| 1 | 
cli2 | 
1349 | 
#ifndef JAMA_SVD_H | 
| 2 | 
  | 
  | 
#define JAMA_SVD_H | 
| 3 | 
  | 
  | 
 | 
| 4 | 
  | 
  | 
#include "math/DynamicRectMatrix.hpp" | 
| 5 | 
  | 
  | 
 | 
| 6 | 
  | 
  | 
#include <algorithm> | 
| 7 | 
  | 
  | 
// for min(), max() below | 
| 8 | 
  | 
  | 
#include <cmath> | 
| 9 | 
  | 
  | 
// for abs() below | 
| 10 | 
  | 
  | 
 | 
| 11 | 
  | 
  | 
using namespace oopse; | 
| 12 | 
  | 
  | 
using namespace std; | 
| 13 | 
  | 
  | 
 | 
| 14 | 
  | 
  | 
namespace JAMA | 
| 15 | 
  | 
  | 
{ | 
| 16 | 
  | 
  | 
  /** Singular Value Decomposition. | 
| 17 | 
  | 
  | 
      <P> | 
| 18 | 
  | 
  | 
      For an m-by-n matrix A with m >= n, the singular value decomposition is | 
| 19 | 
  | 
  | 
      an m-by-n orthogonal matrix U, an n-by-n diagonal matrix S, and | 
| 20 | 
  | 
  | 
      an n-by-n orthogonal matrix V so that A = U*S*V'.   | 
| 21 | 
  | 
  | 
      <P> | 
| 22 | 
  | 
  | 
      The singular values, sigma(k) = S(k,k), are ordered so that | 
| 23 | 
  | 
  | 
      sigma(0) >= sigma(1) >= ... >= sigma(n-1). | 
| 24 | 
  | 
  | 
      <P> | 
| 25 | 
  | 
  | 
      The singular value decompostion always exists, so the constructor will | 
| 26 | 
  | 
  | 
      never fail.  The matrix condition number and the effective numerical | 
| 27 | 
  | 
  | 
      rank can be computed from this decomposition. | 
| 28 | 
  | 
  | 
 | 
| 29 | 
  | 
  | 
      <p> | 
| 30 | 
  | 
  | 
      (Adapted from JAMA, a Java Matrix Library, developed by jointly  | 
| 31 | 
  | 
  | 
      by the Mathworks and NIST; see  http://math.nist.gov/javanumerics/jama). | 
| 32 | 
  | 
  | 
  */ | 
| 33 | 
  | 
  | 
  template <class Real> | 
| 34 | 
  | 
  | 
  class SVD  | 
| 35 | 
  | 
  | 
  { | 
| 36 | 
  | 
  | 
         | 
| 37 | 
  | 
  | 
    DynamicRectMatrix<Real> U, V; | 
| 38 | 
  | 
  | 
    DynamicVector<Real> s; | 
| 39 | 
  | 
  | 
    int m, n; | 
| 40 | 
  | 
  | 
     | 
| 41 | 
  | 
  | 
  public: | 
| 42 | 
  | 
  | 
     | 
| 43 | 
  | 
  | 
     | 
| 44 | 
  | 
  | 
    SVD (const DynamicRectMatrix<Real> &Arg) { | 
| 45 | 
  | 
  | 
             | 
| 46 | 
  | 
  | 
      m = Arg.getNRow(); | 
| 47 | 
  | 
  | 
      n = Arg.getNCol(); | 
| 48 | 
  | 
  | 
      int nu = min(m,n); | 
| 49 | 
  | 
  | 
      s = DynamicVector<Real>(min(m+1,n));  | 
| 50 | 
  | 
  | 
      U = DynamicRectMatrix<Real>(m, nu, Real(0)); | 
| 51 | 
  | 
  | 
      V = DynamicRectMatrix<Real>(n,n); | 
| 52 | 
  | 
  | 
      DynamicVector<Real> e(n); | 
| 53 | 
  | 
  | 
      DynamicVector<Real> work(m); | 
| 54 | 
  | 
  | 
      DynamicRectMatrix<Real> A(Arg); | 
| 55 | 
  | 
  | 
      int wantu = 1;                                    /* boolean */ | 
| 56 | 
  | 
  | 
      int wantv = 1;                                    /* boolean */ | 
| 57 | 
  | 
  | 
      int i=0, j=0, k=0; | 
| 58 | 
  | 
  | 
       | 
| 59 | 
  | 
  | 
      // Reduce A to bidiagonal form, storing the diagonal elements | 
| 60 | 
  | 
  | 
      // in s and the super-diagonal elements in e. | 
| 61 | 
  | 
  | 
       | 
| 62 | 
  | 
  | 
      int nct = min(m-1,n); | 
| 63 | 
  | 
  | 
      int nrt = max(0,min(n-2,m)); | 
| 64 | 
  | 
  | 
      for (k = 0; k < max(nct,nrt); k++) { | 
| 65 | 
  | 
  | 
        if (k < nct) { | 
| 66 | 
  | 
  | 
           | 
| 67 | 
  | 
  | 
          // Compute the transformation for the k-th column and | 
| 68 | 
  | 
  | 
          // place the k-th diagonal in s(k). | 
| 69 | 
  | 
  | 
          // Compute 2-norm of k-th column without under/overflow. | 
| 70 | 
  | 
  | 
          s(k) = 0; | 
| 71 | 
  | 
  | 
          for (i = k; i < m; i++) { | 
| 72 | 
  | 
  | 
            s(k) = hypot(s(k),A(i,k)); | 
| 73 | 
  | 
  | 
          } | 
| 74 | 
  | 
  | 
          if (s(k) != 0.0) { | 
| 75 | 
  | 
  | 
            if (A(k,k) < 0.0) { | 
| 76 | 
  | 
  | 
              s(k) = -s(k); | 
| 77 | 
  | 
  | 
            } | 
| 78 | 
  | 
  | 
            for (i = k; i < m; i++) { | 
| 79 | 
  | 
  | 
              A(i,k) /= s(k); | 
| 80 | 
  | 
  | 
            } | 
| 81 | 
  | 
  | 
            A(k,k) += 1.0; | 
| 82 | 
  | 
  | 
          } | 
| 83 | 
  | 
  | 
          s(k) = -s(k); | 
| 84 | 
  | 
  | 
        } | 
| 85 | 
  | 
  | 
        for (j = k+1; j < n; j++) { | 
| 86 | 
  | 
  | 
          if ((k < nct) && (s(k) != 0.0))  { | 
| 87 | 
  | 
  | 
             | 
| 88 | 
  | 
  | 
            // Apply the transformation. | 
| 89 | 
  | 
  | 
 | 
| 90 | 
  | 
  | 
            Real t(0.0); | 
| 91 | 
  | 
  | 
            for (i = k; i < m; i++) { | 
| 92 | 
  | 
  | 
              t += A(i,k)*A(i,j); | 
| 93 | 
  | 
  | 
            } | 
| 94 | 
  | 
  | 
            t = -t/A(k,k); | 
| 95 | 
  | 
  | 
            for (i = k; i < m; i++) { | 
| 96 | 
  | 
  | 
              A(i,j) += t*A(i,k); | 
| 97 | 
  | 
  | 
            } | 
| 98 | 
  | 
  | 
          } | 
| 99 | 
  | 
  | 
 | 
| 100 | 
  | 
  | 
          // Place the k-th row of A into e for the | 
| 101 | 
  | 
  | 
          // subsequent calculation of the row transformation. | 
| 102 | 
  | 
  | 
 | 
| 103 | 
  | 
  | 
          e(j) = A(k,j); | 
| 104 | 
  | 
  | 
        } | 
| 105 | 
  | 
  | 
        if (wantu & (k < nct)) { | 
| 106 | 
  | 
  | 
 | 
| 107 | 
  | 
  | 
          // Place the transformation in U for subsequent back | 
| 108 | 
  | 
  | 
          // multiplication. | 
| 109 | 
  | 
  | 
 | 
| 110 | 
  | 
  | 
          for (i = k; i < m; i++) { | 
| 111 | 
  | 
  | 
            U(i,k) = A(i,k); | 
| 112 | 
  | 
  | 
          } | 
| 113 | 
  | 
  | 
        } | 
| 114 | 
  | 
  | 
        if (k < nrt) { | 
| 115 | 
  | 
  | 
 | 
| 116 | 
  | 
  | 
          // Compute the k-th row transformation and place the | 
| 117 | 
  | 
  | 
          // k-th super-diagonal in e(k). | 
| 118 | 
  | 
  | 
          // Compute 2-norm without under/overflow. | 
| 119 | 
  | 
  | 
          e(k) = 0; | 
| 120 | 
  | 
  | 
          for (i = k+1; i < n; i++) { | 
| 121 | 
  | 
  | 
            e(k) = hypot(e(k),e(i)); | 
| 122 | 
  | 
  | 
          } | 
| 123 | 
  | 
  | 
          if (e(k) != 0.0) { | 
| 124 | 
  | 
  | 
            if (e(k+1) < 0.0) { | 
| 125 | 
  | 
  | 
              e(k) = -e(k); | 
| 126 | 
  | 
  | 
            } | 
| 127 | 
  | 
  | 
            for (i = k+1; i < n; i++) { | 
| 128 | 
  | 
  | 
              e(i) /= e(k); | 
| 129 | 
  | 
  | 
            } | 
| 130 | 
  | 
  | 
            e(k+1) += 1.0; | 
| 131 | 
  | 
  | 
          } | 
| 132 | 
  | 
  | 
          e(k) = -e(k); | 
| 133 | 
  | 
  | 
          if ((k+1 < m) & (e(k) != 0.0)) { | 
| 134 | 
  | 
  | 
 | 
| 135 | 
  | 
  | 
            // Apply the transformation. | 
| 136 | 
  | 
  | 
 | 
| 137 | 
  | 
  | 
            for (i = k+1; i < m; i++) { | 
| 138 | 
  | 
  | 
              work(i) = 0.0; | 
| 139 | 
  | 
  | 
            } | 
| 140 | 
  | 
  | 
            for (j = k+1; j < n; j++) { | 
| 141 | 
  | 
  | 
              for (i = k+1; i < m; i++) { | 
| 142 | 
  | 
  | 
                work(i) += e(j)*A(i,j); | 
| 143 | 
  | 
  | 
              } | 
| 144 | 
  | 
  | 
            } | 
| 145 | 
  | 
  | 
            for (j = k+1; j < n; j++) { | 
| 146 | 
  | 
  | 
              Real t(-e(j)/e(k+1)); | 
| 147 | 
  | 
  | 
              for (i = k+1; i < m; i++) { | 
| 148 | 
  | 
  | 
                A(i,j) += t*work(i); | 
| 149 | 
  | 
  | 
              } | 
| 150 | 
  | 
  | 
            } | 
| 151 | 
  | 
  | 
          } | 
| 152 | 
  | 
  | 
          if (wantv) { | 
| 153 | 
  | 
  | 
 | 
| 154 | 
  | 
  | 
            // Place the transformation in V for subsequent | 
| 155 | 
  | 
  | 
            // back multiplication. | 
| 156 | 
  | 
  | 
 | 
| 157 | 
  | 
  | 
            for (i = k+1; i < n; i++) { | 
| 158 | 
  | 
  | 
              V(i,k) = e(i); | 
| 159 | 
  | 
  | 
            } | 
| 160 | 
  | 
  | 
          } | 
| 161 | 
  | 
  | 
        } | 
| 162 | 
  | 
  | 
      } | 
| 163 | 
  | 
  | 
 | 
| 164 | 
  | 
  | 
      // Set up the final bidiagonal matrix or order p. | 
| 165 | 
  | 
  | 
 | 
| 166 | 
  | 
  | 
      int p = min(n,m+1); | 
| 167 | 
  | 
  | 
      if (nct < n) { | 
| 168 | 
  | 
  | 
        s(nct) = A(nct,nct); | 
| 169 | 
  | 
  | 
      } | 
| 170 | 
  | 
  | 
      if (m < p) { | 
| 171 | 
  | 
  | 
        s(p-1) = 0.0; | 
| 172 | 
  | 
  | 
      } | 
| 173 | 
  | 
  | 
      if (nrt+1 < p) { | 
| 174 | 
  | 
  | 
        e(nrt) = A(nrt,p-1); | 
| 175 | 
  | 
  | 
      } | 
| 176 | 
  | 
  | 
      e(p-1) = 0.0; | 
| 177 | 
  | 
  | 
 | 
| 178 | 
  | 
  | 
      // If required, generate U. | 
| 179 | 
  | 
  | 
 | 
| 180 | 
  | 
  | 
      if (wantu) { | 
| 181 | 
  | 
  | 
        for (j = nct; j < nu; j++) { | 
| 182 | 
  | 
  | 
          for (i = 0; i < m; i++) { | 
| 183 | 
  | 
  | 
            U(i,j) = 0.0; | 
| 184 | 
  | 
  | 
          } | 
| 185 | 
  | 
  | 
          U(j,j) = 1.0; | 
| 186 | 
  | 
  | 
        } | 
| 187 | 
  | 
  | 
        for (k = nct-1; k >= 0; k--) { | 
| 188 | 
  | 
  | 
          if (s(k) != 0.0) { | 
| 189 | 
  | 
  | 
            for (j = k+1; j < nu; j++) { | 
| 190 | 
  | 
  | 
              Real t(0.0); | 
| 191 | 
  | 
  | 
              for (i = k; i < m; i++) { | 
| 192 | 
  | 
  | 
                t += U(i,k)*U(i,j); | 
| 193 | 
  | 
  | 
              } | 
| 194 | 
  | 
  | 
              t = -t/U(k,k); | 
| 195 | 
  | 
  | 
              for (i = k; i < m; i++) { | 
| 196 | 
  | 
  | 
                U(i,j) += t*U(i,k); | 
| 197 | 
  | 
  | 
              } | 
| 198 | 
  | 
  | 
            } | 
| 199 | 
  | 
  | 
            for (i = k; i < m; i++ ) { | 
| 200 | 
  | 
  | 
              U(i,k) = -U(i,k); | 
| 201 | 
  | 
  | 
            } | 
| 202 | 
  | 
  | 
            U(k,k) = 1.0 + U(k,k); | 
| 203 | 
  | 
  | 
            for (i = 0; i < k-1; i++) { | 
| 204 | 
  | 
  | 
              U(i,k) = 0.0; | 
| 205 | 
  | 
  | 
            } | 
| 206 | 
  | 
  | 
          } else { | 
| 207 | 
  | 
  | 
            for (i = 0; i < m; i++) { | 
| 208 | 
  | 
  | 
              U(i,k) = 0.0; | 
| 209 | 
  | 
  | 
            } | 
| 210 | 
  | 
  | 
            U(k,k) = 1.0; | 
| 211 | 
  | 
  | 
          } | 
| 212 | 
  | 
  | 
        } | 
| 213 | 
  | 
  | 
      } | 
| 214 | 
  | 
  | 
 | 
| 215 | 
  | 
  | 
      // If required, generate V. | 
| 216 | 
  | 
  | 
 | 
| 217 | 
  | 
  | 
      if (wantv) { | 
| 218 | 
  | 
  | 
        for (k = n-1; k >= 0; k--) { | 
| 219 | 
  | 
  | 
          if ((k < nrt) & (e(k) != 0.0)) { | 
| 220 | 
  | 
  | 
            for (j = k+1; j < nu; j++) { | 
| 221 | 
  | 
  | 
              Real t(0.0); | 
| 222 | 
  | 
  | 
              for (i = k+1; i < n; i++) { | 
| 223 | 
  | 
  | 
                t += V(i,k)*V(i,j); | 
| 224 | 
  | 
  | 
              } | 
| 225 | 
  | 
  | 
              t = -t/V(k+1,k); | 
| 226 | 
  | 
  | 
              for (i = k+1; i < n; i++) { | 
| 227 | 
  | 
  | 
                V(i,j) += t*V(i,k); | 
| 228 | 
  | 
  | 
              } | 
| 229 | 
  | 
  | 
            } | 
| 230 | 
  | 
  | 
          } | 
| 231 | 
  | 
  | 
          for (i = 0; i < n; i++) { | 
| 232 | 
  | 
  | 
            V(i,k) = 0.0; | 
| 233 | 
  | 
  | 
          } | 
| 234 | 
  | 
  | 
          V(k,k) = 1.0; | 
| 235 | 
  | 
  | 
        } | 
| 236 | 
  | 
  | 
      } | 
| 237 | 
  | 
  | 
 | 
| 238 | 
  | 
  | 
      // Main iteration loop for the singular values. | 
| 239 | 
  | 
  | 
 | 
| 240 | 
  | 
  | 
      int pp = p-1; | 
| 241 | 
  | 
  | 
      int iter = 0; | 
| 242 | 
  | 
  | 
      Real eps(pow(2.0,-52.0)); | 
| 243 | 
  | 
  | 
      while (p > 0) { | 
| 244 | 
  | 
  | 
        int k=0; | 
| 245 | 
  | 
  | 
        int kase=0; | 
| 246 | 
  | 
  | 
 | 
| 247 | 
  | 
  | 
        // Here is where a test for too many iterations would go. | 
| 248 | 
  | 
  | 
 | 
| 249 | 
  | 
  | 
        // This section of the program inspects for | 
| 250 | 
  | 
  | 
        // negligible elements in the s and e arrays.  On | 
| 251 | 
  | 
  | 
        // completion the variables kase and k are set as follows. | 
| 252 | 
  | 
  | 
 | 
| 253 | 
  | 
  | 
        // kase = 1     if s(p) and e(k-1) are negligible and k<p | 
| 254 | 
  | 
  | 
        // kase = 2     if s(k) is negligible and k<p | 
| 255 | 
  | 
  | 
        // kase = 3     if e(k-1) is negligible, k<p, and | 
| 256 | 
  | 
  | 
        //              s(k), ..., s(p) are not negligible (qr step). | 
| 257 | 
  | 
  | 
        // kase = 4     if e(p-1) is negligible (convergence). | 
| 258 | 
  | 
  | 
 | 
| 259 | 
  | 
  | 
        for (k = p-2; k >= -1; k--) { | 
| 260 | 
  | 
  | 
          if (k == -1) { | 
| 261 | 
  | 
  | 
            break; | 
| 262 | 
  | 
  | 
          } | 
| 263 | 
  | 
  | 
          if (abs(e(k)) <= eps*(abs(s(k)) + abs(s(k+1)))) { | 
| 264 | 
  | 
  | 
            e(k) = 0.0; | 
| 265 | 
  | 
  | 
            break; | 
| 266 | 
  | 
  | 
          } | 
| 267 | 
  | 
  | 
        } | 
| 268 | 
  | 
  | 
        if (k == p-2) { | 
| 269 | 
  | 
  | 
          kase = 4; | 
| 270 | 
  | 
  | 
        } else { | 
| 271 | 
  | 
  | 
          int ks; | 
| 272 | 
  | 
  | 
          for (ks = p-1; ks >= k; ks--) { | 
| 273 | 
  | 
  | 
            if (ks == k) { | 
| 274 | 
  | 
  | 
              break; | 
| 275 | 
  | 
  | 
            } | 
| 276 | 
  | 
  | 
            Real t( (ks != p ? abs(e(ks)) : 0.) +  | 
| 277 | 
  | 
  | 
                    (ks != k+1 ? abs(e(ks-1)) : 0.)); | 
| 278 | 
  | 
  | 
            if (abs(s(ks)) <= eps*t)  { | 
| 279 | 
  | 
  | 
              s(ks) = 0.0; | 
| 280 | 
  | 
  | 
              break; | 
| 281 | 
  | 
  | 
            } | 
| 282 | 
  | 
  | 
          } | 
| 283 | 
  | 
  | 
          if (ks == k) { | 
| 284 | 
  | 
  | 
            kase = 3; | 
| 285 | 
  | 
  | 
          } else if (ks == p-1) { | 
| 286 | 
  | 
  | 
            kase = 1; | 
| 287 | 
  | 
  | 
          } else { | 
| 288 | 
  | 
  | 
            kase = 2; | 
| 289 | 
  | 
  | 
            k = ks; | 
| 290 | 
  | 
  | 
          } | 
| 291 | 
  | 
  | 
        } | 
| 292 | 
  | 
  | 
        k++; | 
| 293 | 
  | 
  | 
 | 
| 294 | 
  | 
  | 
        // Perform the task indicated by kase. | 
| 295 | 
  | 
  | 
 | 
| 296 | 
  | 
  | 
        switch (kase) { | 
| 297 | 
  | 
  | 
 | 
| 298 | 
  | 
  | 
          // Deflate negligible s(p). | 
| 299 | 
  | 
  | 
 | 
| 300 | 
  | 
  | 
        case 1: { | 
| 301 | 
  | 
  | 
          Real f(e(p-2)); | 
| 302 | 
  | 
  | 
          e(p-2) = 0.0; | 
| 303 | 
  | 
  | 
          for (j = p-2; j >= k; j--) { | 
| 304 | 
  | 
  | 
            Real t( hypot(s(j),f)); | 
| 305 | 
  | 
  | 
            Real cs(s(j)/t); | 
| 306 | 
  | 
  | 
            Real sn(f/t); | 
| 307 | 
  | 
  | 
            s(j) = t; | 
| 308 | 
  | 
  | 
            if (j != k) { | 
| 309 | 
  | 
  | 
              f = -sn*e(j-1); | 
| 310 | 
  | 
  | 
              e(j-1) = cs*e(j-1); | 
| 311 | 
  | 
  | 
            } | 
| 312 | 
  | 
  | 
            if (wantv) { | 
| 313 | 
  | 
  | 
              for (i = 0; i < n; i++) { | 
| 314 | 
  | 
  | 
                t = cs*V(i,j) + sn*V(i,p-1); | 
| 315 | 
  | 
  | 
                V(i,p-1) = -sn*V(i,j) + cs*V(i,p-1); | 
| 316 | 
  | 
  | 
                V(i,j) = t; | 
| 317 | 
  | 
  | 
              } | 
| 318 | 
  | 
  | 
            } | 
| 319 | 
  | 
  | 
          } | 
| 320 | 
  | 
  | 
        } | 
| 321 | 
  | 
  | 
          break; | 
| 322 | 
  | 
  | 
 | 
| 323 | 
  | 
  | 
          // Split at negligible s(k). | 
| 324 | 
  | 
  | 
 | 
| 325 | 
  | 
  | 
        case 2: { | 
| 326 | 
  | 
  | 
          Real f(e(k-1)); | 
| 327 | 
  | 
  | 
          e(k-1) = 0.0; | 
| 328 | 
  | 
  | 
          for (j = k; j < p; j++) { | 
| 329 | 
  | 
  | 
            Real t(hypot(s(j),f)); | 
| 330 | 
  | 
  | 
            Real cs( s(j)/t); | 
| 331 | 
  | 
  | 
            Real sn(f/t); | 
| 332 | 
  | 
  | 
            s(j) = t; | 
| 333 | 
  | 
  | 
            f = -sn*e(j); | 
| 334 | 
  | 
  | 
            e(j) = cs*e(j); | 
| 335 | 
  | 
  | 
            if (wantu) { | 
| 336 | 
  | 
  | 
              for (i = 0; i < m; i++) { | 
| 337 | 
  | 
  | 
                t = cs*U(i,j) + sn*U(i,k-1); | 
| 338 | 
  | 
  | 
                U(i,k-1) = -sn*U(i,j) + cs*U(i,k-1); | 
| 339 | 
  | 
  | 
                U(i,j) = t; | 
| 340 | 
  | 
  | 
              } | 
| 341 | 
  | 
  | 
            } | 
| 342 | 
  | 
  | 
          } | 
| 343 | 
  | 
  | 
        } | 
| 344 | 
  | 
  | 
          break; | 
| 345 | 
  | 
  | 
 | 
| 346 | 
  | 
  | 
          // Perform one qr step. | 
| 347 | 
  | 
  | 
 | 
| 348 | 
  | 
  | 
        case 3: { | 
| 349 | 
  | 
  | 
 | 
| 350 | 
  | 
  | 
          // Calculate the shift. | 
| 351 | 
  | 
  | 
    | 
| 352 | 
  | 
  | 
          Real scale = max(max(max(max( | 
| 353 | 
  | 
  | 
                                       abs(s(p-1)),abs(s(p-2))),abs(e(p-2))),  | 
| 354 | 
  | 
  | 
                               abs(s(k))),abs(e(k))); | 
| 355 | 
  | 
  | 
          Real sp = s(p-1)/scale; | 
| 356 | 
  | 
  | 
          Real spm1 = s(p-2)/scale; | 
| 357 | 
  | 
  | 
          Real epm1 = e(p-2)/scale; | 
| 358 | 
  | 
  | 
          Real sk = s(k)/scale; | 
| 359 | 
  | 
  | 
          Real ek = e(k)/scale; | 
| 360 | 
  | 
  | 
          Real b = ((spm1 + sp)*(spm1 - sp) + epm1*epm1)/2.0; | 
| 361 | 
  | 
  | 
          Real c = (sp*epm1)*(sp*epm1); | 
| 362 | 
  | 
  | 
          Real shift = 0.0; | 
| 363 | 
  | 
  | 
          if ((b != 0.0) || (c != 0.0)) { | 
| 364 | 
  | 
  | 
            shift = sqrt(b*b + c); | 
| 365 | 
  | 
  | 
            if (b < 0.0) { | 
| 366 | 
  | 
  | 
              shift = -shift; | 
| 367 | 
  | 
  | 
            } | 
| 368 | 
  | 
  | 
            shift = c/(b + shift); | 
| 369 | 
  | 
  | 
          } | 
| 370 | 
  | 
  | 
          Real f = (sk + sp)*(sk - sp) + shift; | 
| 371 | 
  | 
  | 
          Real g = sk*ek; | 
| 372 | 
  | 
  | 
    | 
| 373 | 
  | 
  | 
          // Chase zeros. | 
| 374 | 
  | 
  | 
    | 
| 375 | 
  | 
  | 
          for (j = k; j < p-1; j++) { | 
| 376 | 
  | 
  | 
            Real t = hypot(f,g); | 
| 377 | 
  | 
  | 
            Real cs = f/t; | 
| 378 | 
  | 
  | 
            Real sn = g/t; | 
| 379 | 
  | 
  | 
            if (j != k) { | 
| 380 | 
  | 
  | 
              e(j-1) = t; | 
| 381 | 
  | 
  | 
            } | 
| 382 | 
  | 
  | 
            f = cs*s(j) + sn*e(j); | 
| 383 | 
  | 
  | 
            e(j) = cs*e(j) - sn*s(j); | 
| 384 | 
  | 
  | 
            g = sn*s(j+1); | 
| 385 | 
  | 
  | 
            s(j+1) = cs*s(j+1); | 
| 386 | 
  | 
  | 
            if (wantv) { | 
| 387 | 
  | 
  | 
              for (i = 0; i < n; i++) { | 
| 388 | 
  | 
  | 
                t = cs*V(i,j) + sn*V(i,j+1); | 
| 389 | 
  | 
  | 
                V(i,j+1) = -sn*V(i,j) + cs*V(i,j+1); | 
| 390 | 
  | 
  | 
                V(i,j) = t; | 
| 391 | 
  | 
  | 
              } | 
| 392 | 
  | 
  | 
            } | 
| 393 | 
  | 
  | 
            t = hypot(f,g); | 
| 394 | 
  | 
  | 
            cs = f/t; | 
| 395 | 
  | 
  | 
            sn = g/t; | 
| 396 | 
  | 
  | 
            s(j) = t; | 
| 397 | 
  | 
  | 
            f = cs*e(j) + sn*s(j+1); | 
| 398 | 
  | 
  | 
            s(j+1) = -sn*e(j) + cs*s(j+1); | 
| 399 | 
  | 
  | 
            g = sn*e(j+1); | 
| 400 | 
  | 
  | 
            e(j+1) = cs*e(j+1); | 
| 401 | 
  | 
  | 
            if (wantu && (j < m-1)) { | 
| 402 | 
  | 
  | 
              for (i = 0; i < m; i++) { | 
| 403 | 
  | 
  | 
                t = cs*U(i,j) + sn*U(i,j+1); | 
| 404 | 
  | 
  | 
                U(i,j+1) = -sn*U(i,j) + cs*U(i,j+1); | 
| 405 | 
  | 
  | 
                U(i,j) = t; | 
| 406 | 
  | 
  | 
              } | 
| 407 | 
  | 
  | 
            } | 
| 408 | 
  | 
  | 
          } | 
| 409 | 
  | 
  | 
          e(p-2) = f; | 
| 410 | 
  | 
  | 
          iter = iter + 1; | 
| 411 | 
  | 
  | 
        } | 
| 412 | 
  | 
  | 
          break; | 
| 413 | 
  | 
  | 
 | 
| 414 | 
  | 
  | 
          // Convergence. | 
| 415 | 
  | 
  | 
 | 
| 416 | 
  | 
  | 
        case 4: { | 
| 417 | 
  | 
  | 
 | 
| 418 | 
  | 
  | 
          // Make the singular values positive. | 
| 419 | 
  | 
  | 
    | 
| 420 | 
  | 
  | 
          if (s(k) <= 0.0) { | 
| 421 | 
  | 
  | 
            s(k) = (s(k) < 0.0 ? -s(k) : 0.0); | 
| 422 | 
  | 
  | 
            if (wantv) { | 
| 423 | 
  | 
  | 
              for (i = 0; i <= pp; i++) { | 
| 424 | 
  | 
  | 
                V(i,k) = -V(i,k); | 
| 425 | 
  | 
  | 
              } | 
| 426 | 
  | 
  | 
            } | 
| 427 | 
  | 
  | 
          } | 
| 428 | 
  | 
  | 
    | 
| 429 | 
  | 
  | 
          // Order the singular values. | 
| 430 | 
  | 
  | 
    | 
| 431 | 
  | 
  | 
          while (k < pp) { | 
| 432 | 
  | 
  | 
            if (s(k) >= s(k+1)) { | 
| 433 | 
  | 
  | 
              break; | 
| 434 | 
  | 
  | 
            } | 
| 435 | 
  | 
  | 
            Real t = s(k); | 
| 436 | 
  | 
  | 
            s(k) = s(k+1); | 
| 437 | 
  | 
  | 
            s(k+1) = t; | 
| 438 | 
  | 
  | 
            if (wantv && (k < n-1)) { | 
| 439 | 
  | 
  | 
              for (i = 0; i < n; i++) { | 
| 440 | 
  | 
  | 
                t = V(i,k+1); V(i,k+1) = V(i,k); V(i,k) = t; | 
| 441 | 
  | 
  | 
              } | 
| 442 | 
  | 
  | 
            } | 
| 443 | 
  | 
  | 
            if (wantu && (k < m-1)) { | 
| 444 | 
  | 
  | 
              for (i = 0; i < m; i++) { | 
| 445 | 
  | 
  | 
                t = U(i,k+1); U(i,k+1) = U(i,k); U(i,k) = t; | 
| 446 | 
  | 
  | 
              } | 
| 447 | 
  | 
  | 
            } | 
| 448 | 
  | 
  | 
            k++; | 
| 449 | 
  | 
  | 
          } | 
| 450 | 
  | 
  | 
          iter = 0; | 
| 451 | 
  | 
  | 
          p--; | 
| 452 | 
  | 
  | 
        } | 
| 453 | 
  | 
  | 
          break; | 
| 454 | 
  | 
  | 
        } | 
| 455 | 
  | 
  | 
      } | 
| 456 | 
  | 
  | 
    } | 
| 457 | 
  | 
  | 
 | 
| 458 | 
  | 
  | 
 | 
| 459 | 
  | 
  | 
    void getU (DynamicRectMatrix<Real> &A) { | 
| 460 | 
  | 
  | 
 | 
| 461 | 
  | 
  | 
      int minm = min(m+1,n); | 
| 462 | 
  | 
  | 
       | 
| 463 | 
  | 
  | 
      A = DynamicRectMatrix<Real>(m, minm); | 
| 464 | 
  | 
  | 
       | 
| 465 | 
  | 
  | 
      for (int i=0; i<m; i++) | 
| 466 | 
  | 
  | 
        for (int j=0; j<minm; j++) | 
| 467 | 
  | 
  | 
          A(i,j) = U(i,j);       | 
| 468 | 
  | 
  | 
    } | 
| 469 | 
  | 
  | 
 | 
| 470 | 
  | 
  | 
    /* Return the right singular vectors */ | 
| 471 | 
  | 
  | 
    void getV (DynamicRectMatrix<Real> &A) { | 
| 472 | 
  | 
  | 
      A = V; | 
| 473 | 
  | 
  | 
    } | 
| 474 | 
  | 
  | 
 | 
| 475 | 
  | 
  | 
    /** Return the one-dimensional array of singular values */ | 
| 476 | 
  | 
  | 
    void getSingularValues (DynamicVector<Real> &x) { | 
| 477 | 
  | 
  | 
      x = s; | 
| 478 | 
  | 
  | 
    } | 
| 479 | 
  | 
  | 
 | 
| 480 | 
  | 
  | 
    /** Return the diagonal matrix of singular values | 
| 481 | 
  | 
  | 
        @return     S | 
| 482 | 
  | 
  | 
    */ | 
| 483 | 
  | 
  | 
    void getS (DynamicRectMatrix<Real> &A) { | 
| 484 | 
  | 
  | 
      A = DynamicRectMatrix<Real>(n,n); | 
| 485 | 
  | 
  | 
      for (int i = 0; i < n; i++) { | 
| 486 | 
  | 
  | 
        for (int j = 0; j < n; j++) { | 
| 487 | 
  | 
  | 
          A(i,j) = 0.0; | 
| 488 | 
  | 
  | 
        } | 
| 489 | 
  | 
  | 
        A(i,i) = s(i); | 
| 490 | 
  | 
  | 
      } | 
| 491 | 
  | 
  | 
    } | 
| 492 | 
  | 
  | 
     | 
| 493 | 
  | 
  | 
    /** Two norm  (max(S)) */     | 
| 494 | 
  | 
  | 
    Real norm2 () { | 
| 495 | 
  | 
  | 
      return s(0); | 
| 496 | 
  | 
  | 
    } | 
| 497 | 
  | 
  | 
     | 
| 498 | 
  | 
  | 
    /** Two norm of condition number (max(S)/min(S)) */ | 
| 499 | 
  | 
  | 
    Real cond () { | 
| 500 | 
  | 
  | 
      return s(0)/s(min(m,n)-1); | 
| 501 | 
  | 
  | 
    } | 
| 502 | 
  | 
  | 
     | 
| 503 | 
  | 
  | 
    /** Effective numerical matrix rank | 
| 504 | 
  | 
  | 
        @return     Number of nonnegligible singular values. | 
| 505 | 
  | 
  | 
    */ | 
| 506 | 
  | 
  | 
    int rank () { | 
| 507 | 
  | 
  | 
      Real eps = pow(2.0,-52.0); | 
| 508 | 
  | 
  | 
      Real tol = max(m,n)*s(0)*eps; | 
| 509 | 
  | 
  | 
      int r = 0; | 
| 510 | 
  | 
  | 
      for (int i = 0; i < s.dim(); i++) { | 
| 511 | 
  | 
  | 
        if (s(i) > tol) { | 
| 512 | 
  | 
  | 
          r++; | 
| 513 | 
  | 
  | 
        } | 
| 514 | 
  | 
  | 
      } | 
| 515 | 
  | 
  | 
      return r; | 
| 516 | 
  | 
  | 
    } | 
| 517 | 
  | 
  | 
  };   | 
| 518 | 
  | 
  | 
} | 
| 519 | 
  | 
  | 
#endif | 
| 520 | 
  | 
  | 
// JAMA_SVD_H |