# | Line 29 | Line 29 | |
---|---|---|
29 | * @date 10/11/2004 | |
30 | * @version 1.0 | |
31 | */ | |
32 | < | #ifndef MATH_SQUAREMATRIX_HPP |
32 | > | #ifndef MATH_SQUAREMATRIX_HPP |
33 | #define MATH_SQUAREMATRIX_HPP | |
34 | ||
35 | < | #include "Vector3d.hpp" |
35 | > | #include "math/RectMatrix.hpp" |
36 | ||
37 | namespace oopse { | |
38 | ||
# | Line 43 | Line 43 | namespace oopse { | |
43 | * @template Dim the dimension of the square matrix | |
44 | */ | |
45 | template<typename Real, int Dim> | |
46 | < | class SquareMatrix{ |
46 | > | class SquareMatrix : public RectMatrix<Real, Dim, Dim> { |
47 | public: | |
48 | + | typedef Real ElemType; |
49 | + | typedef Real* ElemPoinerType; |
50 | ||
51 | < | /** default constructor */ |
52 | < | SquareMatrix() { |
53 | < | for (unsigned int i = 0; i < Dim; i++) |
54 | < | for (unsigned int j = 0; j < Dim; j++) |
55 | < | data_[i][j] = 0.0; |
56 | < | } |
51 | > | /** default constructor */ |
52 | > | SquareMatrix() { |
53 | > | for (unsigned int i = 0; i < Dim; i++) |
54 | > | for (unsigned int j = 0; j < Dim; j++) |
55 | > | data_[i][j] = 0.0; |
56 | > | } |
57 | ||
58 | < | /** Constructs and initializes every element of this matrix to a scalar */ |
59 | < | SquareMatrix(double s) { |
60 | < | for (unsigned int i = 0; i < Dim; i++) |
61 | < | for (unsigned int j = 0; j < Dim; j++) |
62 | < | data_[i][j] = s; |
63 | < | } |
58 | > | /** copy constructor */ |
59 | > | SquareMatrix(const RectMatrix<Real, Dim, Dim>& m) : RectMatrix<Real, Dim, Dim>(m) { |
60 | > | } |
61 | > | |
62 | > | /** copy assignment operator */ |
63 | > | SquareMatrix<Real, Dim>& operator =(const RectMatrix<Real, Dim, Dim>& m) { |
64 | > | RectMatrix<Real, Dim, Dim>::operator=(m); |
65 | > | return *this; |
66 | > | } |
67 | > | |
68 | > | /** Retunrs an identity matrix*/ |
69 | ||
70 | < | /** copy constructor */ |
71 | < | SquareMatrix(const SquareMatrix<Real, Dim>& m) { |
72 | < | *this = m; |
73 | < | } |
74 | < | |
75 | < | /** destructor*/ |
76 | < | ~SquareMatrix() {} |
70 | > | static SquareMatrix<Real, Dim> identity() { |
71 | > | SquareMatrix<Real, Dim> m; |
72 | > | |
73 | > | for (unsigned int i = 0; i < Dim; i++) |
74 | > | for (unsigned int j = 0; j < Dim; j++) |
75 | > | if (i == j) |
76 | > | m(i, j) = 1.0; |
77 | > | else |
78 | > | m(i, j) = 0.0; |
79 | ||
80 | < | /** copy assignment operator */ |
81 | < | SquareMatrix<Real, Dim>& operator =(const SquareMatrix<Real, Dim>& m) { |
73 | < | for (unsigned int i = 0; i < Dim; i++) |
74 | < | for (unsigned int j = 0; j < Dim; j++) |
75 | < | data_[i][j] = m.data_[i][j]; |
76 | < | } |
77 | < | |
78 | < | /** |
79 | < | * Return the reference of a single element of this matrix. |
80 | < | * @return the reference of a single element of this matrix |
81 | < | * @param i row index |
82 | < | * @param j colum index |
83 | < | */ |
84 | < | double& operator()(unsigned int i, unsigned int j) { |
85 | < | return data_[i][j]; |
86 | < | } |
80 | > | return m; |
81 | > | } |
82 | ||
83 | < | /** |
84 | < | * Return the value of a single element of this matrix. |
85 | < | * @return the value of a single element of this matrix |
86 | < | * @param i row index |
87 | < | * @param j colum index |
88 | < | */ |
94 | < | double operator()(unsigned int i, unsigned int j) const { |
95 | < | return data_[i][j]; |
96 | < | } |
83 | > | /** |
84 | > | * Retunrs the inversion of this matrix. |
85 | > | * @todo need implementation |
86 | > | */ |
87 | > | SquareMatrix<Real, Dim> inverse() { |
88 | > | SquareMatrix<Real, Dim> result; |
89 | ||
90 | < | /** |
91 | < | * Returns a row of this matrix as a vector. |
100 | < | * @return a row of this matrix as a vector |
101 | < | * @param row the row index |
102 | < | */ |
103 | < | Vector<Real, Dim> getRow(unsigned int row) { |
104 | < | Vector<Real, Dim> v; |
90 | > | return result; |
91 | > | } |
92 | ||
93 | < | for (unsigned int i = 0; i < Dim; i++) |
94 | < | v[i] = data_[row][i]; |
93 | > | /** |
94 | > | * Returns the determinant of this matrix. |
95 | > | * @todo need implementation |
96 | > | */ |
97 | > | Real determinant() const { |
98 | > | Real det; |
99 | > | return det; |
100 | > | } |
101 | ||
102 | < | return v; |
103 | < | } |
102 | > | /** Returns the trace of this matrix. */ |
103 | > | Real trace() const { |
104 | > | Real tmp = 0; |
105 | > | |
106 | > | for (unsigned int i = 0; i < Dim ; i++) |
107 | > | tmp += data_[i][i]; |
108 | ||
109 | < | /** |
110 | < | * Sets a row of this matrix |
114 | < | * @param row the row index |
115 | < | * @param v the vector to be set |
116 | < | */ |
117 | < | void setRow(unsigned int row, const Vector<Real, Dim>& v) { |
118 | < | Vector<Real, Dim> v; |
109 | > | return tmp; |
110 | > | } |
111 | ||
112 | < | for (unsigned int i = 0; i < Dim; i++) |
113 | < | data_[row][i] = v[i]; |
114 | < | } |
112 | > | /** Tests if this matrix is symmetrix. */ |
113 | > | bool isSymmetric() const { |
114 | > | for (unsigned int i = 0; i < Dim - 1; i++) |
115 | > | for (unsigned int j = i; j < Dim; j++) |
116 | > | if (fabs(data_[i][j] - data_[j][i]) > oopse::epsilon) |
117 | > | return false; |
118 | > | |
119 | > | return true; |
120 | > | } |
121 | ||
122 | < | /** |
123 | < | * Returns a column of this matrix as a vector. |
124 | < | * @return a column of this matrix as a vector |
127 | < | * @param col the column index |
128 | < | */ |
129 | < | Vector<Real, Dim> getColum(unsigned int col) { |
130 | < | Vector<Real, Dim> v; |
122 | > | /** Tests if this matrix is orthogonal. */ |
123 | > | bool isOrthogonal() { |
124 | > | SquareMatrix<Real, Dim> tmp; |
125 | ||
126 | < | for (unsigned int i = 0; i < Dim; i++) |
133 | < | v[i] = data_[i][col]; |
126 | > | tmp = *this * transpose(); |
127 | ||
128 | < | return v; |
129 | < | } |
128 | > | return tmp.isDiagonal(); |
129 | > | } |
130 | ||
131 | < | /** |
132 | < | * Sets a column of this matrix |
133 | < | * @param col the column index |
134 | < | * @param v the vector to be set |
135 | < | */ |
136 | < | void setColum(unsigned int col, const Vector<Real, Dim>& v){ |
137 | < | Vector<Real, Dim> v; |
131 | > | /** Tests if this matrix is diagonal. */ |
132 | > | bool isDiagonal() const { |
133 | > | for (unsigned int i = 0; i < Dim ; i++) |
134 | > | for (unsigned int j = 0; j < Dim; j++) |
135 | > | if (i !=j && fabs(data_[i][j]) > oopse::epsilon) |
136 | > | return false; |
137 | > | |
138 | > | return true; |
139 | > | } |
140 | ||
141 | < | for (unsigned int i = 0; i < Dim; i++) |
142 | < | data_[i][col] = v[i]; |
143 | < | } |
141 | > | /** Tests if this matrix is the unit matrix. */ |
142 | > | bool isUnitMatrix() const { |
143 | > | if (!isDiagonal()) |
144 | > | return false; |
145 | > | |
146 | > | for (unsigned int i = 0; i < Dim ; i++) |
147 | > | if (fabs(data_[i][i] - 1) > oopse::epsilon) |
148 | > | return false; |
149 | > | |
150 | > | return true; |
151 | > | } |
152 | ||
153 | < | /** Negates the value of this matrix in place. */ |
154 | < | inline void negate() { |
155 | < | for (unsigned int i = 0; i < Dim; i++) |
156 | < | for (unsigned int j = 0; j < Dim; j++) |
157 | < | data_[i][j] = -data_[i][j]; |
153 | > | /** @todo need implementation */ |
154 | > | void diagonalize() { |
155 | > | //jacobi(m, eigenValues, ortMat); |
156 | > | } |
157 | > | |
158 | > | /** |
159 | > | * Jacobi iteration routines for computing eigenvalues/eigenvectors of |
160 | > | * real symmetric matrix |
161 | > | * |
162 | > | * @return true if success, otherwise return false |
163 | > | * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is |
164 | > | * overwritten |
165 | > | * @param w will contain the eigenvalues of the matrix On return of this function |
166 | > | * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are |
167 | > | * normalized and mutually orthogonal. |
168 | > | */ |
169 | > | |
170 | > | static int jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& d, |
171 | > | SquareMatrix<Real, Dim>& v); |
172 | > | };//end SquareMatrix |
173 | > | |
174 | > | |
175 | > | /*========================================================================= |
176 | > | |
177 | > | Program: Visualization Toolkit |
178 | > | Module: $RCSfile: SquareMatrix.hpp,v $ |
179 | > | |
180 | > | Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen |
181 | > | All rights reserved. |
182 | > | See Copyright.txt or http://www.kitware.com/Copyright.htm for details. |
183 | > | |
184 | > | This software is distributed WITHOUT ANY WARRANTY; without even |
185 | > | the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR |
186 | > | PURPOSE. See the above copyright notice for more information. |
187 | > | |
188 | > | =========================================================================*/ |
189 | > | |
190 | > | #define VTK_ROTATE(a,i,j,k,l) g=a(i, j);h=a(k, l);a(i, j)=g-s*(h+g*tau);\ |
191 | > | a(k, l)=h+s*(g-h*tau) |
192 | > | |
193 | > | #define VTK_MAX_ROTATIONS 20 |
194 | > | |
195 | > | // Jacobi iteration for the solution of eigenvectors/eigenvalues of a nxn |
196 | > | // real symmetric matrix. Square nxn matrix a; size of matrix in n; |
197 | > | // output eigenvalues in w; and output eigenvectors in v. Resulting |
198 | > | // eigenvalues/vectors are sorted in decreasing order; eigenvectors are |
199 | > | // normalized. |
200 | > | template<typename Real, int Dim> |
201 | > | int SquareMatrix<Real, Dim>::jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& w, |
202 | > | SquareMatrix<Real, Dim>& v) { |
203 | > | const int n = Dim; |
204 | > | int i, j, k, iq, ip, numPos; |
205 | > | Real tresh, theta, tau, t, sm, s, h, g, c, tmp; |
206 | > | Real bspace[4], zspace[4]; |
207 | > | Real *b = bspace; |
208 | > | Real *z = zspace; |
209 | > | |
210 | > | // only allocate memory if the matrix is large |
211 | > | if (n > 4) { |
212 | > | b = new Real[n]; |
213 | > | z = new Real[n]; |
214 | } | |
215 | < | |
216 | < | /** |
217 | < | * Sets the value of this matrix to the negation of matrix m. |
218 | < | * @param m the source matrix |
219 | < | */ |
161 | < | inline void negate(const SquareMatrix<Real, Dim>& m) { |
162 | < | for (unsigned int i = 0; i < Dim; i++) |
163 | < | for (unsigned int j = 0; j < Dim; j++) |
164 | < | data_[i][j] = -m.data_[i][j]; |
165 | < | } |
166 | < | |
167 | < | /** |
168 | < | * Sets the value of this matrix to the sum of itself and m (*this += m). |
169 | < | * @param m the other matrix |
170 | < | */ |
171 | < | inline void add( const SquareMatrix<Real, Dim>& m ) { |
172 | < | for (unsigned int i = 0; i < Dim; i++) |
173 | < | for (unsigned int j = 0; j < Dim; j++) |
174 | < | data_[i][j] += m.data_[i][j]; |
215 | > | |
216 | > | // initialize |
217 | > | for (ip=0; ip<n; ip++) { |
218 | > | for (iq=0; iq<n; iq++) { |
219 | > | v(ip, iq) = 0.0; |
220 | } | |
221 | < | |
177 | < | /** |
178 | < | * Sets the value of this matrix to the sum of m1 and m2 (*this = m1 + m2). |
179 | < | * @param m1 the first matrix |
180 | < | * @param m2 the second matrix |
181 | < | */ |
182 | < | inline void add( const SquareMatrix<Real, Dim>& m1, const SquareMatrix<Real, Dim>& m2 ) { |
183 | < | for (unsigned int i = 0; i < Dim; i++) |
184 | < | for (unsigned int j = 0; j < Dim; j++) |
185 | < | data_[i][j] = m1.data_[i][j] + m2.data_[i][j]; |
221 | > | v(ip, ip) = 1.0; |
222 | } | |
223 | < | |
224 | < | /** |
225 | < | * Sets the value of this matrix to the difference of itself and m (*this -= m). |
190 | < | * @param m the other matrix |
191 | < | */ |
192 | < | inline void sub( const SquareMatrix<Real, Dim>& m ) { |
193 | < | for (unsigned int i = 0; i < Dim; i++) |
194 | < | for (unsigned int j = 0; j < Dim; j++) |
195 | < | data_[i][j] -= m.data_[i][j]; |
223 | > | for (ip=0; ip<n; ip++) { |
224 | > | b[ip] = w[ip] = a(ip, ip); |
225 | > | z[ip] = 0.0; |
226 | } | |
197 | – | |
198 | – | /** |
199 | – | * Sets the value of this matrix to the difference of matrix m1 and m2 (*this = m1 - m2). |
200 | – | * @param m1 the first matrix |
201 | – | * @param m2 the second matrix |
202 | – | */ |
203 | – | inline void sub( const SquareMatrix<Real, Dim>& m1, const Vector &m2){ |
204 | – | for (unsigned int i = 0; i < Dim; i++) |
205 | – | for (unsigned int j = 0; j < Dim; j++) |
206 | – | data_[i][j] = m1.data_[i][j] - m2.data_[i][j]; |
207 | – | } |
208 | – | |
209 | – | /** |
210 | – | * Sets the value of this matrix to the scalar multiplication of itself (*this *= s). |
211 | – | * @param s the scalar value |
212 | – | */ |
213 | – | inline void mul( double s ) { |
214 | – | for (unsigned int i = 0; i < Dim; i++) |
215 | – | for (unsigned int j = 0; j < Dim; j++) |
216 | – | data_[i][j] *= s; |
217 | – | } |
227 | ||
228 | < | /** |
229 | < | * Sets the value of this matrix to the scalar multiplication of matrix m (*this = s * m). |
230 | < | * @param s the scalar value |
231 | < | * @param m the matrix |
232 | < | */ |
233 | < | inline void mul( double s, const SquareMatrix<Real, Dim>& m ) { |
225 | < | for (unsigned int i = 0; i < Dim; i++) |
226 | < | for (unsigned int j = 0; j < Dim; j++) |
227 | < | data_[i][j] = s * m.data_[i][j]; |
228 | < | } |
229 | < | |
230 | < | /** |
231 | < | * Sets the value of this matrix to the multiplication of this matrix and matrix m |
232 | < | * (*this = *this * m). |
233 | < | * @param m the matrix |
234 | < | */ |
235 | < | inline void mul(const SquareMatrix<Real, Dim>& m ) { |
236 | < | SquareMatrix<Real, Dim> tmp(*this); |
237 | < | |
238 | < | for (unsigned int i = 0; i < Dim; i++) |
239 | < | for (unsigned int j = 0; j < Dim; j++) { |
240 | < | |
241 | < | data_[i][j] = 0.0; |
242 | < | for (unsigned int k = 0; k < Dim; k++) |
243 | < | data_[i][j] = tmp.data_[i][k] * m.data_[k][j] |
228 | > | // begin rotation sequence |
229 | > | for (i=0; i<VTK_MAX_ROTATIONS; i++) { |
230 | > | sm = 0.0; |
231 | > | for (ip=0; ip<n-1; ip++) { |
232 | > | for (iq=ip+1; iq<n; iq++) { |
233 | > | sm += fabs(a(ip, iq)); |
234 | } | |
235 | < | } |
236 | < | |
237 | < | /** |
238 | < | * Sets the value of this matrix to the left multiplication of matrix m into itself |
249 | < | * (*this = m * *this). |
250 | < | * @param m the matrix |
251 | < | */ |
252 | < | inline void leftmul(const SquareMatrix<Real, Dim>& m ) { |
253 | < | SquareMatrix<Real, Dim> tmp(*this); |
254 | < | |
255 | < | for (unsigned int i = 0; i < Dim; i++) |
256 | < | for (unsigned int j = 0; j < Dim; j++) { |
257 | < | |
258 | < | data_[i][j] = 0.0; |
259 | < | for (unsigned int k = 0; k < Dim; k++) |
260 | < | data_[i][j] = m.data_[i][k] * tmp.data_[k][j] |
261 | < | } |
262 | < | } |
235 | > | } |
236 | > | if (sm == 0.0) { |
237 | > | break; |
238 | > | } |
239 | ||
240 | < | /** |
241 | < | * Sets the value of this matrix to the multiplication of matrix m1 and matrix m2 |
266 | < | * (*this = m1 * m2). |
267 | < | * @param m1 the first matrix |
268 | < | * @param m2 the second matrix |
269 | < | */ |
270 | < | inline void mul(const SquareMatrix<Real, Dim>& m1, |
271 | < | const SquareMatrix<Real, Dim>& m2 ) { |
272 | < | for (unsigned int i = 0; i < Dim; i++) |
273 | < | for (unsigned int j = 0; j < Dim; j++) { |
274 | < | |
275 | < | data_[i][j] = 0.0; |
276 | < | for (unsigned int k = 0; k < Dim; k++) |
277 | < | data_[i][j] = m1.data_[i][k] * m2.data_[k][j] |
278 | < | } |
279 | < | |
280 | < | } |
281 | < | |
282 | < | /** |
283 | < | * Sets the value of this matrix to the scalar division of itself (*this /= s ). |
284 | < | * @param s the scalar value |
285 | < | */ |
286 | < | inline void div( double s) { |
287 | < | for (unsigned int i = 0; i < Dim; i++) |
288 | < | for (unsigned int j = 0; j < Dim; j++) |
289 | < | data_[i][j] /= s; |
290 | < | } |
291 | < | |
292 | < | inline SquareMatrix<Real, Dim>& operator=(const SquareMatrix<Real, Dim>& v) { |
293 | < | if (this == &v) |
294 | < | return *this; |
295 | < | |
296 | < | for (unsigned int i = 0; i < Dim; i++) |
297 | < | data_[i] = v[i]; |
298 | < | |
299 | < | return *this; |
300 | < | } |
301 | < | |
302 | < | /** |
303 | < | * Sets the value of this matrix to the scalar division of matrix v1 (*this = v1 / s ). |
304 | < | * @paran v1 the source matrix |
305 | < | * @param s the scalar value |
306 | < | */ |
307 | < | inline void div( const SquareMatrix<Real, Dim>& v1, double s ) { |
308 | < | for (unsigned int i = 0; i < Dim; i++) |
309 | < | data_[i] = v1.data_[i] / s; |
310 | < | } |
311 | < | |
312 | < | /** |
313 | < | * Multiples a scalar into every element of this matrix. |
314 | < | * @param s the scalar value |
315 | < | */ |
316 | < | SquareMatrix<Real, Dim>& operator *=(const double s) { |
317 | < | this->mul(s); |
318 | < | return *this; |
319 | < | } |
320 | < | |
321 | < | /** |
322 | < | * Divides every element of this matrix by a scalar. |
323 | < | * @param s the scalar value |
324 | < | */ |
325 | < | SquareMatrix<Real, Dim>& operator /=(const double s) { |
326 | < | this->div(s); |
327 | < | return *this; |
328 | < | } |
329 | < | |
330 | < | /** |
331 | < | * Sets the value of this matrix to the sum of the other matrix and itself (*this += m). |
332 | < | * @param m the other matrix |
333 | < | */ |
334 | < | SquareMatrix<Real, Dim>& operator += (const SquareMatrix<Real, Dim>& m) { |
335 | < | add(m); |
336 | < | return *this; |
337 | < | } |
338 | < | |
339 | < | /** |
340 | < | * Sets the value of this matrix to the differerence of itself and the other matrix (*this -= m) |
341 | < | * @param m the other matrix |
342 | < | */ |
343 | < | SquareMatrix<Real, Dim>& operator -= (const SquareMatrix<Real, Dim>& m){ |
344 | < | sub(m); |
345 | < | return *this; |
346 | < | } |
347 | < | |
348 | < | /** set this matrix to an identity matrix*/ |
349 | < | |
350 | < | void identity() { |
351 | < | for (unsigned int i = 0; i < Dim; i++) |
352 | < | for (unsigned int i = 0; i < Dim; i++) |
353 | < | if (i == j) |
354 | < | data_[i][j] = 1.0; |
355 | < | else |
356 | < | data_[i][j] = 0.0; |
357 | < | } |
358 | < | |
359 | < | /** Sets the value of this matrix to the inversion of itself. */ |
360 | < | void inverse() { |
361 | < | inverse(*this); |
362 | < | } |
363 | < | |
364 | < | /** |
365 | < | * Sets the value of this matrix to the inversion of other matrix. |
366 | < | * @ param m the source matrix |
367 | < | */ |
368 | < | void inverse(const SquareMatrix<Real, Dim>& m); |
369 | < | |
370 | < | /** Sets the value of this matrix to the transpose of itself. */ |
371 | < | void transpose() { |
372 | < | for (unsigned int i = 0; i < Dim - 1; i++) |
373 | < | for (unsigned int j = i; j < Dim; j++) |
374 | < | std::swap(data_[i][j], data_[j][i]); |
375 | < | } |
376 | < | |
377 | < | /** |
378 | < | * Sets the value of this matrix to the transpose of other matrix. |
379 | < | * @ param m the source matrix |
380 | < | */ |
381 | < | void transpose(const SquareMatrix<Real, Dim>& m) { |
382 | < | |
383 | < | if (this == &m) { |
384 | < | transpose(); |
240 | > | if (i < 3) { // first 3 sweeps |
241 | > | tresh = 0.2*sm/(n*n); |
242 | } else { | |
243 | < | for (unsigned int i = 0; i < Dim; i++) |
387 | < | for (unsigned int j =0; j < Dim; j++) |
388 | < | data_[i][j] = m.data_[i][j]; |
243 | > | tresh = 0.0; |
244 | } | |
390 | – | } |
245 | ||
246 | < | /** Returns the determinant of this matrix. */ |
247 | < | double determinant() const { |
246 | > | for (ip=0; ip<n-1; ip++) { |
247 | > | for (iq=ip+1; iq<n; iq++) { |
248 | > | g = 100.0*fabs(a(ip, iq)); |
249 | ||
250 | < | } |
250 | > | // after 4 sweeps |
251 | > | if (i > 3 && (fabs(w[ip])+g) == fabs(w[ip]) |
252 | > | && (fabs(w[iq])+g) == fabs(w[iq])) { |
253 | > | a(ip, iq) = 0.0; |
254 | > | } else if (fabs(a(ip, iq)) > tresh) { |
255 | > | h = w[iq] - w[ip]; |
256 | > | if ( (fabs(h)+g) == fabs(h)) { |
257 | > | t = (a(ip, iq)) / h; |
258 | > | } else { |
259 | > | theta = 0.5*h / (a(ip, iq)); |
260 | > | t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta)); |
261 | > | if (theta < 0.0) { |
262 | > | t = -t; |
263 | > | } |
264 | > | } |
265 | > | c = 1.0 / sqrt(1+t*t); |
266 | > | s = t*c; |
267 | > | tau = s/(1.0+c); |
268 | > | h = t*a(ip, iq); |
269 | > | z[ip] -= h; |
270 | > | z[iq] += h; |
271 | > | w[ip] -= h; |
272 | > | w[iq] += h; |
273 | > | a(ip, iq)=0.0; |
274 | ||
275 | < | /** Returns the trace of this matrix. */ |
276 | < | double trace() const { |
277 | < | double tmp = 0; |
278 | < | |
279 | < | for (unsigned int i = 0; i < Dim ; i++) |
280 | < | tmp += data_[i][i]; |
275 | > | // ip already shifted left by 1 unit |
276 | > | for (j = 0;j <= ip-1;j++) { |
277 | > | VTK_ROTATE(a,j,ip,j,iq); |
278 | > | } |
279 | > | // ip and iq already shifted left by 1 unit |
280 | > | for (j = ip+1;j <= iq-1;j++) { |
281 | > | VTK_ROTATE(a,ip,j,j,iq); |
282 | > | } |
283 | > | // iq already shifted left by 1 unit |
284 | > | for (j=iq+1; j<n; j++) { |
285 | > | VTK_ROTATE(a,ip,j,iq,j); |
286 | > | } |
287 | > | for (j=0; j<n; j++) { |
288 | > | VTK_ROTATE(v,j,ip,j,iq); |
289 | > | } |
290 | > | } |
291 | > | } |
292 | > | } |
293 | ||
294 | < | return tmp; |
294 | > | for (ip=0; ip<n; ip++) { |
295 | > | b[ip] += z[ip]; |
296 | > | w[ip] = b[ip]; |
297 | > | z[ip] = 0.0; |
298 | > | } |
299 | } | |
300 | ||
301 | < | /** Tests if this matrix is symmetrix. */ |
302 | < | bool isSymmetric() const { |
303 | < | for (unsigned int i = 0; i < Dim - 1; i++) |
304 | < | for (unsigned int j = i; j < Dim; j++) |
411 | < | if (fabs(data_[i][j] - data_[j][i]) > epsilon) |
412 | < | return false; |
413 | < | |
414 | < | return true; |
301 | > | //// this is NEVER called |
302 | > | if ( i >= VTK_MAX_ROTATIONS ) { |
303 | > | std::cout << "vtkMath::Jacobi: Error extracting eigenfunctions" << std::endl; |
304 | > | return 0; |
305 | } | |
306 | ||
307 | < | /** Tests if this matrix is orthogona. */ |
308 | < | bool isOrthogonal() const { |
309 | < | SquareMatrix<Real, Dim> t(*this); |
310 | < | |
311 | < | t.transpose(); |
312 | < | |
313 | < | return isUnitMatrix(*this * t); |
307 | > | // sort eigenfunctions these changes do not affect accuracy |
308 | > | for (j=0; j<n-1; j++) { // boundary incorrect |
309 | > | k = j; |
310 | > | tmp = w[k]; |
311 | > | for (i=j+1; i<n; i++) { // boundary incorrect, shifted already |
312 | > | if (w[i] >= tmp) { // why exchage if same? |
313 | > | k = i; |
314 | > | tmp = w[k]; |
315 | > | } |
316 | > | } |
317 | > | if (k != j) { |
318 | > | w[k] = w[j]; |
319 | > | w[j] = tmp; |
320 | > | for (i=0; i<n; i++) { |
321 | > | tmp = v(i, j); |
322 | > | v(i, j) = v(i, k); |
323 | > | v(i, k) = tmp; |
324 | > | } |
325 | > | } |
326 | } | |
327 | < | |
328 | < | /** Tests if this matrix is diagonal. */ |
329 | < | bool isDiagonal() const { |
330 | < | for (unsigned int i = 0; i < Dim ; i++) |
331 | < | for (unsigned int j = 0; j < Dim; j++) |
332 | < | if (i !=j && fabs(data_[i][j]) > epsilon) |
333 | < | return false; |
334 | < | |
335 | < | return true; |
327 | > | // insure eigenvector consistency (i.e., Jacobi can compute vectors that |
328 | > | // are negative of one another (.707,.707,0) and (-.707,-.707,0). This can |
329 | > | // reek havoc in hyperstreamline/other stuff. We will select the most |
330 | > | // positive eigenvector. |
331 | > | int ceil_half_n = (n >> 1) + (n & 1); |
332 | > | for (j=0; j<n; j++) { |
333 | > | for (numPos=0, i=0; i<n; i++) { |
334 | > | if ( v(i, j) >= 0.0 ) { |
335 | > | numPos++; |
336 | > | } |
337 | > | } |
338 | > | // if ( numPos < ceil(double(n)/double(2.0)) ) |
339 | > | if ( numPos < ceil_half_n) { |
340 | > | for (i=0; i<n; i++) { |
341 | > | v(i, j) *= -1.0; |
342 | > | } |
343 | > | } |
344 | } | |
345 | ||
346 | < | /** Tests if this matrix is the unit matrix. */ |
347 | < | bool isUnitMatrix() const { |
348 | < | if (!isDiagonal()) |
439 | < | return false; |
440 | < | |
441 | < | for (unsigned int i = 0; i < Dim ; i++) |
442 | < | if (fabs(data_[i][i] - 1) > epsilon) |
443 | < | return false; |
444 | < | |
445 | < | return true; |
346 | > | if (n > 4) { |
347 | > | delete [] b; |
348 | > | delete [] z; |
349 | } | |
350 | < | |
448 | < | protected: |
449 | < | double data_[Dim][Dim]; /**< matrix element */ |
450 | < | |
451 | < | };//end SquareMatrix |
452 | < | |
453 | < | |
454 | < | /** Negate the value of every element of this matrix. */ |
455 | < | template<typename Real, int Dim> |
456 | < | inline SquareMatrix<Real, Dim> operator -(const SquareMatrix& m) { |
457 | < | SquareMatrix<Real, Dim> result(m); |
458 | < | |
459 | < | result.negate(); |
460 | < | |
461 | < | return result; |
350 | > | return 1; |
351 | } | |
463 | – | |
464 | – | /** |
465 | – | * Return the sum of two matrixes (m1 + m2). |
466 | – | * @return the sum of two matrixes |
467 | – | * @param m1 the first matrix |
468 | – | * @param m2 the second matrix |
469 | – | */ |
470 | – | template<typename Real, int Dim> |
471 | – | inline SquareMatrix<Real, Dim> operator + (const SquareMatrix<Real, Dim>& m1, |
472 | – | const SquareMatrix<Real, Dim>& m2) { |
473 | – | SquareMatrix<Real, Dim>result; |
352 | ||
475 | – | result.add(m1, m2); |
353 | ||
477 | – | return result; |
478 | – | } |
479 | – | |
480 | – | /** |
481 | – | * Return the difference of two matrixes (m1 - m2). |
482 | – | * @return the sum of two matrixes |
483 | – | * @param m1 the first matrix |
484 | – | * @param m2 the second matrix |
485 | – | */ |
486 | – | template<typename Real, int Dim> |
487 | – | inline SquareMatrix<Real, Dim> operator - (const SquareMatrix<Real, Dim>& m1, |
488 | – | const SquareMatrix<Real, Dim>& m2) { |
489 | – | SquareMatrix<Real, Dim>result; |
490 | – | |
491 | – | result.sub(m1, m2); |
492 | – | |
493 | – | return result; |
494 | – | } |
495 | – | |
496 | – | /** |
497 | – | * Return the multiplication of two matrixes (m1 * m2). |
498 | – | * @return the multiplication of two matrixes |
499 | – | * @param m1 the first matrix |
500 | – | * @param m2 the second matrix |
501 | – | */ |
502 | – | template<typename Real, int Dim> |
503 | – | inline SquareMatrix<Real, Dim> operator *(const SquareMatrix<Real, Dim>& m1, |
504 | – | const SquareMatrix<Real, Dim>& m2) { |
505 | – | SquareMatrix<Real, Dim> result; |
506 | – | |
507 | – | result.mul(m1, m2); |
508 | – | |
509 | – | return result; |
510 | – | } |
511 | – | |
512 | – | /** |
513 | – | * Return the multiplication of matrixes m and vector v (m * v). |
514 | – | * @return the multiplication of matrixes and vector |
515 | – | * @param m the matrix |
516 | – | * @param v the vector |
517 | – | */ |
518 | – | template<typename Real, int Dim> |
519 | – | inline Vector<Real, Dim> operator *(const SquareMatrix<Real, Dim>& m, |
520 | – | const SquareMatrix<Real, Dim>& v) { |
521 | – | Vector<Real, Dim> result; |
522 | – | |
523 | – | for (unsigned int i = 0; i < Dim ; i++) |
524 | – | for (unsigned int j = 0; j < Dim ; j++) |
525 | – | result[i] += m(i, j) * v[j]; |
526 | – | |
527 | – | return result; |
528 | – | } |
354 | } | |
355 | #endif //MATH_SQUAREMATRIX_HPP | |
356 | + |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |