# | Line 29 | Line 29 | |
---|---|---|
29 | * @date 10/11/2004 | |
30 | * @version 1.0 | |
31 | */ | |
32 | < | #ifndef MATH_SQUAREMATRIX_HPP |
32 | > | #ifndef MATH_SQUAREMATRIX_HPP |
33 | #define MATH_SQUAREMATRIX_HPP | |
34 | ||
35 | #include "math/RectMatrix.hpp" | |
# | Line 78 | Line 78 | namespace oopse { | |
78 | return m; | |
79 | } | |
80 | ||
81 | < | /** Retunrs the inversion of this matrix. */ |
81 | > | /** |
82 | > | * Retunrs the inversion of this matrix. |
83 | > | * @todo need implementation |
84 | > | */ |
85 | SquareMatrix<Real, Dim> inverse() { | |
86 | SquareMatrix<Real, Dim> result; | |
87 | ||
88 | return result; | |
89 | < | } |
89 | > | } |
90 | ||
91 | < | |
92 | < | |
93 | < | /** Returns the determinant of this matrix. */ |
94 | < | double determinant() const { |
95 | < | double det; |
91 | > | /** |
92 | > | * Returns the determinant of this matrix. |
93 | > | * @todo need implementation |
94 | > | */ |
95 | > | Real determinant() const { |
96 | > | Real det; |
97 | return det; | |
98 | } | |
99 | ||
100 | /** Returns the trace of this matrix. */ | |
101 | < | double trace() const { |
102 | < | double tmp = 0; |
101 | > | Real trace() const { |
102 | > | Real tmp = 0; |
103 | ||
104 | for (unsigned int i = 0; i < Dim ; i++) | |
105 | tmp += data_[i][i]; | |
# | Line 113 | Line 117 | namespace oopse { | |
117 | return true; | |
118 | } | |
119 | ||
120 | < | /** Tests if this matrix is orthogona. */ |
120 | > | /** Tests if this matrix is orthogonal. */ |
121 | bool isOrthogonal() { | |
122 | SquareMatrix<Real, Dim> tmp; | |
123 | ||
124 | tmp = *this * transpose(); | |
125 | ||
126 | < | return tmp.isUnitMatrix(); |
126 | > | return tmp.isDiagonal(); |
127 | } | |
128 | ||
129 | /** Tests if this matrix is diagonal. */ | |
# | Line 144 | Line 148 | namespace oopse { | |
148 | return true; | |
149 | } | |
150 | ||
151 | + | /** @todo need implementation */ |
152 | + | void diagonalize() { |
153 | + | //jacobi(m, eigenValues, ortMat); |
154 | + | } |
155 | + | |
156 | + | /** |
157 | + | * Jacobi iteration routines for computing eigenvalues/eigenvectors of |
158 | + | * real symmetric matrix |
159 | + | * |
160 | + | * @return true if success, otherwise return false |
161 | + | * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is |
162 | + | * overwritten |
163 | + | * @param w will contain the eigenvalues of the matrix On return of this function |
164 | + | * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are |
165 | + | * normalized and mutually orthogonal. |
166 | + | */ |
167 | + | |
168 | + | static int jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& d, |
169 | + | SquareMatrix<Real, Dim>& v); |
170 | };//end SquareMatrix | |
171 | ||
172 | + | |
173 | + | /*========================================================================= |
174 | + | |
175 | + | Program: Visualization Toolkit |
176 | + | Module: $RCSfile: SquareMatrix.hpp,v $ |
177 | + | |
178 | + | Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen |
179 | + | All rights reserved. |
180 | + | See Copyright.txt or http://www.kitware.com/Copyright.htm for details. |
181 | + | |
182 | + | This software is distributed WITHOUT ANY WARRANTY; without even |
183 | + | the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR |
184 | + | PURPOSE. See the above copyright notice for more information. |
185 | + | |
186 | + | =========================================================================*/ |
187 | + | |
188 | + | #define VTK_ROTATE(a,i,j,k,l) g=a(i, j);h=a(k, l);a(i, j)=g-s*(h+g*tau);\ |
189 | + | a(k, l)=h+s*(g-h*tau) |
190 | + | |
191 | + | #define VTK_MAX_ROTATIONS 20 |
192 | + | |
193 | + | // Jacobi iteration for the solution of eigenvectors/eigenvalues of a nxn |
194 | + | // real symmetric matrix. Square nxn matrix a; size of matrix in n; |
195 | + | // output eigenvalues in w; and output eigenvectors in v. Resulting |
196 | + | // eigenvalues/vectors are sorted in decreasing order; eigenvectors are |
197 | + | // normalized. |
198 | + | template<typename Real, int Dim> |
199 | + | int SquareMatrix<Real, Dim>::jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& w, |
200 | + | SquareMatrix<Real, Dim>& v) { |
201 | + | const int n = Dim; |
202 | + | int i, j, k, iq, ip, numPos; |
203 | + | Real tresh, theta, tau, t, sm, s, h, g, c, tmp; |
204 | + | Real bspace[4], zspace[4]; |
205 | + | Real *b = bspace; |
206 | + | Real *z = zspace; |
207 | + | |
208 | + | // only allocate memory if the matrix is large |
209 | + | if (n > 4) |
210 | + | { |
211 | + | b = new Real[n]; |
212 | + | z = new Real[n]; |
213 | + | } |
214 | + | |
215 | + | // initialize |
216 | + | for (ip=0; ip<n; ip++) |
217 | + | { |
218 | + | for (iq=0; iq<n; iq++) |
219 | + | { |
220 | + | v(ip, iq) = 0.0; |
221 | + | } |
222 | + | v(ip, ip) = 1.0; |
223 | + | } |
224 | + | for (ip=0; ip<n; ip++) |
225 | + | { |
226 | + | b[ip] = w[ip] = a(ip, ip); |
227 | + | z[ip] = 0.0; |
228 | + | } |
229 | + | |
230 | + | // begin rotation sequence |
231 | + | for (i=0; i<VTK_MAX_ROTATIONS; i++) |
232 | + | { |
233 | + | sm = 0.0; |
234 | + | for (ip=0; ip<n-1; ip++) |
235 | + | { |
236 | + | for (iq=ip+1; iq<n; iq++) |
237 | + | { |
238 | + | sm += fabs(a(ip, iq)); |
239 | + | } |
240 | + | } |
241 | + | if (sm == 0.0) |
242 | + | { |
243 | + | break; |
244 | + | } |
245 | + | |
246 | + | if (i < 3) // first 3 sweeps |
247 | + | { |
248 | + | tresh = 0.2*sm/(n*n); |
249 | + | } |
250 | + | else |
251 | + | { |
252 | + | tresh = 0.0; |
253 | + | } |
254 | + | |
255 | + | for (ip=0; ip<n-1; ip++) |
256 | + | { |
257 | + | for (iq=ip+1; iq<n; iq++) |
258 | + | { |
259 | + | g = 100.0*fabs(a(ip, iq)); |
260 | + | |
261 | + | // after 4 sweeps |
262 | + | if (i > 3 && (fabs(w[ip])+g) == fabs(w[ip]) |
263 | + | && (fabs(w[iq])+g) == fabs(w[iq])) |
264 | + | { |
265 | + | a(ip, iq) = 0.0; |
266 | + | } |
267 | + | else if (fabs(a(ip, iq)) > tresh) |
268 | + | { |
269 | + | h = w[iq] - w[ip]; |
270 | + | if ( (fabs(h)+g) == fabs(h)) |
271 | + | { |
272 | + | t = (a(ip, iq)) / h; |
273 | + | } |
274 | + | else |
275 | + | { |
276 | + | theta = 0.5*h / (a(ip, iq)); |
277 | + | t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta)); |
278 | + | if (theta < 0.0) |
279 | + | { |
280 | + | t = -t; |
281 | + | } |
282 | + | } |
283 | + | c = 1.0 / sqrt(1+t*t); |
284 | + | s = t*c; |
285 | + | tau = s/(1.0+c); |
286 | + | h = t*a(ip, iq); |
287 | + | z[ip] -= h; |
288 | + | z[iq] += h; |
289 | + | w[ip] -= h; |
290 | + | w[iq] += h; |
291 | + | a(ip, iq)=0.0; |
292 | + | |
293 | + | // ip already shifted left by 1 unit |
294 | + | for (j = 0;j <= ip-1;j++) |
295 | + | { |
296 | + | VTK_ROTATE(a,j,ip,j,iq); |
297 | + | } |
298 | + | // ip and iq already shifted left by 1 unit |
299 | + | for (j = ip+1;j <= iq-1;j++) |
300 | + | { |
301 | + | VTK_ROTATE(a,ip,j,j,iq); |
302 | + | } |
303 | + | // iq already shifted left by 1 unit |
304 | + | for (j=iq+1; j<n; j++) |
305 | + | { |
306 | + | VTK_ROTATE(a,ip,j,iq,j); |
307 | + | } |
308 | + | for (j=0; j<n; j++) |
309 | + | { |
310 | + | VTK_ROTATE(v,j,ip,j,iq); |
311 | + | } |
312 | + | } |
313 | + | } |
314 | + | } |
315 | + | |
316 | + | for (ip=0; ip<n; ip++) |
317 | + | { |
318 | + | b[ip] += z[ip]; |
319 | + | w[ip] = b[ip]; |
320 | + | z[ip] = 0.0; |
321 | + | } |
322 | + | } |
323 | + | |
324 | + | //// this is NEVER called |
325 | + | if ( i >= VTK_MAX_ROTATIONS ) |
326 | + | { |
327 | + | std::cout << "vtkMath::Jacobi: Error extracting eigenfunctions" << std::endl; |
328 | + | return 0; |
329 | + | } |
330 | + | |
331 | + | // sort eigenfunctions these changes do not affect accuracy |
332 | + | for (j=0; j<n-1; j++) // boundary incorrect |
333 | + | { |
334 | + | k = j; |
335 | + | tmp = w[k]; |
336 | + | for (i=j+1; i<n; i++) // boundary incorrect, shifted already |
337 | + | { |
338 | + | if (w[i] >= tmp) // why exchage if same? |
339 | + | { |
340 | + | k = i; |
341 | + | tmp = w[k]; |
342 | + | } |
343 | + | } |
344 | + | if (k != j) |
345 | + | { |
346 | + | w[k] = w[j]; |
347 | + | w[j] = tmp; |
348 | + | for (i=0; i<n; i++) |
349 | + | { |
350 | + | tmp = v(i, j); |
351 | + | v(i, j) = v(i, k); |
352 | + | v(i, k) = tmp; |
353 | + | } |
354 | + | } |
355 | + | } |
356 | + | // insure eigenvector consistency (i.e., Jacobi can compute vectors that |
357 | + | // are negative of one another (.707,.707,0) and (-.707,-.707,0). This can |
358 | + | // reek havoc in hyperstreamline/other stuff. We will select the most |
359 | + | // positive eigenvector. |
360 | + | int ceil_half_n = (n >> 1) + (n & 1); |
361 | + | for (j=0; j<n; j++) |
362 | + | { |
363 | + | for (numPos=0, i=0; i<n; i++) |
364 | + | { |
365 | + | if ( v(i, j) >= 0.0 ) |
366 | + | { |
367 | + | numPos++; |
368 | + | } |
369 | + | } |
370 | + | // if ( numPos < ceil(double(n)/double(2.0)) ) |
371 | + | if ( numPos < ceil_half_n) |
372 | + | { |
373 | + | for(i=0; i<n; i++) |
374 | + | { |
375 | + | v(i, j) *= -1.0; |
376 | + | } |
377 | + | } |
378 | + | } |
379 | + | |
380 | + | if (n > 4) |
381 | + | { |
382 | + | delete [] b; |
383 | + | delete [] z; |
384 | + | } |
385 | + | return 1; |
386 | + | } |
387 | + | |
388 | + | |
389 | } | |
390 | #endif //MATH_SQUAREMATRIX_HPP | |
391 | + |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |