# | Line 29 | Line 29 | |
---|---|---|
29 | * @date 10/11/2004 | |
30 | * @version 1.0 | |
31 | */ | |
32 | < | #ifndef MATH_SQUAREMATRIX_HPP |
33 | < | #define MATH_SQUAREMATRIX_HPP |
32 | > | #ifndef MATH_SQUAREMATRIX3_HPP |
33 | > | #define MATH_SQUAREMATRIX3_HPP |
34 | ||
35 | #include "Quaternion.hpp" | |
36 | #include "SquareMatrix.hpp" | |
# | Line 72 | Line 72 | namespace oopse { | |
72 | if (this == &m) | |
73 | return *this; | |
74 | SquareMatrix<Real, 3>::operator=(m); | |
75 | + | return *this; |
76 | } | |
77 | ||
78 | /** | |
# | Line 126 | Line 127 | namespace oopse { | |
127 | * @param w the first element | |
128 | * @param x the second element | |
129 | * @param y the third element | |
130 | < | * @parma z the fourth element |
130 | > | * @param z the fourth element |
131 | */ | |
132 | void setupRotMat(Real w, Real x, Real y, Real z) { | |
133 | Quaternion<Real> q(w, x, y, z); | |
# | Line 237 | Line 238 | namespace oopse { | |
238 | return myEuler; | |
239 | } | |
240 | ||
241 | + | /** Returns the determinant of this matrix. */ |
242 | + | Real determinant() const { |
243 | + | Real x,y,z; |
244 | + | |
245 | + | x = data_[0][0] * (data_[1][1] * data_[2][2] - data_[1][2] * data_[2][1]); |
246 | + | y = data_[0][1] * (data_[1][2] * data_[2][0] - data_[1][0] * data_[2][2]); |
247 | + | z = data_[0][2] * (data_[1][0] * data_[2][1] - data_[1][1] * data_[2][0]); |
248 | + | |
249 | + | return(x + y + z); |
250 | + | } |
251 | + | |
252 | /** | |
253 | * Sets the value of this matrix to the inversion of itself. | |
254 | * @note since simple algorithm can be applied to inverse the 3 by 3 matrix, we hide the | |
255 | * implementation of inverse in SquareMatrix class | |
256 | */ | |
257 | < | void inverse(); |
257 | > | SquareMatrix3<Real> inverse() { |
258 | > | SquareMatrix3<Real> m; |
259 | > | double det = determinant(); |
260 | > | if (fabs(det) <= oopse::epsilon) { |
261 | > | //"The method was called on a matrix with |determinant| <= 1e-6.", |
262 | > | //"This is a runtime or a programming error in your application."); |
263 | > | } |
264 | ||
265 | < | void diagonalize(); |
265 | > | m(0, 0) = data_[1][1]*data_[2][2] - data_[1][2]*data_[2][1]; |
266 | > | m(1, 0) = data_[1][2]*data_[2][0] - data_[1][0]*data_[2][2]; |
267 | > | m(2, 0) = data_[1][0]*data_[2][1] - data_[1][1]*data_[2][0]; |
268 | > | m(0, 1) = data_[2][1]*data_[0][2] - data_[2][2]*data_[0][1]; |
269 | > | m(1, 1) = data_[2][2]*data_[0][0] - data_[2][0]*data_[0][2]; |
270 | > | m(2, 1) = data_[2][0]*data_[0][1] - data_[2][1]*data_[0][0]; |
271 | > | m(0, 2) = data_[0][1]*data_[1][2] - data_[0][2]*data_[1][1]; |
272 | > | m(1, 2) = data_[0][2]*data_[1][0] - data_[0][0]*data_[1][2]; |
273 | > | m(2, 2) = data_[0][0]*data_[1][1] - data_[0][1]*data_[1][0]; |
274 | > | |
275 | > | m /= det; |
276 | > | return m; |
277 | > | } |
278 | > | |
279 | > | void diagonalize(SquareMatrix3<Real>& a, Vector3<Real>& w, SquareMatrix3<Real>& v) { |
280 | > | int i,j,k,maxI; |
281 | > | Real tmp, maxVal; |
282 | > | Vector3<Real> v_maxI, v_k, v_j; |
283 | > | |
284 | > | // diagonalize using Jacobi |
285 | > | jacobi(a, w, v); |
286 | > | |
287 | > | // if all the eigenvalues are the same, return identity matrix |
288 | > | if (w[0] == w[1] && w[0] == w[2] ){ |
289 | > | v = SquareMatrix3<Real>::identity(); |
290 | > | return |
291 | > | } |
292 | > | |
293 | > | // transpose temporarily, it makes it easier to sort the eigenvectors |
294 | > | v = v.tanspose(); |
295 | > | |
296 | > | // if two eigenvalues are the same, re-orthogonalize to optimally line |
297 | > | // up the eigenvectors with the x, y, and z axes |
298 | > | for (i = 0; i < 3; i++) { |
299 | > | if (w((i+1)%3) == w((i+2)%3)) {// two eigenvalues are the same |
300 | > | // find maximum element of the independant eigenvector |
301 | > | maxVal = fabs(v(i, 0)); |
302 | > | maxI = 0; |
303 | > | for (j = 1; j < 3; j++) { |
304 | > | if (maxVal < (tmp = fabs(v(i, j)))){ |
305 | > | maxVal = tmp; |
306 | > | maxI = j; |
307 | > | } |
308 | > | } |
309 | > | |
310 | > | // swap the eigenvector into its proper position |
311 | > | if (maxI != i) { |
312 | > | tmp = w(maxI); |
313 | > | w(maxI) = w(i); |
314 | > | w(i) = tmp; |
315 | > | |
316 | > | v.swapRow(i, maxI); |
317 | > | } |
318 | > | // maximum element of eigenvector should be positive |
319 | > | if (v(maxI, maxI) < 0) { |
320 | > | v(maxI, 0) = -v(maxI, 0); |
321 | > | v(maxI, 1) = -v(maxI, 1); |
322 | > | v(maxI, 2) = -v(maxI, 2); |
323 | > | } |
324 | ||
325 | + | // re-orthogonalize the other two eigenvectors |
326 | + | j = (maxI+1)%3; |
327 | + | k = (maxI+2)%3; |
328 | + | |
329 | + | v(j, 0) = 0.0; |
330 | + | v(j, 1) = 0.0; |
331 | + | v(j, 2) = 0.0; |
332 | + | v(j, j) = 1.0; |
333 | + | |
334 | + | /** @todo */ |
335 | + | v_maxI = v.getRow(maxI); |
336 | + | v_j = v.getRow(j); |
337 | + | v_k = cross(v_maxI, v_j); |
338 | + | v_k.normailze(); |
339 | + | v_j = cross(v_k, v_maxI); |
340 | + | v.setRow(j, v_j); |
341 | + | v.setRow(k, v_k); |
342 | + | |
343 | + | |
344 | + | // transpose vectors back to columns |
345 | + | v = v.transpose(); |
346 | + | return; |
347 | + | } |
348 | + | } |
349 | + | |
350 | + | // the three eigenvalues are different, just sort the eigenvectors |
351 | + | // to align them with the x, y, and z axes |
352 | + | |
353 | + | // find the vector with the largest x element, make that vector |
354 | + | // the first vector |
355 | + | maxVal = fabs(v(0, 0)); |
356 | + | maxI = 0; |
357 | + | for (i = 1; i < 3; i++) { |
358 | + | if (maxVal < (tmp = fabs(v(i, 0)))) { |
359 | + | maxVal = tmp; |
360 | + | maxI = i; |
361 | + | } |
362 | + | } |
363 | + | |
364 | + | // swap eigenvalue and eigenvector |
365 | + | if (maxI != 0) { |
366 | + | tmp = w(maxI); |
367 | + | w(maxI) = w(0); |
368 | + | w(0) = tmp; |
369 | + | v.swapRow(maxI, 0); |
370 | + | } |
371 | + | // do the same for the y element |
372 | + | if (fabs(v(1, 1)) < fabs(v(2, 1))) { |
373 | + | tmp = w(2); |
374 | + | w(2) = w(1); |
375 | + | w(1) = tmp; |
376 | + | v.swapRow(2, 1); |
377 | + | } |
378 | + | |
379 | + | // ensure that the sign of the eigenvectors is correct |
380 | + | for (i = 0; i < 2; i++) { |
381 | + | if (v(i, i) < 0) { |
382 | + | v(i, 0) = -v(i, 0); |
383 | + | v(i, 1) = -v(i, 1); |
384 | + | v(i, 2) = -v(i, 2); |
385 | + | } |
386 | + | } |
387 | + | |
388 | + | // set sign of final eigenvector to ensure that determinant is positive |
389 | + | if (determinant(v) < 0) { |
390 | + | v(2, 0) = -v(2, 0); |
391 | + | v(2, 1) = -v(2, 1); |
392 | + | v(2, 2) = -v(2, 2); |
393 | + | } |
394 | + | |
395 | + | // transpose the eigenvectors back again |
396 | + | v = v.transpose(); |
397 | + | return ; |
398 | + | } |
399 | }; | |
400 | ||
401 | < | typedef template SquareMatrix3<double> Mat3x3d |
402 | < | typedef template SquareMatrix3<double> RotMat3x3d; |
401 | > | typedef SquareMatrix3<double> Mat3x3d; |
402 | > | typedef SquareMatrix3<double> RotMat3x3d; |
403 | ||
404 | } //namespace oopse | |
405 | #endif // MATH_SQUAREMATRIX_HPP |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |