| 568 |
|
* V_alpha = \sum_\beta \left[ A_{\alpha+1,\beta} * B_{\alpha+2,\beta} |
| 569 |
|
-A_{\alpha+2,\beta} * B_{\alpha+2,\beta} \right] |
| 570 |
|
* \f] |
| 571 |
< |
* where \f[\alpha+1\f] and \f[\alpha+2\f] are regarded as cyclic permuations of the |
| 572 |
< |
* matrix indices (i.e. for a 3x3 matrix, when \f[\alpha = 2\f], \f[\alpha + 1 = 3 \f], |
| 573 |
< |
* and \f[\alpha + 2 = 1 \f] ). |
| 571 |
> |
|
| 572 |
> |
* where \f[\alpha+1\f] and \f[\alpha+2\f] are regarded as cyclic |
| 573 |
> |
* permuations of the matrix indices (i.e. for a 3x3 matrix, when |
| 574 |
> |
* \f[\alpha = 2\f], \f[\alpha + 1 = 3 \f], and \f[\alpha + 2 = 1 \f] ). |
| 575 |
|
* |
| 576 |
|
* @param t1 first matrix |
| 577 |
|
* @param t2 second matrix |
| 578 |
|
* @return the cross product (vector product) of t1 and t2 |
| 579 |
|
*/ |
| 580 |
|
template<typename Real, unsigned int Row, unsigned int Col> |
| 581 |
< |
inline Vector<Real, Row> cross( const RectMatrix<Real, Row, Col>& t1, const RectMatrix<Real, Row, Col>& t2 ) { |
| 581 |
> |
inline Vector<Real, Row> cross( const RectMatrix<Real, Row, Col>& t1, |
| 582 |
> |
const RectMatrix<Real, Row, Col>& t2 ) { |
| 583 |
|
Vector<Real, Row> result; |
| 584 |
|
unsigned int i1; |
| 585 |
|
unsigned int i2; |
| 587 |
|
for (unsigned int i = 0; i < Row; i++) { |
| 588 |
|
i1 = (i+1)%Row; |
| 589 |
|
i2 = (i+2)%Row; |
| 590 |
< |
|
| 591 |
< |
for (unsigned int j =0; j < Col; j++) { |
| 590 |
< |
result[i] = t1(i1,j) * t2(i2,j) - t1(i2,j) * t2(i1,j); |
| 590 |
> |
for (unsigned int j = 0; j < Col; j++) { |
| 591 |
> |
result[i] += t1(i1,j) * t2(i2,j) - t1(i2,j) * t2(i1,j); |
| 592 |
|
} |
| 593 |
< |
} |
| 593 |
< |
|
| 593 |
> |
} |
| 594 |
|
return result; |
| 595 |
|
} |
| 596 |
|
|