# | Line 83 | Line 83 | namespace oopse { | |
---|---|---|
83 | SquareMatrix<Real, Dim> result; | |
84 | ||
85 | return result; | |
86 | < | } |
86 | > | } |
87 | ||
88 | – | |
89 | – | |
88 | /** Returns the determinant of this matrix. */ | |
89 | double determinant() const { | |
90 | double det; | |
# | Line 113 | Line 111 | namespace oopse { | |
111 | return true; | |
112 | } | |
113 | ||
114 | < | /** Tests if this matrix is orthogona. */ |
114 | > | /** Tests if this matrix is orthogonal. */ |
115 | bool isOrthogonal() { | |
116 | SquareMatrix<Real, Dim> tmp; | |
117 | ||
118 | tmp = *this * transpose(); | |
119 | ||
120 | < | return tmp.isUnitMatrix(); |
120 | > | return tmp.isDiagonal(); |
121 | } | |
122 | ||
123 | /** Tests if this matrix is diagonal. */ | |
# | Line 144 | Line 142 | namespace oopse { | |
142 | return true; | |
143 | } | |
144 | ||
145 | + | void diagonalize() { |
146 | + | jacobi(m, eigenValues, ortMat); |
147 | + | } |
148 | + | |
149 | + | /** |
150 | + | * Finds the eigenvalues and eigenvectors of a symmetric matrix |
151 | + | * @param eigenvals a reference to a vector3 where the |
152 | + | * eigenvalues will be stored. The eigenvalues are ordered so |
153 | + | * that eigenvals[0] <= eigenvals[1] <= eigenvals[2]. |
154 | + | * @return an orthogonal matrix whose ith column is an |
155 | + | * eigenvector for the eigenvalue eigenvals[i] |
156 | + | */ |
157 | + | SquareMatrix<Real, Dim> findEigenvectors(Vector<Real, Dim>& eigenValues) { |
158 | + | SquareMatrix<Real, Dim> ortMat; |
159 | + | |
160 | + | if ( !isSymmetric()){ |
161 | + | throw(); |
162 | + | } |
163 | + | |
164 | + | SquareMatrix<Real, Dim> m(*this); |
165 | + | jacobi(m, eigenValues, ortMat); |
166 | + | |
167 | + | return ortMat; |
168 | + | } |
169 | + | /** |
170 | + | * Jacobi iteration routines for computing eigenvalues/eigenvectors of |
171 | + | * real symmetric matrix |
172 | + | * |
173 | + | * @return true if success, otherwise return false |
174 | + | * @param a source matrix |
175 | + | * @param w output eigenvalues |
176 | + | * @param v output eigenvectors |
177 | + | */ |
178 | + | void jacobi(const SquareMatrix<Real, Dim>& a, |
179 | + | Vector<Real, Dim>& w, |
180 | + | SquareMatrix<Real, Dim>& v); |
181 | };//end SquareMatrix | |
182 | ||
183 | + | |
184 | + | #define ROT(a,i,j,k,l) g=a(i, j);h=a(k, l);a(i, j)=g-s*(h+g*tau);a(k, l)=h+s*(g-h*tau) |
185 | + | #define MAX_ROTATIONS 60 |
186 | + | |
187 | + | template<Real, int Dim> |
188 | + | void SquareMatrix<Real, int Dim>::jacobi(SquareMatrix<Real, Dim>& a, |
189 | + | Vector<Real, Dim>& w, |
190 | + | SquareMatrix<Real, Dim>& v) { |
191 | + | const int N = Dim; |
192 | + | int i, j, k, iq, ip; |
193 | + | double tresh, theta, tau, t, sm, s, h, g, c; |
194 | + | double tmp; |
195 | + | Vector<Real, Dim> b, z; |
196 | + | |
197 | + | // initialize |
198 | + | for (ip=0; ip<N; ip++) |
199 | + | { |
200 | + | for (iq=0; iq<N; iq++) v(ip, iq) = 0.0; |
201 | + | v(ip, ip) = 1.0; |
202 | + | } |
203 | + | for (ip=0; ip<N; ip++) |
204 | + | { |
205 | + | b(ip) = w(ip) = a(ip, ip); |
206 | + | z(ip) = 0.0; |
207 | + | } |
208 | + | |
209 | + | // begin rotation sequence |
210 | + | for (i=0; i<MAX_ROTATIONS; i++) |
211 | + | { |
212 | + | sm = 0.0; |
213 | + | for (ip=0; ip<2; ip++) |
214 | + | { |
215 | + | for (iq=ip+1; iq<N; iq++) sm += fabs(a(ip, iq)); |
216 | + | } |
217 | + | if (sm == 0.0) break; |
218 | + | |
219 | + | if (i < 4) tresh = 0.2*sm/(9); |
220 | + | else tresh = 0.0; |
221 | + | |
222 | + | for (ip=0; ip<2; ip++) |
223 | + | { |
224 | + | for (iq=ip+1; iq<N; iq++) |
225 | + | { |
226 | + | g = 100.0*fabs(a(ip, iq)); |
227 | + | if (i > 4 && (fabs(w(ip))+g) == fabs(w(ip)) |
228 | + | && (fabs(w(iq))+g) == fabs(w(iq))) |
229 | + | { |
230 | + | a(ip, iq) = 0.0; |
231 | + | } |
232 | + | else if (fabs(a(ip, iq)) > tresh) |
233 | + | { |
234 | + | h = w(iq) - w(ip); |
235 | + | if ( (fabs(h)+g) == fabs(h)) t = (a(ip, iq)) / h; |
236 | + | else |
237 | + | { |
238 | + | theta = 0.5*h / (a(ip, iq)); |
239 | + | t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta)); |
240 | + | if (theta < 0.0) t = -t; |
241 | + | } |
242 | + | c = 1.0 / sqrt(1+t*t); |
243 | + | s = t*c; |
244 | + | tau = s/(1.0+c); |
245 | + | h = t*a(ip, iq); |
246 | + | z(ip) -= h; |
247 | + | z(iq) += h; |
248 | + | w(ip) -= h; |
249 | + | w(iq) += h; |
250 | + | a(ip, iq)=0.0; |
251 | + | for (j=0;j<ip-1;j++) |
252 | + | { |
253 | + | ROT(a,j,ip,j,iq); |
254 | + | } |
255 | + | for (j=ip+1;j<iq-1;j++) |
256 | + | { |
257 | + | ROT(a,ip,j,j,iq); |
258 | + | } |
259 | + | for (j=iq+1; j<N; j++) |
260 | + | { |
261 | + | ROT(a,ip,j,iq,j); |
262 | + | } |
263 | + | for (j=0; j<N; j++) |
264 | + | { |
265 | + | ROT(v,j,ip,j,iq); |
266 | + | } |
267 | + | } |
268 | + | } |
269 | + | } |
270 | + | |
271 | + | for (ip=0; ip<N; ip++) |
272 | + | { |
273 | + | b(ip) += z(ip); |
274 | + | w(ip) = b(ip); |
275 | + | z(ip) = 0.0; |
276 | + | } |
277 | + | } |
278 | + | |
279 | + | if ( i >= MAX_ROTATIONS ) |
280 | + | return false; |
281 | + | |
282 | + | // sort eigenfunctions |
283 | + | for (j=0; j<N; j++) |
284 | + | { |
285 | + | k = j; |
286 | + | tmp = w(k); |
287 | + | for (i=j; i<N; i++) |
288 | + | { |
289 | + | if (w(i) >= tmp) |
290 | + | { |
291 | + | k = i; |
292 | + | tmp = w(k); |
293 | + | } |
294 | + | } |
295 | + | if (k != j) |
296 | + | { |
297 | + | w(k) = w(j); |
298 | + | w(j) = tmp; |
299 | + | for (i=0; i<N; i++) |
300 | + | { |
301 | + | tmp = v(i, j); |
302 | + | v(i, j) = v(i, k); |
303 | + | v(i, k) = tmp; |
304 | + | } |
305 | + | } |
306 | + | } |
307 | + | |
308 | + | // insure eigenvector consistency (i.e., Jacobi can compute |
309 | + | // vectors that are negative of one another (.707,.707,0) and |
310 | + | // (-.707,-.707,0). This can reek havoc in |
311 | + | // hyperstreamline/other stuff. We will select the most |
312 | + | // positive eigenvector. |
313 | + | int numPos; |
314 | + | for (j=0; j<N; j++) |
315 | + | { |
316 | + | for (numPos=0, i=0; i<N; i++) if ( v(i, j) >= 0.0 ) numPos++; |
317 | + | if ( numPos < 2 ) for(i=0; i<N; i++) v(i, j) *= -1.0; |
318 | + | } |
319 | + | |
320 | + | return true; |
321 | } | |
322 | + | |
323 | + | #undef ROT |
324 | + | #undef MAX_ROTATIONS |
325 | + | |
326 | + | } |
327 | + | |
328 | + | |
329 | + | } |
330 | #endif //MATH_SQUAREMATRIX_HPP |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |