| 221 | 
  | 
    /** | 
| 222 | 
  | 
     * Tests if this matrix is identical to matrix m | 
| 223 | 
  | 
     * @return true if this matrix is equal to the matrix m, return false otherwise | 
| 224 | 
< | 
     * @m matrix to be compared | 
| 224 | 
> | 
     * @param m matrix to be compared | 
| 225 | 
  | 
     * | 
| 226 | 
  | 
     * @todo replace operator == by template function equal | 
| 227 | 
  | 
     */ | 
| 237 | 
  | 
    /** | 
| 238 | 
  | 
     * Tests if this matrix is not equal to matrix m | 
| 239 | 
  | 
     * @return true if this matrix is not equal to the matrix m, return false otherwise | 
| 240 | 
< | 
     * @m matrix to be compared | 
| 240 | 
> | 
     * @param m matrix to be compared | 
| 241 | 
  | 
     */ | 
| 242 | 
  | 
    bool operator !=(const RectMatrix<Real, Row, Col>& m) { | 
| 243 | 
  | 
      return !(*this == m); | 
| 564 | 
  | 
   * CCP5 Newsletter No 46., pp. 18-30. | 
| 565 | 
  | 
   * | 
| 566 | 
  | 
   * Equation 21 defines: | 
| 567 | 
< | 
   * V_alpha = \sum_\beta [ A_{\alpha+1,\beta} * B_{\alpha+2,\beta}  | 
| 568 | 
< | 
                           -A_{\alpha+2,\beta} * B_{\alpha+2,\beta} ] | 
| 569 | 
< | 
   * where \alpha+1 and \alpha+2 are regarded as cyclic permuations of the | 
| 570 | 
< | 
   * matrix indices (i.e. for a 3x3 matrix, when \alpha = 2, \alpha + 1 = 3, | 
| 571 | 
< | 
   * and \alpha + 2 = 1). | 
| 567 | 
> | 
   * \f[ | 
| 568 | 
> | 
   * V_alpha = \sum_\beta \left[ A_{\alpha+1,\beta} * B_{\alpha+2,\beta}  | 
| 569 | 
> | 
                           -A_{\alpha+2,\beta} * B_{\alpha+2,\beta} \right] | 
| 570 | 
> | 
   * \f] | 
| 571 | 
> | 
   * where \f[\alpha+1\f] and \f[\alpha+2\f] are regarded as cyclic permuations of the | 
| 572 | 
> | 
   * matrix indices (i.e. for a 3x3 matrix, when \f[\alpha = 2\f], \f[\alpha + 1 = 3 \f], | 
| 573 | 
> | 
   * and \f[\alpha + 2 = 1 \f] ). | 
| 574 | 
  | 
   * | 
| 575 | 
  | 
   * @param t1 first matrix | 
| 576 | 
  | 
   * @param t2 second matrix |