 0; i < Row; i++) |
248 | > | for (unsigned int j = 0; j < Col; j++) |
249 | > | this->data_[i][j] = -this->data_[i][j]; |
250 | > | } |
251 | ||
252 | < | for (unsigned int i = 0; i < Row; i++) |
253 | < | for (unsigned int j = 0; j < Col; j++) |
254 | < | result(j, i) = data_[i][j]; |
252 | > | /** |
253 | > | * Sets the value of this matrix to the negation of matrix m. |
254 | > | * @param m the source matrix |
255 | > | */ |
256 | > | inline void negate(const RectMatrix<Real, Row, Col>& m) { |
257 | > | for (unsigned int i = 0; i < Row; i++) |
258 | > | for (unsigned int j = 0; j < Col; j++) |
259 | > | this->data_[i][j] = -m.data_[i][j]; |
260 | > | } |
261 | > | |
262 | > | /** |
263 | > | * Sets the value of this matrix to the sum of itself and m (*this += m). |
264 | > | * @param m the other matrix |
265 | > | */ |
266 | > | inline void add( const RectMatrix<Real, Row, Col>& m ) { |
267 | > | for (unsigned int i = 0; i < Row; i++) |
268 | > | for (unsigned int j = 0; j < Col; j++) |
269 | > | this->data_[i][j] += m.data_[i][j]; |
270 | > | } |
271 | > | |
272 | > | /** |
273 | > | * Sets the value of this matrix to the sum of m1 and m2 (*this = m1 + m2). |
274 | > | * @param m1 the first matrix |
275 | > | * @param m2 the second matrix |
276 | > | */ |
277 | > | inline void add( const RectMatrix<Real, Row, Col>& m1, const RectMatrix<Real, Row, Col>& m2 ) { |
278 | > | for (unsigned int i = 0; i < Row; i++) |
279 | > | for (unsigned int j = 0; j < Col; j++) |
280 | > | this->data_[i][j] = m1.data_[i][j] + m2.data_[i][j]; |
281 | > | } |
282 | > | |
283 | > | /** |
284 | > | * Sets the value of this matrix to the difference of itself and m (*this -= m). |
285 | > | * @param m the other matrix |
286 | > | */ |
287 | > | inline void sub( const RectMatrix<Real, Row, Col>& m ) { |
288 | > | for (unsigned int i = 0; i < Row; i++) |
289 | > | for (unsigned int j = 0; j < Col; j++) |
290 | > | this->data_[i][j] -= m.data_[i][j]; |
291 | > | } |
292 | > | |
293 | > | /** |
294 | > | * Sets the value of this matrix to the difference of matrix m1 and m2 (*this = m1 - m2). |
295 | > | * @param m1 the first matrix |
296 | > | * @param m2 the second matrix |
297 | > | */ |
298 | > | inline void sub( const RectMatrix<Real, Row, Col>& m1, const RectMatrix<Real, Row, Col>& m2){ |
299 | > | for (unsigned int i = 0; i < Row; i++) |
300 | > | for (unsigned int j = 0; j < Col; j++) |
301 | > | this->data_[i][j] = m1.data_[i][j] - m2.data_[i][j]; |
302 | > | } |
303 | ||
304 | < | return result; |
305 | < | } |
306 | < | |
307 | < | protected: |
308 | < | Real data_[Row][Col]; |
309 | < | }; |
304 | > | /** |
305 | > | * Sets the value of this matrix to the scalar multiplication of itself (*this *= s). |
306 | > | * @param s the scalar value |
307 | > | */ |
308 | > | inline void mul( Real s ) { |
309 | > | for (unsigned int i = 0; i < Row; i++) |
310 | > | for (unsigned int j = 0; j < Col; j++) |
311 | > | this->data_[i][j] *= s; |
312 | > | } |
313 | ||
314 | < | /** Negate the value of every element of this matrix. */ |
315 | < | template<typename Real, unsigned int Row, unsigned int Col> |
316 | < | inline RectMatrix<Real, Row, Col> operator -(const RectMatrix<Real, Row, Col>& m) { |
317 | < | RectMatrix<Real, Row, Col> result(m); |
314 | > | /** |
315 | > | * Sets the value of this matrix to the scalar multiplication of matrix m (*this = s * m). |
316 | > | * @param s the scalar value |
317 | > | * @param m the matrix |
318 | > | */ |
319 | > | inline void mul( Real s, const RectMatrix<Real, Row, Col>& m ) { |
320 | > | for (unsigned int i = 0; i < Row; i++) |
321 | > | for (unsigned int j = 0; j < Col; j++) |
322 | > | this->data_[i][j] = s * m.data_[i][j]; |
323 | > | } |
324 | ||
325 | < | result.negate(); |
325 | > | /** |
326 | > | * Sets the value of this matrix to the scalar division of itself (*this /= s ). |
327 | > | * @param s the scalar value |
328 | > | */ |
329 | > | inline void div( Real s) { |
330 | > | for (unsigned int i = 0; i < Row; i++) |
331 | > | for (unsigned int j = 0; j < Col; j++) |
332 | > | this->data_[i][j] /= s; |
333 | > | } |
334 | ||
335 | < | return result; |
335 | > | /** |
336 | > | * Sets the value of this matrix to the scalar division of matrix m (*this = m /s). |
337 | > | * @param s the scalar value |
338 | > | * @param m the matrix |
339 | > | */ |
340 | > | inline void div( Real s, const RectMatrix<Real, Row, Col>& m ) { |
341 | > | for (unsigned int i = 0; i < Row; i++) |
342 | > | for (unsigned int j = 0; j < Col; j++) |
343 | > | this->data_[i][j] = m.data_[i][j] / s; |
344 | } | |
345 | < | |
345 | > | |
346 | /** | |
347 | < | * Return the sum of two matrixes (m1 + m2). |
348 | < | * @return the sum of two matrixes |
349 | < | * @param m1 the first matrix |
350 | < | * @param m2 the second matrix |
351 | < | */ |
352 | < | template<typename Real, unsigned int Row, unsigned int Col> |
353 | < | inline RectMatrix<Real, Row, Col> operator + (const RectMatrix<Real, Row, Col>& m1,const RectMatrix<Real, Row, Col>& m2) { |
350 | < | RectMatrix<Real, Row, Col> result; |
347 | > | * Multiples a scalar into every element of this matrix. |
348 | > | * @param s the scalar value |
349 | > | */ |
350 | > | RectMatrix<Real, Row, Col>& operator *=(const Real s) { |
351 | > | this->mul(s); |
352 | > | return *this; |
353 | > | } |
354 | ||
355 | < | result.add(m1, m2); |
355 | > | /** |
356 | > | * Divides every element of this matrix by a scalar. |
357 | > | * @param s the scalar value |
358 | > | */ |
359 | > | RectMatrix<Real, Row, Col>& operator /=(const Real s) { |
360 | > | this->div(s); |
361 | > | return *this; |
362 | > | } |
363 | ||
364 | < | return result; |
364 | > | /** |
365 | > | * Sets the value of this matrix to the sum of the other matrix and itself (*this += m). |
366 | > | * @param m the other matrix |
367 | > | */ |
368 | > | RectMatrix<Real, Row, Col>& operator += (const RectMatrix<Real, Row, Col>& m) { |
369 | > | add(m); |
370 | > | return *this; |
371 | } | |
372 | < | |
372 | > | |
373 | /** | |
374 | < | * Return the difference of two matrixes (m1 - m2). |
375 | < | * @return the sum of two matrixes |
376 | < | * @param m1 the first matrix |
377 | < | * @param m2 the second matrix |
378 | < | */ |
379 | < | template<typename Real, unsigned int Row, unsigned int Col> |
380 | < | inline RectMatrix<Real, Row, Col> operator - (const RectMatrix<Real, Row, Col>& m1, const RectMatrix<Real, Row, Col>& m2) { |
365 | < | RectMatrix<Real, Row, Col> result; |
374 | > | * Sets the value of this matrix to the differerence of itself and the other matrix (*this -= m) |
375 | > | * @param m the other matrix |
376 | > | */ |
377 | > | RectMatrix<Real, Row, Col>& operator -= (const RectMatrix<Real, Row, Col>& m){ |
378 | > | sub(m); |
379 | > | return *this; |
380 | > | } |
381 | ||
382 | < | result.sub(m1, m2); |
382 | > | /** Return the transpose of this matrix */ |
383 | > | RectMatrix<Real, Col, Row> transpose() const{ |
384 | > | RectMatrix<Real, Col, Row> result; |
385 | > | |
386 | > | for (unsigned int i = 0; i < Row; i++) |
387 | > | for (unsigned int j = 0; j < Col; j++) |
388 | > | result(j, i) = this->data_[i][j]; |
389 | ||
390 | < | return result; |
390 | > | return result; |
391 | } | |
392 | + | |
393 | + | protected: |
394 | + | Real data_[Row][Col]; |
395 | + | }; |
396 | ||
397 | < | /** |
398 | < | * Return the multiplication of scalra and matrix (m * s). |
399 | < | * @return the multiplication of a scalra and a matrix |
400 | < | * @param m the matrix |
376 | < | * @param s the scalar |
377 | < | */ |
378 | < | template<typename Real, unsigned int Row, unsigned int Col> |
379 | < | inline RectMatrix<Real, Row, Col> operator *(const RectMatrix<Real, Row, Col>& m, Real s) { |
380 | < | RectMatrix<Real, Row, Col> result; |
397 | > | /** Negate the value of every element of this matrix. */ |
398 | > | template<typename Real, unsigned int Row, unsigned int Col> |
399 | > | inline RectMatrix<Real, Row, Col> operator -(const RectMatrix<Real, Row, Col>& m) { |
400 | > | RectMatrix<Real, Row, Col> result(m); |
401 | ||
402 | < | result.mul(s, m); |
402 | > | result.negate(); |
403 | ||
404 | < | return result; |
405 | < | } |
404 | > | return result; |
405 | > | } |
406 | > | |
407 | > | /** |
408 | > | * Return the sum of two matrixes (m1 + m2). |
409 | > | * @return the sum of two matrixes |
410 | > | * @param m1 the first matrix |
411 | > | * @param m2 the second matrix |
412 | > | */ |
413 | > | template<typename Real, unsigned int Row, unsigned int Col> |
414 | > | inline RectMatrix<Real, Row, Col> operator + (const RectMatrix<Real, Row, Col>& m1,const RectMatrix<Real, Row, Col>& m2) { |
415 | > | RectMatrix<Real, Row, Col> result; |
416 | ||
417 | < | /** |
388 | < | * Return the multiplication of a scalra and a matrix (s * m). |
389 | < | * @return the multiplication of a scalra and a matrix |
390 | < | * @param s the scalar |
391 | < | * @param m the matrix |
392 | < | */ |
393 | < | template<typename Real, unsigned int Row, unsigned int Col> |
394 | < | inline RectMatrix<Real, Row, Col> operator *(Real s, const RectMatrix<Real, Row, Col>& m) { |
395 | < | RectMatrix<Real, Row, Col> result; |
417 | > | result.add(m1, m2); |
418 | ||
419 | < | result.mul(s, m); |
419 | > | return result; |
420 | > | } |
421 | > | |
422 | > | /** |
423 | > | * Return the difference of two matrixes (m1 - m2). |
424 | > | * @return the sum of two matrixes |
425 | > | * @param m1 the first matrix |
426 | > | * @param m2 the second matrix |
427 | > | */ |
428 | > | template<typename Real, unsigned int Row, unsigned int Col> |
429 | > | inline RectMatrix<Real, Row, Col> operator - (const RectMatrix<Real, Row, Col>& m1, const RectMatrix<Real, Row, Col>& m2) { |
430 | > | RectMatrix<Real, Row, Col> result; |
431 | ||
432 | < | return result; |
433 | < | } |
432 | > | result.sub(m1, m2); |
433 | > | |
434 | > | return result; |
435 | > | } |
436 | > | |
437 | > | /** |
438 | > | * Return the multiplication of scalra and matrix (m * s). |
439 | > | * @return the multiplication of a scalra and a matrix |
440 | > | * @param m the matrix |
441 | > | * @param s the scalar |
442 | > | */ |
443 | > | template<typename Real, unsigned int Row, unsigned int Col> |
444 | > | inline RectMatrix<Real, Row, Col> operator *(const RectMatrix<Real, Row, Col>& m, Real s) { |
445 | > | RectMatrix<Real, Row, Col> result; |
446 | > | |
447 | > | result.mul(s, m); |
448 | > | |
449 | > | return result; |
450 | > | } |
451 | > | |
452 | > | /** |
453 | > | * Return the multiplication of a scalra and a matrix (s * m). |
454 | > | * @return the multiplication of a scalra and a matrix |
455 | > | * @param s the scalar |
456 | > | * @param m the matrix |
457 | > | */ |
458 | > | template<typename Real, unsigned int Row, unsigned int Col> |
459 | > | inline RectMatrix<Real, Row, Col> operator *(Real s, const RectMatrix<Real, Row, Col>& m) { |
460 | > | RectMatrix<Real, Row, Col> result; |
461 | > | |
462 | > | result.mul(s, m); |
463 | > | |
464 | > | return result; |
465 | > | } |
466 | ||
467 | < | /** |
468 | < | * Return the multiplication of two matrixes (m1 * m2). |
469 | < | * @return the multiplication of two matrixes |
470 | < | * @param m1 the first matrix |
471 | < | * @param m2 the second matrix |
472 | < | */ |
473 | < | template<typename Real, unsigned int Row, unsigned int Col, unsigned int SameDim> |
474 | < | inline RectMatrix<Real, Row, Col> operator *(const RectMatrix<Real, Row, SameDim>& m1, const RectMatrix<Real, SameDim, Col>& m2) { |
475 | < | RectMatrix<Real, Row, Col> result; |
467 | > | /** |
468 | > | * Return the multiplication of two matrixes (m1 * m2). |
469 | > | * @return the multiplication of two matrixes |
470 | > | * @param m1 the first matrix |
471 | > | * @param m2 the second matrix |
472 | > | */ |
473 | > | template<typename Real, unsigned int Row, unsigned int Col, unsigned int SameDim> |
474 | > | inline RectMatrix<Real, Row, Col> operator *(const RectMatrix<Real, Row, SameDim>& m1, const RectMatrix<Real, SameDim, Col>& m2) { |
475 | > | RectMatrix<Real, Row, Col> result; |
476 | ||
477 | < | for (unsigned int i = 0; i < Row; i++) |
478 | < | for (unsigned int j = 0; j < Col; j++) |
479 | < | for (unsigned int k = 0; k < SameDim; k++) |
480 | < | result(i, j) += m1(i, k) * m2(k, j); |
477 | > | for (unsigned int i = 0; i < Row; i++) |
478 | > | for (unsigned int j = 0; j < Col; j++) |
479 | > | for (unsigned int k = 0; k < SameDim; k++) |
480 | > | result(i, j) += m1(i, k) * m2(k, j); |
481 | ||
482 | < | return result; |
483 | < | } |
482 | > | return result; |
483 | > | } |
484 | ||
485 | < | /** |
486 | < | * Return the multiplication of a matrix and a vector (m * v). |
487 | < | * @return the multiplication of a matrix and a vector |
488 | < | * @param m the matrix |
489 | < | * @param v the vector |
490 | < | */ |
491 | < | template<typename Real, unsigned int Row, unsigned int Col> |
492 | < | inline Vector<Real, Row> operator *(const RectMatrix<Real, Row, Col>& m, const Vector<Real, Col>& v) { |
493 | < | Vector<Real, Row> result; |
485 | > | /** |
486 | > | * Return the multiplication of a matrix and a vector (m * v). |
487 | > | * @return the multiplication of a matrix and a vector |
488 | > | * @param m the matrix |
489 | > | * @param v the vector |
490 | > | */ |
491 | > | template<typename Real, unsigned int Row, unsigned int Col> |
492 | > | inline Vector<Real, Row> operator *(const RectMatrix<Real, Row, Col>& m, const Vector<Real, Col>& v) { |
493 | > | Vector<Real, Row> result; |
494 | ||
495 | < | for (unsigned int i = 0; i < Row ; i++) |
496 | < | for (unsigned int j = 0; j < Col ; j++) |
497 | < | result[i] += m(i, j) * v[j]; |
495 | > | for (unsigned int i = 0; i < Row ; i++) |
496 | > | for (unsigned int j = 0; j < Col ; j++) |
497 | > | result[i] += m(i, j) * v[j]; |
498 | ||
499 | < | return result; |
500 | < | } |
499 | > | return result; |
500 | > | } |
501 | ||
502 | < | /** |
503 | < | * Return the scalar division of matrix (m / s). |
504 | < | * @return the scalar division of matrix |
505 | < | * @param m the matrix |
506 | < | * @param s the scalar |
507 | < | */ |
508 | < | template<typename Real, unsigned int Row, unsigned int Col> |
509 | < | inline RectMatrix<Real, Row, Col> operator /(const RectMatrix<Real, Row, Col>& m, Real s) { |
510 | < | RectMatrix<Real, Row, Col> result; |
502 | > | /** |
503 | > | * Return the scalar division of matrix (m / s). |
504 | > | * @return the scalar division of matrix |
505 | > | * @param m the matrix |
506 | > | * @param s the scalar |
507 | > | */ |
508 | > | template<typename Real, unsigned int Row, unsigned int Col> |
509 | > | inline RectMatrix<Real, Row, Col> operator /(const RectMatrix<Real, Row, Col>& m, Real s) { |
510 | > | RectMatrix<Real, Row, Col> result; |
511 | ||
512 | < | result.div(s, m); |
512 | > | result.div(s, m); |
513 | ||
514 | < | return result; |
515 | < | } |
514 | > | return result; |
515 | > | } |
516 | > | |
517 | > | /** |
518 | > | * Write to an output stream |
519 | > | */ |
520 | > | template<typename Real, unsigned int Row, unsigned int Col> |
521 | > | std::ostream &operator<< ( std::ostream& o, const RectMatrix<Real, Row, Col>& m) { |
522 | > | for (unsigned int i = 0; i < Row ; i++) { |
523 | > | o << "("; |
524 | > | for (unsigned int j = 0; j < Col ; j++) { |
525 | > | o << m(i, j); |
526 | > | if (j != Col -1) |
527 | > | o << "\t"; |
528 | > | } |
529 | > | o << ")" << std::endl; |
530 | > | } |
531 | > | return o; |
532 | > | } |
533 | } | |
534 | #endif //MATH_RECTMATRIX_HPP |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |