--- trunk/src/math/SquareMatrix.hpp 2004/10/20 18:07:08 123 +++ trunk/src/math/SquareMatrix.hpp 2004/10/22 23:09:57 146 @@ -45,128 +45,130 @@ namespace oopse { template class SquareMatrix : public RectMatrix { public: + typedef Real ElemType; + typedef Real* ElemPoinerType; - /** default constructor */ - SquareMatrix() { - for (unsigned int i = 0; i < Dim; i++) - for (unsigned int j = 0; j < Dim; j++) - data_[i][j] = 0.0; - } + /** default constructor */ + SquareMatrix() { + for (unsigned int i = 0; i < Dim; i++) + for (unsigned int j = 0; j < Dim; j++) + data_[i][j] = 0.0; + } - /** copy constructor */ - SquareMatrix(const RectMatrix& m) : RectMatrix(m) { - } - - /** copy assignment operator */ - SquareMatrix& operator =(const RectMatrix& m) { - RectMatrix::operator=(m); - return *this; - } - - /** Retunrs an identity matrix*/ - - static SquareMatrix identity() { - SquareMatrix m; + /** copy constructor */ + SquareMatrix(const RectMatrix& m) : RectMatrix(m) { + } - for (unsigned int i = 0; i < Dim; i++) - for (unsigned int j = 0; j < Dim; j++) - if (i == j) - m(i, j) = 1.0; - else - m(i, j) = 0.0; + /** copy assignment operator */ + SquareMatrix& operator =(const RectMatrix& m) { + RectMatrix::operator=(m); + return *this; + } + + /** Retunrs an identity matrix*/ - return m; - } + static SquareMatrix identity() { + SquareMatrix m; + + for (unsigned int i = 0; i < Dim; i++) + for (unsigned int j = 0; j < Dim; j++) + if (i == j) + m(i, j) = 1.0; + else + m(i, j) = 0.0; - /** - * Retunrs the inversion of this matrix. - * @todo need implementation - */ - SquareMatrix inverse() { - SquareMatrix result; + return m; + } - return result; - } + /** + * Retunrs the inversion of this matrix. + * @todo need implementation + */ + SquareMatrix inverse() { + SquareMatrix result; - /** - * Returns the determinant of this matrix. - * @todo need implementation - */ - Real determinant() const { - Real det; - return det; - } + return result; + } - /** Returns the trace of this matrix. */ - Real trace() const { - Real tmp = 0; - - for (unsigned int i = 0; i < Dim ; i++) - tmp += data_[i][i]; + /** + * Returns the determinant of this matrix. + * @todo need implementation + */ + Real determinant() const { + Real det; + return det; + } - return tmp; - } + /** Returns the trace of this matrix. */ + Real trace() const { + Real tmp = 0; + + for (unsigned int i = 0; i < Dim ; i++) + tmp += data_[i][i]; - /** Tests if this matrix is symmetrix. */ - bool isSymmetric() const { - for (unsigned int i = 0; i < Dim - 1; i++) - for (unsigned int j = i; j < Dim; j++) - if (fabs(data_[i][j] - data_[j][i]) > oopse::epsilon) - return false; - - return true; - } + return tmp; + } - /** Tests if this matrix is orthogonal. */ - bool isOrthogonal() { - SquareMatrix tmp; + /** Tests if this matrix is symmetrix. */ + bool isSymmetric() const { + for (unsigned int i = 0; i < Dim - 1; i++) + for (unsigned int j = i; j < Dim; j++) + if (fabs(data_[i][j] - data_[j][i]) > oopse::epsilon) + return false; + + return true; + } - tmp = *this * transpose(); + /** Tests if this matrix is orthogonal. */ + bool isOrthogonal() { + SquareMatrix tmp; - return tmp.isDiagonal(); - } + tmp = *this * transpose(); - /** Tests if this matrix is diagonal. */ - bool isDiagonal() const { - for (unsigned int i = 0; i < Dim ; i++) - for (unsigned int j = 0; j < Dim; j++) - if (i !=j && fabs(data_[i][j]) > oopse::epsilon) - return false; - - return true; - } + return tmp.isDiagonal(); + } - /** Tests if this matrix is the unit matrix. */ - bool isUnitMatrix() const { - if (!isDiagonal()) - return false; - - for (unsigned int i = 0; i < Dim ; i++) - if (fabs(data_[i][i] - 1) > oopse::epsilon) + /** Tests if this matrix is diagonal. */ + bool isDiagonal() const { + for (unsigned int i = 0; i < Dim ; i++) + for (unsigned int j = 0; j < Dim; j++) + if (i !=j && fabs(data_[i][j]) > oopse::epsilon) + return false; + + return true; + } + + /** Tests if this matrix is the unit matrix. */ + bool isUnitMatrix() const { + if (!isDiagonal()) return false; - return true; - } + for (unsigned int i = 0; i < Dim ; i++) + if (fabs(data_[i][i] - 1) > oopse::epsilon) + return false; + + return true; + } - /** @todo need implementation */ - void diagonalize() { - //jacobi(m, eigenValues, ortMat); - } + /** @todo need implementation */ + void diagonalize() { + //jacobi(m, eigenValues, ortMat); + } - /** - * Jacobi iteration routines for computing eigenvalues/eigenvectors of - * real symmetric matrix - * - * @return true if success, otherwise return false - * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is - * overwritten - * @param w will contain the eigenvalues of the matrix On return of this function - * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are - * normalized and mutually orthogonal. - */ - - static int jacobi(SquareMatrix& a, Vector& d, - SquareMatrix& v); + /** + * Jacobi iteration routines for computing eigenvalues/eigenvectors of + * real symmetric matrix + * + * @return true if success, otherwise return false + * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is + * overwritten + * @param w will contain the eigenvalues of the matrix On return of this function + * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are + * normalized and mutually orthogonal. + */ + + static int jacobi(SquareMatrix& a, Vector& d, + SquareMatrix& v); };//end SquareMatrix @@ -197,192 +199,155 @@ namespace oopse { // normalized. template int SquareMatrix::jacobi(SquareMatrix& a, Vector& w, - SquareMatrix& v) { - const int n = Dim; - int i, j, k, iq, ip, numPos; - Real tresh, theta, tau, t, sm, s, h, g, c, tmp; - Real bspace[4], zspace[4]; - Real *b = bspace; - Real *z = zspace; + SquareMatrix& v) { + const int n = Dim; + int i, j, k, iq, ip, numPos; + Real tresh, theta, tau, t, sm, s, h, g, c, tmp; + Real bspace[4], zspace[4]; + Real *b = bspace; + Real *z = zspace; - // only allocate memory if the matrix is large - if (n > 4) - { - b = new Real[n]; - z = new Real[n]; + // only allocate memory if the matrix is large + if (n > 4) { + b = new Real[n]; + z = new Real[n]; } - // initialize - for (ip=0; ip 3 && (fabs(w[ip])+g) == fabs(w[ip]) - && (fabs(w[iq])+g) == fabs(w[iq])) - { - a(ip, iq) = 0.0; - } - else if (fabs(a(ip, iq)) > tresh) - { - h = w[iq] - w[ip]; - if ( (fabs(h)+g) == fabs(h)) - { - t = (a(ip, iq)) / h; - } - else - { - theta = 0.5*h / (a(ip, iq)); - t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta)); - if (theta < 0.0) - { - t = -t; - } - } - c = 1.0 / sqrt(1+t*t); - s = t*c; - tau = s/(1.0+c); - h = t*a(ip, iq); - z[ip] -= h; - z[iq] += h; - w[ip] -= h; - w[iq] += h; - a(ip, iq)=0.0; + // after 4 sweeps + if (i > 3 && (fabs(w[ip])+g) == fabs(w[ip]) + && (fabs(w[iq])+g) == fabs(w[iq])) { + a(ip, iq) = 0.0; + } else if (fabs(a(ip, iq)) > tresh) { + h = w[iq] - w[ip]; + if ( (fabs(h)+g) == fabs(h)) { + t = (a(ip, iq)) / h; + } else { + theta = 0.5*h / (a(ip, iq)); + t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta)); + if (theta < 0.0) { + t = -t; + } + } + c = 1.0 / sqrt(1+t*t); + s = t*c; + tau = s/(1.0+c); + h = t*a(ip, iq); + z[ip] -= h; + z[iq] += h; + w[ip] -= h; + w[iq] += h; + a(ip, iq)=0.0; - // ip already shifted left by 1 unit - for (j = 0;j <= ip-1;j++) - { - VTK_ROTATE(a,j,ip,j,iq); + // ip already shifted left by 1 unit + for (j = 0;j <= ip-1;j++) { + VTK_ROTATE(a,j,ip,j,iq); + } + // ip and iq already shifted left by 1 unit + for (j = ip+1;j <= iq-1;j++) { + VTK_ROTATE(a,ip,j,j,iq); + } + // iq already shifted left by 1 unit + for (j=iq+1; j= VTK_MAX_ROTATIONS ) - { - std::cout << "vtkMath::Jacobi: Error extracting eigenfunctions" << std::endl; - return 0; + //// this is NEVER called + if ( i >= VTK_MAX_ROTATIONS ) { + std::cout << "vtkMath::Jacobi: Error extracting eigenfunctions" << std::endl; + return 0; } - // sort eigenfunctions these changes do not affect accuracy - for (j=0; j= tmp) // why exchage if same? - { - k = i; + // sort eigenfunctions these changes do not affect accuracy + for (j=0; j= tmp) { // why exchage if same? + k = i; + tmp = w[k]; + } } - } - if (k != j) - { - w[k] = w[j]; - w[j] = tmp; - for (i=0; i> 1) + (n & 1); - for (j=0; j= 0.0 ) - { - numPos++; + // insure eigenvector consistency (i.e., Jacobi can compute vectors that + // are negative of one another (.707,.707,0) and (-.707,-.707,0). This can + // reek havoc in hyperstreamline/other stuff. We will select the most + // positive eigenvector. + int ceil_half_n = (n >> 1) + (n & 1); + for (j=0; j= 0.0 ) { + numPos++; + } } - } - // if ( numPos < ceil(double(n)/double(2.0)) ) - if ( numPos < ceil_half_n) - { - for(i=0; i 4) - { - delete [] b; - delete [] z; + if (n > 4) { + delete [] b; + delete [] z; } - return 1; + return 1; }