# | Line 6 | Line 6 | |
---|---|---|
6 | * redistribute this software in source and binary code form, provided | |
7 | * that the following conditions are met: | |
8 | * | |
9 | < | * 1. Acknowledgement of the program authors must be made in any |
10 | < | * publication of scientific results based in part on use of the |
11 | < | * program. An acceptable form of acknowledgement is citation of |
12 | < | * the article in which the program was described (Matthew |
13 | < | * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 | < | * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 | < | * Parallel Simulation Engine for Molecular Dynamics," |
16 | < | * J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 | < | * |
18 | < | * 2. Redistributions of source code must retain the above copyright |
9 | > | * 1. Redistributions of source code must retain the above copyright |
10 | * notice, this list of conditions and the following disclaimer. | |
11 | * | |
12 | < | * 3. Redistributions in binary form must reproduce the above copyright |
12 | > | * 2. Redistributions in binary form must reproduce the above copyright |
13 | * notice, this list of conditions and the following disclaimer in the | |
14 | * documentation and/or other materials provided with the | |
15 | * distribution. | |
# | Line 37 | Line 28 | |
28 | * arising out of the use of or inability to use software, even if the | |
29 | * University of Notre Dame has been advised of the possibility of | |
30 | * such damages. | |
31 | + | * |
32 | + | * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 | + | * research, please cite the appropriate papers when you publish your |
34 | + | * work. Good starting points are: |
35 | + | * |
36 | + | * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 | + | * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 | + | * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 | + | * [4] Vardeman & Gezelter, in progress (2009). |
40 | */ | |
41 | ||
42 | #include <stdio.h> | |
43 | + | #include <cmath> |
44 | #include <limits> | |
45 | #include "math/SphericalHarmonic.hpp" | |
46 | #include "utils/simError.h" | |
47 | ||
48 | < | using namespace oopse; |
48 | > | using namespace OpenMD; |
49 | ||
50 | SphericalHarmonic::SphericalHarmonic() { | |
51 | } | |
# | Line 52 | Line 53 | ComplexType SphericalHarmonic::getValueAt(RealType cos | |
53 | ComplexType SphericalHarmonic::getValueAt(RealType costheta, RealType phi) { | |
54 | ||
55 | RealType p; | |
55 | – | ComplexType phase; |
56 | – | ComplexType I(0.0, 1.0); |
56 | ||
57 | // associated Legendre polynomial | |
58 | < | p = Legendre(L, M, costheta); |
59 | < | |
60 | < | phase = exp(I * (ComplexType)M * (ComplexType)phi); |
61 | < | |
63 | < | return coefficient * phase * (ComplexType)p; |
58 | > | p = Ptilde(L, M, costheta); |
59 | > | ComplexType phase(0.0, (RealType)M * phi); |
60 | > | |
61 | > | return exp(phase) * (ComplexType)p; |
62 | ||
63 | } | |
66 | – | |
67 | – | //---------------------------------------------------------------------------// |
64 | // | |
65 | < | // RealType LegendreP (int l, int m, RealType x); |
65 | > | // Routine to calculate the associated Legendre polynomials for m>=0 |
66 | // | |
67 | < | // Computes the value of the associated Legendre polynomial P_lm (x) |
68 | < | // of order l at a given point. |
69 | < | // |
70 | < | // Input: |
71 | < | // l = degree of the polynomial >= 0 |
72 | < | // m = parameter satisfying 0 <= m <= l, |
73 | < | // x = point in which the computation is performed, range -1 <= x <= 1. |
74 | < | // Returns: |
79 | < | // value of the polynomial in x |
80 | < | // |
81 | < | //---------------------------------------------------------------------------// |
82 | < | RealType SphericalHarmonic::LegendreP (int l, int m, RealType x) { |
83 | < | // check parameters |
84 | < | if (m < 0 || m > l || fabs(x) > 1.0) { |
85 | < | printf("LegendreP got a bad argument: l = %d\tm = %d\tx = %lf\n", l, m, x); |
67 | > | RealType SphericalHarmonic::LegendreP(int l,int m, RealType x) { |
68 | > | |
69 | > | RealType temp1, temp2, temp3, temp4, result; |
70 | > | RealType temp5; |
71 | > | int i, ll; |
72 | > | |
73 | > | if (fabs(x) > 1.0) { |
74 | > | printf("LegendreP: x out of range: l = %d\tm = %d\tx = %lf\n", l, m, x); |
75 | return std::numeric_limits <RealType>:: quiet_NaN(); | |
76 | } | |
77 | ||
78 | < | RealType pmm = 1.0; |
79 | < | if (m > 0) { |
80 | < | RealType h = sqrt((1.0-x)*(1.0+x)), |
92 | < | f = 1.0; |
93 | < | for (int i = 1; i <= m; i++) { |
94 | < | pmm *= -f * h; |
95 | < | f += 2.0; |
96 | < | } |
78 | > | if (m>l) { |
79 | > | printf("LegendreP: m > l: l = %d\tm = %d\tx = %lf\n", l, m, x); |
80 | > | return std::numeric_limits <RealType>:: quiet_NaN(); |
81 | } | |
82 | < | if (l == m) |
83 | < | return pmm; |
84 | < | else { |
85 | < | RealType pmmp1 = x * (2 * m + 1) * pmm; |
86 | < | if (l == (m+1)) |
87 | < | return pmmp1; |
88 | < | else { |
89 | < | RealType pll = 0.0; |
90 | < | for (int ll = m+2; ll <= l; ll++) { |
91 | < | pll = (x * (2 * ll - 1) * pmmp1 - (ll + m - 1) * pmm) / (ll - m); |
92 | < | pmm = pmmp1; |
93 | < | pmmp1 = pll; |
82 | > | |
83 | > | if (m<0) { |
84 | > | printf("LegendreP: m < 0: l = %d\tm = %d\tx = %lf\n", l, m, x); |
85 | > | return std::numeric_limits <RealType>:: quiet_NaN(); |
86 | > | } else { |
87 | > | temp3=1.0; |
88 | > | |
89 | > | if (m>0) { |
90 | > | temp1=sqrt(1.0-pow(x,2)); |
91 | > | temp5 = 1.0; |
92 | > | for (i=1;i<=m;++i) { |
93 | > | temp3 *= -temp5*temp1; |
94 | > | temp5 += 2.0; |
95 | } | |
111 | – | return pll; |
96 | } | |
97 | + | if (l==m) { |
98 | + | result = temp3; |
99 | + | } else { |
100 | + | temp4=x*(2.*m+1.)*temp3; |
101 | + | if (l==(m+1)) { |
102 | + | result = temp4; |
103 | + | } else { |
104 | + | for (ll=(m+2);ll<=l;++ll) { |
105 | + | temp2 = (x*(2.*ll-1.)*temp4-(ll+m-1.)*temp3)/(RealType)(ll-m); |
106 | + | temp3=temp4; |
107 | + | temp4=temp2; |
108 | + | } |
109 | + | result = temp2; |
110 | + | } |
111 | + | } |
112 | } | |
113 | + | return result; |
114 | } | |
115 | ||
116 | + | |
117 | // | |
118 | // Routine to calculate the associated Legendre polynomials for all m... | |
119 | // | |
# | Line 124 | Line 125 | RealType SphericalHarmonic::Legendre(int l, int m, Rea | |
125 | } else if (m >= 0) { | |
126 | result = LegendreP(l,m,x); | |
127 | } else { | |
128 | + | //result = mpow(-m)*LegendreP(l,-m,x); |
129 | result = mpow(-m)*Fact(l+m)/Fact(l-m)*LegendreP(l, -m, x); | |
130 | } | |
131 | result *=mpow(m); | |
132 | return result; | |
133 | } | |
134 | // | |
135 | + | // Routine to calculate the normalized associated Legendre polynomials... |
136 | + | // |
137 | + | RealType SphericalHarmonic::Ptilde(int l,int m, RealType x){ |
138 | + | |
139 | + | RealType result; |
140 | + | if (m>l || m<-l) { |
141 | + | result = 0.; |
142 | + | } else { |
143 | + | RealType y=(RealType)(2.*l+1.)*Fact(l-m)/Fact(l+m); |
144 | + | result = mpow(m) * sqrt(y) * Legendre(l,m,x) / sqrt(4.0*M_PI); |
145 | + | } |
146 | + | return result; |
147 | + | } |
148 | + | // |
149 | // mpow returns (-1)**m | |
150 | // | |
151 | RealType SphericalHarmonic::mpow(int m) { |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |