| 29 | 
  | 
 * @date 10/11/2004 | 
| 30 | 
  | 
 * @version 1.0 | 
| 31 | 
  | 
 */ | 
| 32 | 
< | 
#ifndef MATH_SQUAREMATRIX3_HPP | 
| 32 | 
> | 
 #ifndef MATH_SQUAREMATRIX3_HPP | 
| 33 | 
  | 
#define  MATH_SQUAREMATRIX3_HPP | 
| 34 | 
  | 
 | 
| 35 | 
  | 
#include "Quaternion.hpp" | 
| 41 | 
  | 
    template<typename Real> | 
| 42 | 
  | 
    class SquareMatrix3 : public SquareMatrix<Real, 3> { | 
| 43 | 
  | 
        public: | 
| 44 | 
+ | 
 | 
| 45 | 
+ | 
            typedef Real ElemType; | 
| 46 | 
+ | 
            typedef Real* ElemPoinerType; | 
| 47 | 
  | 
             | 
| 48 | 
  | 
            /** default constructor */ | 
| 49 | 
  | 
            SquareMatrix3() : SquareMatrix<Real, 3>() { | 
| 50 | 
  | 
            } | 
| 51 | 
  | 
 | 
| 52 | 
+ | 
            /** Constructs and initializes every element of this matrix to a scalar */  | 
| 53 | 
+ | 
            SquareMatrix3(Real s) : SquareMatrix<Real,3>(s){ | 
| 54 | 
+ | 
            } | 
| 55 | 
+ | 
 | 
| 56 | 
+ | 
            /** Constructs and initializes from an array */  | 
| 57 | 
+ | 
            SquareMatrix3(Real* array) : SquareMatrix<Real,3>(array){ | 
| 58 | 
+ | 
            } | 
| 59 | 
+ | 
 | 
| 60 | 
+ | 
 | 
| 61 | 
  | 
            /** copy  constructor */ | 
| 62 | 
  | 
            SquareMatrix3(const SquareMatrix<Real, 3>& m)  : SquareMatrix<Real, 3>(m) { | 
| 63 | 
  | 
            } | 
| 287 | 
  | 
                m /= det; | 
| 288 | 
  | 
                return m; | 
| 289 | 
  | 
            } | 
| 290 | 
< | 
 | 
| 291 | 
< | 
            void diagonalize(SquareMatrix3<Real>& a, Vector3<Real>& w, SquareMatrix3<Real>& v) { | 
| 292 | 
< | 
                int i,j,k,maxI; | 
| 293 | 
< | 
                Real tmp, maxVal; | 
| 294 | 
< | 
                Vector3<Real> v_maxI, v_k, v_j; | 
| 290 | 
> | 
            /** | 
| 291 | 
> | 
             * Extract the eigenvalues and eigenvectors from a 3x3 matrix. | 
| 292 | 
> | 
             * The eigenvectors (the columns of V) will be normalized.  | 
| 293 | 
> | 
             * The eigenvectors are aligned optimally with the x, y, and z | 
| 294 | 
> | 
             * axes respectively. | 
| 295 | 
> | 
             * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is | 
| 296 | 
> | 
             *     overwritten              | 
| 297 | 
> | 
             * @param w will contain the eigenvalues of the matrix On return of this function | 
| 298 | 
> | 
             * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are  | 
| 299 | 
> | 
             *    normalized and mutually orthogonal.               | 
| 300 | 
> | 
             * @warning a will be overwritten | 
| 301 | 
> | 
             */ | 
| 302 | 
> | 
            static void diagonalize(SquareMatrix3<Real>& a, Vector3<Real>& w, SquareMatrix3<Real>& v);  | 
| 303 | 
> | 
    }; | 
| 304 | 
> | 
/*========================================================================= | 
| 305 | 
  | 
 | 
| 306 | 
< | 
                // diagonalize using Jacobi | 
| 307 | 
< | 
                jacobi(a, w, v); | 
| 306 | 
> | 
  Program:   Visualization Toolkit | 
| 307 | 
> | 
  Module:    $RCSfile: SquareMatrix3.hpp,v $ | 
| 308 | 
  | 
 | 
| 309 | 
< | 
                // if all the eigenvalues are the same, return identity matrix | 
| 310 | 
< | 
                if (w[0] == w[1] && w[0] == w[2] ) { | 
| 311 | 
< | 
                      v = SquareMatrix3<Real>::identity(); | 
| 312 | 
< | 
                      return; | 
| 309 | 
> | 
  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen | 
| 310 | 
> | 
  All rights reserved. | 
| 311 | 
> | 
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details. | 
| 312 | 
> | 
 | 
| 313 | 
> | 
     This software is distributed WITHOUT ANY WARRANTY; without even | 
| 314 | 
> | 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR | 
| 315 | 
> | 
     PURPOSE.  See the above copyright notice for more information. | 
| 316 | 
> | 
 | 
| 317 | 
> | 
=========================================================================*/ | 
| 318 | 
> | 
    template<typename Real> | 
| 319 | 
> | 
    void SquareMatrix3<Real>::diagonalize(SquareMatrix3<Real>& a, Vector3<Real>& w,  | 
| 320 | 
> | 
                                                                           SquareMatrix3<Real>& v) { | 
| 321 | 
> | 
        int i,j,k,maxI; | 
| 322 | 
> | 
        Real tmp, maxVal; | 
| 323 | 
> | 
        Vector3<Real> v_maxI, v_k, v_j; | 
| 324 | 
> | 
 | 
| 325 | 
> | 
        // diagonalize using Jacobi | 
| 326 | 
> | 
        jacobi(a, w, v); | 
| 327 | 
> | 
        // if all the eigenvalues are the same, return identity matrix | 
| 328 | 
> | 
        if (w[0] == w[1] && w[0] == w[2] ) { | 
| 329 | 
> | 
              v = SquareMatrix3<Real>::identity(); | 
| 330 | 
> | 
              return; | 
| 331 | 
> | 
        } | 
| 332 | 
> | 
 | 
| 333 | 
> | 
        // transpose temporarily, it makes it easier to sort the eigenvectors | 
| 334 | 
> | 
        v = v.transpose();  | 
| 335 | 
> | 
         | 
| 336 | 
> | 
        // if two eigenvalues are the same, re-orthogonalize to optimally line | 
| 337 | 
> | 
        // up the eigenvectors with the x, y, and z axes | 
| 338 | 
> | 
        for (i = 0; i < 3; i++) { | 
| 339 | 
> | 
            if (w((i+1)%3) == w((i+2)%3)) {// two eigenvalues are the same | 
| 340 | 
> | 
            // find maximum element of the independant eigenvector | 
| 341 | 
> | 
            maxVal = fabs(v(i, 0)); | 
| 342 | 
> | 
            maxI = 0; | 
| 343 | 
> | 
            for (j = 1; j < 3; j++) { | 
| 344 | 
> | 
                if (maxVal < (tmp = fabs(v(i, j)))){ | 
| 345 | 
> | 
                    maxVal = tmp; | 
| 346 | 
> | 
                    maxI = j; | 
| 347 | 
  | 
                } | 
| 348 | 
+ | 
            } | 
| 349 | 
+ | 
             | 
| 350 | 
+ | 
            // swap the eigenvector into its proper position | 
| 351 | 
+ | 
            if (maxI != i) { | 
| 352 | 
+ | 
                tmp = w(maxI); | 
| 353 | 
+ | 
                w(maxI) = w(i); | 
| 354 | 
+ | 
                w(i) = tmp; | 
| 355 | 
  | 
 | 
| 356 | 
< | 
                // transpose temporarily, it makes it easier to sort the eigenvectors | 
| 357 | 
< | 
                v = v.transpose();  | 
| 358 | 
< | 
                 | 
| 359 | 
< | 
                // if two eigenvalues are the same, re-orthogonalize to optimally line | 
| 360 | 
< | 
                // up the eigenvectors with the x, y, and z axes | 
| 361 | 
< | 
                for (i = 0; i < 3; i++) { | 
| 362 | 
< | 
                    if (w((i+1)%3) == w((i+2)%3)) {// two eigenvalues are the same | 
| 363 | 
< | 
                    // find maximum element of the independant eigenvector | 
| 301 | 
< | 
                    maxVal = fabs(v(i, 0)); | 
| 302 | 
< | 
                    maxI = 0; | 
| 303 | 
< | 
                    for (j = 1; j < 3; j++) { | 
| 304 | 
< | 
                        if (maxVal < (tmp = fabs(v(i, j)))){ | 
| 305 | 
< | 
                            maxVal = tmp; | 
| 306 | 
< | 
                            maxI = j; | 
| 307 | 
< | 
                        } | 
| 308 | 
< | 
                    } | 
| 309 | 
< | 
                     | 
| 310 | 
< | 
                    // swap the eigenvector into its proper position | 
| 311 | 
< | 
                    if (maxI != i) { | 
| 312 | 
< | 
                        tmp = w(maxI); | 
| 313 | 
< | 
                        w(maxI) = w(i); | 
| 314 | 
< | 
                        w(i) = tmp; | 
| 315 | 
< | 
 | 
| 316 | 
< | 
                        v.swapRow(i, maxI); | 
| 317 | 
< | 
                    } | 
| 318 | 
< | 
                    // maximum element of eigenvector should be positive | 
| 319 | 
< | 
                    if (v(maxI, maxI) < 0) { | 
| 320 | 
< | 
                        v(maxI, 0) = -v(maxI, 0); | 
| 321 | 
< | 
                        v(maxI, 1) = -v(maxI, 1); | 
| 322 | 
< | 
                        v(maxI, 2) = -v(maxI, 2); | 
| 323 | 
< | 
                    } | 
| 324 | 
< | 
 | 
| 325 | 
< | 
                    // re-orthogonalize the other two eigenvectors | 
| 326 | 
< | 
                    j = (maxI+1)%3; | 
| 327 | 
< | 
                    k = (maxI+2)%3; | 
| 328 | 
< | 
 | 
| 329 | 
< | 
                    v(j, 0) = 0.0;  | 
| 330 | 
< | 
                    v(j, 1) = 0.0;  | 
| 331 | 
< | 
                    v(j, 2) = 0.0; | 
| 332 | 
< | 
                    v(j, j) = 1.0; | 
| 333 | 
< | 
 | 
| 334 | 
< | 
                    /** @todo */ | 
| 335 | 
< | 
                    v_maxI = v.getRow(maxI); | 
| 336 | 
< | 
                    v_j = v.getRow(j); | 
| 337 | 
< | 
                    v_k = cross(v_maxI, v_j); | 
| 338 | 
< | 
                    v_k.normalize(); | 
| 339 | 
< | 
                    v_j = cross(v_k, v_maxI); | 
| 340 | 
< | 
                    v.setRow(j, v_j); | 
| 341 | 
< | 
                    v.setRow(k, v_k); | 
| 356 | 
> | 
                v.swapRow(i, maxI); | 
| 357 | 
> | 
            } | 
| 358 | 
> | 
            // maximum element of eigenvector should be positive | 
| 359 | 
> | 
            if (v(maxI, maxI) < 0) { | 
| 360 | 
> | 
                v(maxI, 0) = -v(maxI, 0); | 
| 361 | 
> | 
                v(maxI, 1) = -v(maxI, 1); | 
| 362 | 
> | 
                v(maxI, 2) = -v(maxI, 2); | 
| 363 | 
> | 
            } | 
| 364 | 
  | 
 | 
| 365 | 
+ | 
            // re-orthogonalize the other two eigenvectors | 
| 366 | 
+ | 
            j = (maxI+1)%3; | 
| 367 | 
+ | 
            k = (maxI+2)%3; | 
| 368 | 
  | 
 | 
| 369 | 
< | 
                    // transpose vectors back to columns | 
| 370 | 
< | 
                    v = v.transpose(); | 
| 371 | 
< | 
                    return; | 
| 372 | 
< | 
                    } | 
| 348 | 
< | 
                } | 
| 369 | 
> | 
            v(j, 0) = 0.0;  | 
| 370 | 
> | 
            v(j, 1) = 0.0;  | 
| 371 | 
> | 
            v(j, 2) = 0.0; | 
| 372 | 
> | 
            v(j, j) = 1.0; | 
| 373 | 
  | 
 | 
| 374 | 
< | 
                // the three eigenvalues are different, just sort the eigenvectors | 
| 375 | 
< | 
                // to align them with the x, y, and z axes | 
| 374 | 
> | 
            /** @todo */ | 
| 375 | 
> | 
            v_maxI = v.getRow(maxI); | 
| 376 | 
> | 
            v_j = v.getRow(j); | 
| 377 | 
> | 
            v_k = cross(v_maxI, v_j); | 
| 378 | 
> | 
            v_k.normalize(); | 
| 379 | 
> | 
            v_j = cross(v_k, v_maxI); | 
| 380 | 
> | 
            v.setRow(j, v_j); | 
| 381 | 
> | 
            v.setRow(k, v_k); | 
| 382 | 
  | 
 | 
| 353 | 
– | 
                // find the vector with the largest x element, make that vector | 
| 354 | 
– | 
                // the first vector | 
| 355 | 
– | 
                maxVal = fabs(v(0, 0)); | 
| 356 | 
– | 
                maxI = 0; | 
| 357 | 
– | 
                for (i = 1; i < 3; i++) { | 
| 358 | 
– | 
                    if (maxVal < (tmp = fabs(v(i, 0)))) { | 
| 359 | 
– | 
                        maxVal = tmp; | 
| 360 | 
– | 
                        maxI = i; | 
| 361 | 
– | 
                    } | 
| 362 | 
– | 
                } | 
| 383 | 
  | 
 | 
| 384 | 
< | 
                // swap eigenvalue and eigenvector | 
| 385 | 
< | 
                if (maxI != 0) { | 
| 386 | 
< | 
                    tmp = w(maxI); | 
| 387 | 
< | 
                    w(maxI) = w(0); | 
| 388 | 
< | 
                    w(0) = tmp; | 
| 369 | 
< | 
                    v.swapRow(maxI, 0); | 
| 370 | 
< | 
                } | 
| 371 | 
< | 
                // do the same for the y element | 
| 372 | 
< | 
                if (fabs(v(1, 1)) < fabs(v(2, 1))) { | 
| 373 | 
< | 
                    tmp = w(2); | 
| 374 | 
< | 
                    w(2) = w(1); | 
| 375 | 
< | 
                    w(1) = tmp; | 
| 376 | 
< | 
                    v.swapRow(2, 1); | 
| 377 | 
< | 
                } | 
| 384 | 
> | 
            // transpose vectors back to columns | 
| 385 | 
> | 
            v = v.transpose(); | 
| 386 | 
> | 
            return; | 
| 387 | 
> | 
            } | 
| 388 | 
> | 
        } | 
| 389 | 
  | 
 | 
| 390 | 
< | 
                // ensure that the sign of the eigenvectors is correct | 
| 391 | 
< | 
                for (i = 0; i < 2; i++) { | 
| 381 | 
< | 
                    if (v(i, i) < 0) { | 
| 382 | 
< | 
                        v(i, 0) = -v(i, 0); | 
| 383 | 
< | 
                        v(i, 1) = -v(i, 1); | 
| 384 | 
< | 
                        v(i, 2) = -v(i, 2); | 
| 385 | 
< | 
                    } | 
| 386 | 
< | 
                } | 
| 390 | 
> | 
        // the three eigenvalues are different, just sort the eigenvectors | 
| 391 | 
> | 
        // to align them with the x, y, and z axes | 
| 392 | 
  | 
 | 
| 393 | 
< | 
                // set sign of final eigenvector to ensure that determinant is positive | 
| 394 | 
< | 
                if (v.determinant() < 0) { | 
| 395 | 
< | 
                    v(2, 0) = -v(2, 0); | 
| 396 | 
< | 
                    v(2, 1) = -v(2, 1); | 
| 397 | 
< | 
                    v(2, 2) = -v(2, 2); | 
| 398 | 
< | 
                } | 
| 393 | 
> | 
        // find the vector with the largest x element, make that vector | 
| 394 | 
> | 
        // the first vector | 
| 395 | 
> | 
        maxVal = fabs(v(0, 0)); | 
| 396 | 
> | 
        maxI = 0; | 
| 397 | 
> | 
        for (i = 1; i < 3; i++) { | 
| 398 | 
> | 
            if (maxVal < (tmp = fabs(v(i, 0)))) { | 
| 399 | 
> | 
                maxVal = tmp; | 
| 400 | 
> | 
                maxI = i; | 
| 401 | 
> | 
            } | 
| 402 | 
> | 
        } | 
| 403 | 
  | 
 | 
| 404 | 
< | 
                // transpose the eigenvectors back again | 
| 405 | 
< | 
                v = v.transpose(); | 
| 406 | 
< | 
                return ; | 
| 404 | 
> | 
        // swap eigenvalue and eigenvector | 
| 405 | 
> | 
        if (maxI != 0) { | 
| 406 | 
> | 
            tmp = w(maxI); | 
| 407 | 
> | 
            w(maxI) = w(0); | 
| 408 | 
> | 
            w(0) = tmp; | 
| 409 | 
> | 
            v.swapRow(maxI, 0); | 
| 410 | 
> | 
        } | 
| 411 | 
> | 
        // do the same for the y element | 
| 412 | 
> | 
        if (fabs(v(1, 1)) < fabs(v(2, 1))) { | 
| 413 | 
> | 
            tmp = w(2); | 
| 414 | 
> | 
            w(2) = w(1); | 
| 415 | 
> | 
            w(1) = tmp; | 
| 416 | 
> | 
            v.swapRow(2, 1); | 
| 417 | 
> | 
        } | 
| 418 | 
> | 
 | 
| 419 | 
> | 
        // ensure that the sign of the eigenvectors is correct | 
| 420 | 
> | 
        for (i = 0; i < 2; i++) { | 
| 421 | 
> | 
            if (v(i, i) < 0) { | 
| 422 | 
> | 
                v(i, 0) = -v(i, 0); | 
| 423 | 
> | 
                v(i, 1) = -v(i, 1); | 
| 424 | 
> | 
                v(i, 2) = -v(i, 2); | 
| 425 | 
  | 
            } | 
| 426 | 
< | 
    }; | 
| 426 | 
> | 
        } | 
| 427 | 
  | 
 | 
| 428 | 
+ | 
        // set sign of final eigenvector to ensure that determinant is positive | 
| 429 | 
+ | 
        if (v.determinant() < 0) { | 
| 430 | 
+ | 
            v(2, 0) = -v(2, 0); | 
| 431 | 
+ | 
            v(2, 1) = -v(2, 1); | 
| 432 | 
+ | 
            v(2, 2) = -v(2, 2); | 
| 433 | 
+ | 
        } | 
| 434 | 
+ | 
 | 
| 435 | 
+ | 
        // transpose the eigenvectors back again | 
| 436 | 
+ | 
        v = v.transpose(); | 
| 437 | 
+ | 
        return ; | 
| 438 | 
+ | 
    } | 
| 439 | 
  | 
    typedef SquareMatrix3<double> Mat3x3d; | 
| 440 | 
  | 
    typedef SquareMatrix3<double> RotMat3x3d; | 
| 441 | 
  | 
 | 
| 442 | 
  | 
} //namespace oopse | 
| 443 | 
  | 
#endif // MATH_SQUAREMATRIX_HPP | 
| 444 | 
+ | 
 |