# | Line 6 | Line 6 | |
---|---|---|
6 | * redistribute this software in source and binary code form, provided | |
7 | * that the following conditions are met: | |
8 | * | |
9 | < | * 1. Acknowledgement of the program authors must be made in any |
10 | < | * publication of scientific results based in part on use of the |
11 | < | * program. An acceptable form of acknowledgement is citation of |
12 | < | * the article in which the program was described (Matthew |
13 | < | * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 | < | * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 | < | * Parallel Simulation Engine for Molecular Dynamics," |
16 | < | * J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 | < | * |
18 | < | * 2. Redistributions of source code must retain the above copyright |
9 | > | * 1. Redistributions of source code must retain the above copyright |
10 | * notice, this list of conditions and the following disclaimer. | |
11 | * | |
12 | < | * 3. Redistributions in binary form must reproduce the above copyright |
12 | > | * 2. Redistributions in binary form must reproduce the above copyright |
13 | * notice, this list of conditions and the following disclaimer in the | |
14 | * documentation and/or other materials provided with the | |
15 | * distribution. | |
# | Line 37 | Line 28 | |
28 | * arising out of the use of or inability to use software, even if the | |
29 | * University of Notre Dame has been advised of the possibility of | |
30 | * such damages. | |
31 | + | * |
32 | + | * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 | + | * research, please cite the appropriate papers when you publish your |
34 | + | * work. Good starting points are: |
35 | + | * |
36 | + | * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 | + | * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 | + | * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 | + | * [4] Vardeman & Gezelter, in progress (2009). |
40 | */ | |
41 | ||
42 | /** | |
# | Line 47 | Line 47 | |
47 | */ | |
48 | #ifndef MATH_SQUAREMATRIX3_HPP | |
49 | #define MATH_SQUAREMATRIX3_HPP | |
50 | < | |
50 | > | #include <vector> |
51 | #include "Quaternion.hpp" | |
52 | #include "SquareMatrix.hpp" | |
53 | #include "Vector3.hpp" | |
54 | #include "utils/NumericConstant.hpp" | |
55 | < | namespace oopse { |
55 | > | namespace OpenMD { |
56 | ||
57 | template<typename Real> | |
58 | class SquareMatrix3 : public SquareMatrix<Real, 3> { | |
# | Line 166 | Line 166 | namespace oopse { | |
166 | void setupRotMat(Real w, Real x, Real y, Real z) { | |
167 | Quaternion<Real> q(w, x, y, z); | |
168 | *this = q.toRotationMatrix3(); | |
169 | + | } |
170 | + | |
171 | + | void setupSkewMat(Vector3<Real> v) { |
172 | + | setupSkewMat(v[0], v[1], v[2]); |
173 | + | } |
174 | + | |
175 | + | void setupSkewMat(Real v1, Real v2, Real v3) { |
176 | + | this->data_[0][0] = 0; |
177 | + | this->data_[0][1] = -v3; |
178 | + | this->data_[0][2] = v2; |
179 | + | this->data_[1][0] = v3; |
180 | + | this->data_[1][1] = 0; |
181 | + | this->data_[1][2] = -v1; |
182 | + | this->data_[2][0] = -v2; |
183 | + | this->data_[2][1] = v1; |
184 | + | this->data_[2][2] = 0; |
185 | + | |
186 | + | |
187 | } | |
188 | ||
189 | + | |
190 | + | |
191 | /** | |
192 | * Returns the quaternion from this rotation matrix | |
193 | * @return the quaternion from this rotation matrix | |
# | Line 188 | Line 208 | namespace oopse { | |
208 | q[3] = (this->data_[0][1] - this->data_[1][0]) * s; | |
209 | } else { | |
210 | ||
211 | < | ad1 = fabs( this->data_[0][0] ); |
212 | < | ad2 = fabs( this->data_[1][1] ); |
213 | < | ad3 = fabs( this->data_[2][2] ); |
211 | > | ad1 = this->data_[0][0]; |
212 | > | ad2 = this->data_[1][1]; |
213 | > | ad3 = this->data_[2][2]; |
214 | ||
215 | if( ad1 >= ad2 && ad1 >= ad3 ){ | |
216 | ||
# | Line 224 | Line 244 | namespace oopse { | |
244 | * @return the euler angles in a vector | |
245 | * @exception invalid rotation matrix | |
246 | * We use so-called "x-convention", which is the most common definition. | |
247 | < | * In this convention, the rotation given by Euler angles (phi, theta, psi), where the first |
248 | < | * rotation is by an angle phi about the z-axis, the second is by an angle |
249 | < | * theta (0 <= theta <= 180)about the x-axis, and thethird is by an angle psi about the |
250 | < | * z-axis (again). |
247 | > | * In this convention, the rotation given by Euler angles (phi, theta, |
248 | > | * psi), where the first rotation is by an angle phi about the z-axis, |
249 | > | * the second is by an angle theta (0 <= theta <= 180) about the x-axis, |
250 | > | * and the third is by an angle psi about the z-axis (again). |
251 | */ | |
252 | Vector3<Real> toEulerAngles() { | |
253 | Vector3<Real> myEuler; | |
# | Line 239 | Line 259 | namespace oopse { | |
259 | ||
260 | // set the tolerance for Euler angles and rotation elements | |
261 | ||
262 | < | theta = acos(std::min(1.0, std::max(-1.0,this->data_[2][2]))); |
262 | > | theta = acos(std::min((RealType)1.0, std::max((RealType)-1.0,this->data_[2][2]))); |
263 | ctheta = this->data_[2][2]; | |
264 | stheta = sqrt(1.0 - ctheta * ctheta); | |
265 | ||
266 | < | // when sin(theta) is close to 0, we need to consider singularity |
267 | < | // In this case, we can assign an arbitary value to phi (or psi), and then determine |
268 | < | // the psi (or phi) or vice-versa. We'll assume that phi always gets the rotation, and psi is 0 |
269 | < | // in cases of singularity. |
266 | > | // when sin(theta) is close to 0, we need to consider |
267 | > | // singularity In this case, we can assign an arbitary value to |
268 | > | // phi (or psi), and then determine the psi (or phi) or |
269 | > | // vice-versa. We'll assume that phi always gets the rotation, |
270 | > | // and psi is 0 in cases of singularity. |
271 | // we use atan2 instead of atan, since atan2 will give us -Pi to Pi. | |
272 | < | // Since 0 <= theta <= 180, sin(theta) will be always non-negative. Therefore, it never |
273 | < | // change the sign of both of the parameters passed to atan2. |
272 | > | // Since 0 <= theta <= 180, sin(theta) will be always |
273 | > | // non-negative. Therefore, it will never change the sign of both of |
274 | > | // the parameters passed to atan2. |
275 | ||
276 | < | if (fabs(stheta) <= oopse::epsilon){ |
276 | > | if (fabs(stheta) < 1e-6){ |
277 | psi = 0.0; | |
278 | phi = atan2(-this->data_[1][0], this->data_[0][0]); | |
279 | } | |
# | Line 263 | Line 285 | namespace oopse { | |
285 | ||
286 | //wrap phi and psi, make sure they are in the range from 0 to 2*Pi | |
287 | if (phi < 0) | |
288 | < | phi += M_PI; |
288 | > | phi += 2.0 * M_PI; |
289 | ||
290 | if (psi < 0) | |
291 | < | psi += M_PI; |
291 | > | psi += 2.0 * M_PI; |
292 | ||
293 | myEuler[0] = phi; | |
294 | myEuler[1] = theta; | |
# | Line 298 | Line 320 | namespace oopse { | |
320 | */ | |
321 | SquareMatrix3<Real> inverse() const { | |
322 | SquareMatrix3<Real> m; | |
323 | < | double det = determinant(); |
324 | < | if (fabs(det) <= oopse::epsilon) { |
323 | > | RealType det = determinant(); |
324 | > | if (fabs(det) <= OpenMD::epsilon) { |
325 | //"The method was called on a matrix with |determinant| <= 1e-6.", | |
326 | //"This is a runtime or a programming error in your application."); | |
327 | < | } |
327 | > | std::vector<int> zeroDiagElementIndex; |
328 | > | for (int i =0; i < 3; ++i) { |
329 | > | if (fabs(this->data_[i][i]) <= OpenMD::epsilon) { |
330 | > | zeroDiagElementIndex.push_back(i); |
331 | > | } |
332 | > | } |
333 | ||
334 | < | m(0, 0) = this->data_[1][1]*this->data_[2][2] - this->data_[1][2]*this->data_[2][1]; |
335 | < | m(1, 0) = this->data_[1][2]*this->data_[2][0] - this->data_[1][0]*this->data_[2][2]; |
336 | < | m(2, 0) = this->data_[1][0]*this->data_[2][1] - this->data_[1][1]*this->data_[2][0]; |
337 | < | m(0, 1) = this->data_[2][1]*this->data_[0][2] - this->data_[2][2]*this->data_[0][1]; |
311 | < | m(1, 1) = this->data_[2][2]*this->data_[0][0] - this->data_[2][0]*this->data_[0][2]; |
312 | < | m(2, 1) = this->data_[2][0]*this->data_[0][1] - this->data_[2][1]*this->data_[0][0]; |
313 | < | m(0, 2) = this->data_[0][1]*this->data_[1][2] - this->data_[0][2]*this->data_[1][1]; |
314 | < | m(1, 2) = this->data_[0][2]*this->data_[1][0] - this->data_[0][0]*this->data_[1][2]; |
315 | < | m(2, 2) = this->data_[0][0]*this->data_[1][1] - this->data_[0][1]*this->data_[1][0]; |
334 | > | if (zeroDiagElementIndex.size() == 2) { |
335 | > | int index = zeroDiagElementIndex[0]; |
336 | > | m(index, index) = 1.0 / this->data_[index][index]; |
337 | > | }else if (zeroDiagElementIndex.size() == 1) { |
338 | ||
339 | < | m /= det; |
339 | > | int a = (zeroDiagElementIndex[0] + 1) % 3; |
340 | > | int b = (zeroDiagElementIndex[0] + 2) %3; |
341 | > | RealType denom = this->data_[a][a] * this->data_[b][b] - this->data_[b][a]*this->data_[a][b]; |
342 | > | m(a, a) = this->data_[b][b] /denom; |
343 | > | m(b, a) = -this->data_[b][a]/denom; |
344 | > | |
345 | > | m(a,b) = -this->data_[a][b]/denom; |
346 | > | m(b, b) = this->data_[a][a]/denom; |
347 | > | |
348 | > | } |
349 | > | |
350 | > | /* |
351 | > | for(std::vector<int>::iterator iter = zeroDiagElementIndex.begin(); iter != zeroDiagElementIndex.end() ++iter) { |
352 | > | if (this->data_[*iter][0] > OpenMD::epsilon || this->data_[*iter][1] ||this->data_[*iter][2] || |
353 | > | this->data_[0][*iter] > OpenMD::epsilon || this->data_[1][*iter] ||this->data_[2][*iter] ) { |
354 | > | std::cout << "can not inverse matrix" << std::endl; |
355 | > | } |
356 | > | } |
357 | > | */ |
358 | > | } else { |
359 | > | |
360 | > | m(0, 0) = this->data_[1][1]*this->data_[2][2] - this->data_[1][2]*this->data_[2][1]; |
361 | > | m(1, 0) = this->data_[1][2]*this->data_[2][0] - this->data_[1][0]*this->data_[2][2]; |
362 | > | m(2, 0) = this->data_[1][0]*this->data_[2][1] - this->data_[1][1]*this->data_[2][0]; |
363 | > | m(0, 1) = this->data_[2][1]*this->data_[0][2] - this->data_[2][2]*this->data_[0][1]; |
364 | > | m(1, 1) = this->data_[2][2]*this->data_[0][0] - this->data_[2][0]*this->data_[0][2]; |
365 | > | m(2, 1) = this->data_[2][0]*this->data_[0][1] - this->data_[2][1]*this->data_[0][0]; |
366 | > | m(0, 2) = this->data_[0][1]*this->data_[1][2] - this->data_[0][2]*this->data_[1][1]; |
367 | > | m(1, 2) = this->data_[0][2]*this->data_[1][0] - this->data_[0][0]*this->data_[1][2]; |
368 | > | m(2, 2) = this->data_[0][0]*this->data_[1][1] - this->data_[0][1]*this->data_[1][0]; |
369 | > | |
370 | > | m /= det; |
371 | > | } |
372 | return m; | |
373 | } | |
374 | + | |
375 | + | SquareMatrix3<Real> transpose() const{ |
376 | + | SquareMatrix3<Real> result; |
377 | + | |
378 | + | for (unsigned int i = 0; i < 3; i++) |
379 | + | for (unsigned int j = 0; j < 3; j++) |
380 | + | result(j, i) = this->data_[i][j]; |
381 | + | |
382 | + | return result; |
383 | + | } |
384 | /** | |
385 | * Extract the eigenvalues and eigenvectors from a 3x3 matrix. | |
386 | * The eigenvectors (the columns of V) will be normalized. | |
# | Line 499 | Line 563 | namespace oopse { | |
563 | } | |
564 | ||
565 | ||
566 | < | typedef SquareMatrix3<double> Mat3x3d; |
567 | < | typedef SquareMatrix3<double> RotMat3x3d; |
566 | > | typedef SquareMatrix3<RealType> Mat3x3d; |
567 | > | typedef SquareMatrix3<RealType> RotMat3x3d; |
568 | ||
569 | < | } //namespace oopse |
569 | > | } //namespace OpenMD |
570 | #endif // MATH_SQUAREMATRIX_HPP | |
571 |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |