| 29 | 
  | 
 * @date 10/11/2004 | 
| 30 | 
  | 
 * @version 1.0 | 
| 31 | 
  | 
 */ | 
| 32 | 
< | 
#ifndef MATH_SQUAREMATRIX#_HPP | 
| 33 | 
< | 
#define  MATH_SQUAREMATRIX#_HPP | 
| 32 | 
> | 
 #ifndef MATH_SQUAREMATRIX3_HPP | 
| 33 | 
> | 
#define  MATH_SQUAREMATRIX3_HPP | 
| 34 | 
  | 
 | 
| 35 | 
+ | 
#include "Quaternion.hpp" | 
| 36 | 
  | 
#include "SquareMatrix.hpp" | 
| 37 | 
+ | 
#include "Vector3.hpp" | 
| 38 | 
+ | 
 | 
| 39 | 
  | 
namespace oopse { | 
| 40 | 
  | 
 | 
| 41 | 
  | 
    template<typename Real> | 
| 42 | 
  | 
    class SquareMatrix3 : public SquareMatrix<Real, 3> { | 
| 43 | 
  | 
        public: | 
| 44 | 
+ | 
 | 
| 45 | 
+ | 
            typedef Real ElemType; | 
| 46 | 
+ | 
            typedef Real* ElemPoinerType; | 
| 47 | 
  | 
             | 
| 48 | 
  | 
            /** default constructor */ | 
| 49 | 
  | 
            SquareMatrix3() : SquareMatrix<Real, 3>() { | 
| 50 | 
  | 
            } | 
| 51 | 
  | 
 | 
| 52 | 
+ | 
            /** Constructs and initializes every element of this matrix to a scalar */  | 
| 53 | 
+ | 
            SquareMatrix3(Real s) : SquareMatrix<Real,3>(s){ | 
| 54 | 
+ | 
            } | 
| 55 | 
+ | 
 | 
| 56 | 
+ | 
            /** Constructs and initializes from an array */  | 
| 57 | 
+ | 
            SquareMatrix3(Real* array) : SquareMatrix<Real,3>(array){ | 
| 58 | 
+ | 
            } | 
| 59 | 
+ | 
 | 
| 60 | 
+ | 
 | 
| 61 | 
  | 
            /** copy  constructor */ | 
| 62 | 
  | 
            SquareMatrix3(const SquareMatrix<Real, 3>& m)  : SquareMatrix<Real, 3>(m) { | 
| 63 | 
  | 
            } | 
| 64 | 
  | 
 | 
| 65 | 
+ | 
            SquareMatrix3( const Vector3<Real>& eulerAngles) { | 
| 66 | 
+ | 
                setupRotMat(eulerAngles); | 
| 67 | 
+ | 
            } | 
| 68 | 
+ | 
             | 
| 69 | 
+ | 
            SquareMatrix3(Real phi, Real theta, Real psi) { | 
| 70 | 
+ | 
                setupRotMat(phi, theta, psi); | 
| 71 | 
+ | 
            } | 
| 72 | 
+ | 
 | 
| 73 | 
+ | 
            SquareMatrix3(const Quaternion<Real>& q) { | 
| 74 | 
+ | 
                setupRotMat(q); | 
| 75 | 
+ | 
 | 
| 76 | 
+ | 
            } | 
| 77 | 
+ | 
 | 
| 78 | 
+ | 
            SquareMatrix3(Real w, Real x, Real y, Real z) { | 
| 79 | 
+ | 
                setupRotMat(w, x, y, z); | 
| 80 | 
+ | 
            } | 
| 81 | 
+ | 
             | 
| 82 | 
  | 
            /** copy assignment operator */ | 
| 83 | 
  | 
            SquareMatrix3<Real>& operator =(const SquareMatrix<Real, 3>& m) { | 
| 84 | 
  | 
                if (this == &m) | 
| 85 | 
  | 
                    return *this; | 
| 86 | 
  | 
                 SquareMatrix<Real, 3>::operator=(m); | 
| 87 | 
+ | 
                 return *this; | 
| 88 | 
  | 
            } | 
| 89 | 
< | 
             | 
| 89 | 
> | 
 | 
| 90 | 
  | 
            /** | 
| 91 | 
< | 
             * Sets the value of this matrix to  the inversion of itself.  | 
| 92 | 
< | 
             * @note since simple algorithm can be applied to inverse the 3 by 3 matrix, we hide the  | 
| 60 | 
< | 
             * implementation of inverse in SquareMatrix class | 
| 91 | 
> | 
             * Sets this matrix to a rotation matrix by three euler angles | 
| 92 | 
> | 
             * @ param euler | 
| 93 | 
  | 
             */ | 
| 94 | 
< | 
            void  inverse(); | 
| 95 | 
< | 
             | 
| 94 | 
> | 
            void setupRotMat(const Vector3<Real>& eulerAngles) { | 
| 95 | 
> | 
                setupRotMat(eulerAngles[0], eulerAngles[1], eulerAngles[2]); | 
| 96 | 
> | 
            } | 
| 97 | 
> | 
 | 
| 98 | 
  | 
            /** | 
| 99 | 
< | 
             * Sets the value of this matrix to  the inversion of other matrix. | 
| 100 | 
< | 
             * @ param m the source matrix | 
| 101 | 
< | 
             */         | 
| 102 | 
< | 
            void inverse(const SquareMatrix<Real, Dim>& m); | 
| 99 | 
> | 
             * Sets this matrix to a rotation matrix by three euler angles | 
| 100 | 
> | 
             * @param phi | 
| 101 | 
> | 
             * @param theta | 
| 102 | 
> | 
             * @psi theta | 
| 103 | 
> | 
             */ | 
| 104 | 
> | 
            void setupRotMat(Real phi, Real theta, Real psi) { | 
| 105 | 
> | 
                Real sphi, stheta, spsi; | 
| 106 | 
> | 
                Real cphi, ctheta, cpsi; | 
| 107 | 
  | 
 | 
| 108 | 
< | 
    } | 
| 108 | 
> | 
                sphi = sin(phi); | 
| 109 | 
> | 
                stheta = sin(theta); | 
| 110 | 
> | 
                spsi = sin(psi); | 
| 111 | 
> | 
                cphi = cos(phi); | 
| 112 | 
> | 
                ctheta = cos(theta); | 
| 113 | 
> | 
                cpsi = cos(psi); | 
| 114 | 
  | 
 | 
| 115 | 
+ | 
                data_[0][0] = cpsi * cphi - ctheta * sphi * spsi; | 
| 116 | 
+ | 
                data_[0][1] = cpsi * sphi + ctheta * cphi * spsi; | 
| 117 | 
+ | 
                data_[0][2] = spsi * stheta; | 
| 118 | 
+ | 
                 | 
| 119 | 
+ | 
                data_[1][0] = -spsi * ctheta - ctheta * sphi * cpsi; | 
| 120 | 
+ | 
                data_[1][1] = -spsi * stheta + ctheta * cphi * cpsi; | 
| 121 | 
+ | 
                data_[1][2] = cpsi * stheta; | 
| 122 | 
+ | 
 | 
| 123 | 
+ | 
                data_[2][0] = stheta * sphi; | 
| 124 | 
+ | 
                data_[2][1] = -stheta * cphi; | 
| 125 | 
+ | 
                data_[2][2] = ctheta; | 
| 126 | 
+ | 
            } | 
| 127 | 
+ | 
 | 
| 128 | 
+ | 
 | 
| 129 | 
+ | 
            /** | 
| 130 | 
+ | 
             * Sets this matrix to a rotation matrix by quaternion | 
| 131 | 
+ | 
             * @param quat | 
| 132 | 
+ | 
            */ | 
| 133 | 
+ | 
            void setupRotMat(const Quaternion<Real>& quat) { | 
| 134 | 
+ | 
                setupRotMat(quat.w(), quat.x(), quat.y(), quat.z()); | 
| 135 | 
+ | 
            } | 
| 136 | 
+ | 
 | 
| 137 | 
+ | 
            /** | 
| 138 | 
+ | 
             * Sets this matrix to a rotation matrix by quaternion | 
| 139 | 
+ | 
             * @param w the first element  | 
| 140 | 
+ | 
             * @param x the second element | 
| 141 | 
+ | 
             * @param y the third element | 
| 142 | 
+ | 
             * @param z the fourth element | 
| 143 | 
+ | 
            */ | 
| 144 | 
+ | 
            void setupRotMat(Real w, Real x, Real y, Real z) { | 
| 145 | 
+ | 
                Quaternion<Real> q(w, x, y, z); | 
| 146 | 
+ | 
                *this = q.toRotationMatrix3(); | 
| 147 | 
+ | 
            } | 
| 148 | 
+ | 
 | 
| 149 | 
+ | 
            /** | 
| 150 | 
+ | 
             * Returns the quaternion from this rotation matrix | 
| 151 | 
+ | 
             * @return the quaternion from this rotation matrix | 
| 152 | 
+ | 
             * @exception invalid rotation matrix | 
| 153 | 
+ | 
            */             | 
| 154 | 
+ | 
            Quaternion<Real> toQuaternion() { | 
| 155 | 
+ | 
                Quaternion<Real> q; | 
| 156 | 
+ | 
                Real t, s; | 
| 157 | 
+ | 
                Real ad1, ad2, ad3;     | 
| 158 | 
+ | 
                t = data_[0][0] + data_[1][1] + data_[2][2] + 1.0; | 
| 159 | 
+ | 
 | 
| 160 | 
+ | 
                if( t > 0.0 ){ | 
| 161 | 
+ | 
 | 
| 162 | 
+ | 
                    s = 0.5 / sqrt( t ); | 
| 163 | 
+ | 
                    q[0] = 0.25 / s; | 
| 164 | 
+ | 
                    q[1] = (data_[1][2] - data_[2][1]) * s; | 
| 165 | 
+ | 
                    q[2] = (data_[2][0] - data_[0][2]) * s; | 
| 166 | 
+ | 
                    q[3] = (data_[0][1] - data_[1][0]) * s; | 
| 167 | 
+ | 
                } else { | 
| 168 | 
+ | 
 | 
| 169 | 
+ | 
                    ad1 = fabs( data_[0][0] ); | 
| 170 | 
+ | 
                    ad2 = fabs( data_[1][1] ); | 
| 171 | 
+ | 
                    ad3 = fabs( data_[2][2] ); | 
| 172 | 
+ | 
 | 
| 173 | 
+ | 
                    if( ad1 >= ad2 && ad1 >= ad3 ){ | 
| 174 | 
+ | 
 | 
| 175 | 
+ | 
                        s = 2.0 * sqrt( 1.0 + data_[0][0] - data_[1][1] - data_[2][2] ); | 
| 176 | 
+ | 
                        q[0] = (data_[1][2] + data_[2][1]) / s; | 
| 177 | 
+ | 
                        q[1] = 0.5 / s; | 
| 178 | 
+ | 
                        q[2] = (data_[0][1] + data_[1][0]) / s; | 
| 179 | 
+ | 
                        q[3] = (data_[0][2] + data_[2][0]) / s; | 
| 180 | 
+ | 
                    } else if ( ad2 >= ad1 && ad2 >= ad3 ) { | 
| 181 | 
+ | 
                        s = sqrt( 1.0 + data_[1][1] - data_[0][0] - data_[2][2] ) * 2.0; | 
| 182 | 
+ | 
                        q[0] = (data_[0][2] + data_[2][0]) / s; | 
| 183 | 
+ | 
                        q[1] = (data_[0][1] + data_[1][0]) / s; | 
| 184 | 
+ | 
                        q[2] = 0.5 / s; | 
| 185 | 
+ | 
                        q[3] = (data_[1][2] + data_[2][1]) / s; | 
| 186 | 
+ | 
                    } else { | 
| 187 | 
+ | 
 | 
| 188 | 
+ | 
                        s = sqrt( 1.0 + data_[2][2] - data_[0][0] - data_[1][1] ) * 2.0; | 
| 189 | 
+ | 
                        q[0] = (data_[0][1] + data_[1][0]) / s; | 
| 190 | 
+ | 
                        q[1] = (data_[0][2] + data_[2][0]) / s; | 
| 191 | 
+ | 
                        q[2] = (data_[1][2] + data_[2][1]) / s; | 
| 192 | 
+ | 
                        q[3] = 0.5 / s; | 
| 193 | 
+ | 
                    } | 
| 194 | 
+ | 
                }              | 
| 195 | 
+ | 
 | 
| 196 | 
+ | 
                return q; | 
| 197 | 
+ | 
                 | 
| 198 | 
+ | 
            } | 
| 199 | 
+ | 
 | 
| 200 | 
+ | 
            /** | 
| 201 | 
+ | 
             * Returns the euler angles from this rotation matrix | 
| 202 | 
+ | 
             * @return the euler angles in a vector  | 
| 203 | 
+ | 
             * @exception invalid rotation matrix | 
| 204 | 
+ | 
             * We use so-called "x-convention", which is the most common definition.  | 
| 205 | 
+ | 
             * In this convention, the rotation given by Euler angles (phi, theta, psi), where the first  | 
| 206 | 
+ | 
             * rotation is by an angle phi about the z-axis, the second is by an angle   | 
| 207 | 
+ | 
             * theta (0 <= theta <= 180)about the x-axis, and thethird is by an angle psi about the | 
| 208 | 
+ | 
             * z-axis (again).  | 
| 209 | 
+ | 
            */             | 
| 210 | 
+ | 
            Vector3<Real> toEulerAngles() { | 
| 211 | 
+ | 
                Vector3<Real> myEuler; | 
| 212 | 
+ | 
                Real phi,theta,psi,eps; | 
| 213 | 
+ | 
                Real ctheta,stheta; | 
| 214 | 
+ | 
                 | 
| 215 | 
+ | 
                // set the tolerance for Euler angles and rotation elements | 
| 216 | 
+ | 
 | 
| 217 | 
+ | 
                theta = acos(std::min(1.0, std::max(-1.0,data_[2][2]))); | 
| 218 | 
+ | 
                ctheta = data_[2][2];  | 
| 219 | 
+ | 
                stheta = sqrt(1.0 - ctheta * ctheta); | 
| 220 | 
+ | 
 | 
| 221 | 
+ | 
                // when sin(theta) is close to 0, we need to consider singularity | 
| 222 | 
+ | 
                // In this case, we can assign an arbitary value to phi (or psi), and then determine  | 
| 223 | 
+ | 
                // the psi (or phi) or vice-versa. We'll assume that phi always gets the rotation, and psi is 0 | 
| 224 | 
+ | 
                // in cases of singularity.   | 
| 225 | 
+ | 
                // we use atan2 instead of atan, since atan2 will give us -Pi to Pi.  | 
| 226 | 
+ | 
                // Since 0 <= theta <= 180, sin(theta) will be always non-negative. Therefore, it never | 
| 227 | 
+ | 
                // change the sign of both of the parameters passed to atan2. | 
| 228 | 
+ | 
 | 
| 229 | 
+ | 
                if (fabs(stheta) <= oopse::epsilon){ | 
| 230 | 
+ | 
                    psi = 0.0; | 
| 231 | 
+ | 
                    phi = atan2(-data_[1][0], data_[0][0]);   | 
| 232 | 
+ | 
                } | 
| 233 | 
+ | 
                // we only have one unique solution | 
| 234 | 
+ | 
                else{     | 
| 235 | 
+ | 
                    phi = atan2(data_[2][0], -data_[2][1]); | 
| 236 | 
+ | 
                    psi = atan2(data_[0][2], data_[1][2]); | 
| 237 | 
+ | 
                } | 
| 238 | 
+ | 
 | 
| 239 | 
+ | 
                //wrap phi and psi, make sure they are in the range from 0 to 2*Pi | 
| 240 | 
+ | 
                if (phi < 0) | 
| 241 | 
+ | 
                  phi += M_PI; | 
| 242 | 
+ | 
 | 
| 243 | 
+ | 
                if (psi < 0) | 
| 244 | 
+ | 
                  psi += M_PI; | 
| 245 | 
+ | 
 | 
| 246 | 
+ | 
                myEuler[0] = phi; | 
| 247 | 
+ | 
                myEuler[1] = theta; | 
| 248 | 
+ | 
                myEuler[2] = psi; | 
| 249 | 
+ | 
 | 
| 250 | 
+ | 
                return myEuler; | 
| 251 | 
+ | 
            } | 
| 252 | 
+ | 
             | 
| 253 | 
+ | 
            /** Returns the determinant of this matrix. */ | 
| 254 | 
+ | 
            Real determinant() const { | 
| 255 | 
+ | 
                Real x,y,z; | 
| 256 | 
+ | 
 | 
| 257 | 
+ | 
                x = data_[0][0] * (data_[1][1] * data_[2][2] - data_[1][2] * data_[2][1]); | 
| 258 | 
+ | 
                y = data_[0][1] * (data_[1][2] * data_[2][0] - data_[1][0] * data_[2][2]); | 
| 259 | 
+ | 
                z = data_[0][2] * (data_[1][0] * data_[2][1] - data_[1][1] * data_[2][0]); | 
| 260 | 
+ | 
 | 
| 261 | 
+ | 
                return(x + y + z); | 
| 262 | 
+ | 
            }             | 
| 263 | 
+ | 
             | 
| 264 | 
+ | 
            /** | 
| 265 | 
+ | 
             * Sets the value of this matrix to  the inversion of itself.  | 
| 266 | 
+ | 
             * @note since simple algorithm can be applied to inverse the 3 by 3 matrix, we hide the  | 
| 267 | 
+ | 
             * implementation of inverse in SquareMatrix class | 
| 268 | 
+ | 
             */ | 
| 269 | 
+ | 
            SquareMatrix3<Real>  inverse() { | 
| 270 | 
+ | 
                SquareMatrix3<Real> m; | 
| 271 | 
+ | 
                double det = determinant(); | 
| 272 | 
+ | 
                if (fabs(det) <= oopse::epsilon) { | 
| 273 | 
+ | 
                //"The method was called on a matrix with |determinant| <= 1e-6.", | 
| 274 | 
+ | 
                //"This is a runtime or a programming error in your application."); | 
| 275 | 
+ | 
                } | 
| 276 | 
+ | 
 | 
| 277 | 
+ | 
                m(0, 0) = data_[1][1]*data_[2][2] - data_[1][2]*data_[2][1]; | 
| 278 | 
+ | 
                m(1, 0) = data_[1][2]*data_[2][0] - data_[1][0]*data_[2][2]; | 
| 279 | 
+ | 
                m(2, 0) = data_[1][0]*data_[2][1] - data_[1][1]*data_[2][0]; | 
| 280 | 
+ | 
                m(0, 1) = data_[2][1]*data_[0][2] - data_[2][2]*data_[0][1]; | 
| 281 | 
+ | 
                m(1, 1) = data_[2][2]*data_[0][0] - data_[2][0]*data_[0][2]; | 
| 282 | 
+ | 
                m(2, 1) = data_[2][0]*data_[0][1] - data_[2][1]*data_[0][0]; | 
| 283 | 
+ | 
                m(0, 2) = data_[0][1]*data_[1][2] - data_[0][2]*data_[1][1]; | 
| 284 | 
+ | 
                m(1, 2) = data_[0][2]*data_[1][0] - data_[0][0]*data_[1][2]; | 
| 285 | 
+ | 
                m(2, 2) = data_[0][0]*data_[1][1] - data_[0][1]*data_[1][0]; | 
| 286 | 
+ | 
 | 
| 287 | 
+ | 
                m /= det; | 
| 288 | 
+ | 
                return m; | 
| 289 | 
+ | 
            } | 
| 290 | 
+ | 
            /** | 
| 291 | 
+ | 
             * Extract the eigenvalues and eigenvectors from a 3x3 matrix. | 
| 292 | 
+ | 
             * The eigenvectors (the columns of V) will be normalized.  | 
| 293 | 
+ | 
             * The eigenvectors are aligned optimally with the x, y, and z | 
| 294 | 
+ | 
             * axes respectively. | 
| 295 | 
+ | 
             * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is | 
| 296 | 
+ | 
             *     overwritten              | 
| 297 | 
+ | 
             * @param w will contain the eigenvalues of the matrix On return of this function | 
| 298 | 
+ | 
             * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are  | 
| 299 | 
+ | 
             *    normalized and mutually orthogonal.               | 
| 300 | 
+ | 
             * @warning a will be overwritten | 
| 301 | 
+ | 
             */ | 
| 302 | 
+ | 
            static void diagonalize(SquareMatrix3<Real>& a, Vector3<Real>& w, SquareMatrix3<Real>& v);  | 
| 303 | 
  | 
    }; | 
| 304 | 
+ | 
/*========================================================================= | 
| 305 | 
  | 
 | 
| 306 | 
< | 
} | 
| 307 | 
< | 
#endif // MATH_SQUAREMATRIX#_HPP | 
| 306 | 
> | 
  Program:   Visualization Toolkit | 
| 307 | 
> | 
  Module:    $RCSfile: SquareMatrix3.hpp,v $ | 
| 308 | 
> | 
 | 
| 309 | 
> | 
  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen | 
| 310 | 
> | 
  All rights reserved. | 
| 311 | 
> | 
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details. | 
| 312 | 
> | 
 | 
| 313 | 
> | 
     This software is distributed WITHOUT ANY WARRANTY; without even | 
| 314 | 
> | 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR | 
| 315 | 
> | 
     PURPOSE.  See the above copyright notice for more information. | 
| 316 | 
> | 
 | 
| 317 | 
> | 
=========================================================================*/ | 
| 318 | 
> | 
    template<typename Real> | 
| 319 | 
> | 
    void SquareMatrix3<Real>::diagonalize(SquareMatrix3<Real>& a, Vector3<Real>& w,  | 
| 320 | 
> | 
                                                                           SquareMatrix3<Real>& v) { | 
| 321 | 
> | 
        int i,j,k,maxI; | 
| 322 | 
> | 
        Real tmp, maxVal; | 
| 323 | 
> | 
        Vector3<Real> v_maxI, v_k, v_j; | 
| 324 | 
> | 
 | 
| 325 | 
> | 
        // diagonalize using Jacobi | 
| 326 | 
> | 
        jacobi(a, w, v); | 
| 327 | 
> | 
        // if all the eigenvalues are the same, return identity matrix | 
| 328 | 
> | 
        if (w[0] == w[1] && w[0] == w[2] ) { | 
| 329 | 
> | 
              v = SquareMatrix3<Real>::identity(); | 
| 330 | 
> | 
              return; | 
| 331 | 
> | 
        } | 
| 332 | 
> | 
 | 
| 333 | 
> | 
        // transpose temporarily, it makes it easier to sort the eigenvectors | 
| 334 | 
> | 
        v = v.transpose();  | 
| 335 | 
> | 
         | 
| 336 | 
> | 
        // if two eigenvalues are the same, re-orthogonalize to optimally line | 
| 337 | 
> | 
        // up the eigenvectors with the x, y, and z axes | 
| 338 | 
> | 
        for (i = 0; i < 3; i++) { | 
| 339 | 
> | 
            if (w((i+1)%3) == w((i+2)%3)) {// two eigenvalues are the same | 
| 340 | 
> | 
            // find maximum element of the independant eigenvector | 
| 341 | 
> | 
            maxVal = fabs(v(i, 0)); | 
| 342 | 
> | 
            maxI = 0; | 
| 343 | 
> | 
            for (j = 1; j < 3; j++) { | 
| 344 | 
> | 
                if (maxVal < (tmp = fabs(v(i, j)))){ | 
| 345 | 
> | 
                    maxVal = tmp; | 
| 346 | 
> | 
                    maxI = j; | 
| 347 | 
> | 
                } | 
| 348 | 
> | 
            } | 
| 349 | 
> | 
             | 
| 350 | 
> | 
            // swap the eigenvector into its proper position | 
| 351 | 
> | 
            if (maxI != i) { | 
| 352 | 
> | 
                tmp = w(maxI); | 
| 353 | 
> | 
                w(maxI) = w(i); | 
| 354 | 
> | 
                w(i) = tmp; | 
| 355 | 
> | 
 | 
| 356 | 
> | 
                v.swapRow(i, maxI); | 
| 357 | 
> | 
            } | 
| 358 | 
> | 
            // maximum element of eigenvector should be positive | 
| 359 | 
> | 
            if (v(maxI, maxI) < 0) { | 
| 360 | 
> | 
                v(maxI, 0) = -v(maxI, 0); | 
| 361 | 
> | 
                v(maxI, 1) = -v(maxI, 1); | 
| 362 | 
> | 
                v(maxI, 2) = -v(maxI, 2); | 
| 363 | 
> | 
            } | 
| 364 | 
> | 
 | 
| 365 | 
> | 
            // re-orthogonalize the other two eigenvectors | 
| 366 | 
> | 
            j = (maxI+1)%3; | 
| 367 | 
> | 
            k = (maxI+2)%3; | 
| 368 | 
> | 
 | 
| 369 | 
> | 
            v(j, 0) = 0.0;  | 
| 370 | 
> | 
            v(j, 1) = 0.0;  | 
| 371 | 
> | 
            v(j, 2) = 0.0; | 
| 372 | 
> | 
            v(j, j) = 1.0; | 
| 373 | 
> | 
 | 
| 374 | 
> | 
            /** @todo */ | 
| 375 | 
> | 
            v_maxI = v.getRow(maxI); | 
| 376 | 
> | 
            v_j = v.getRow(j); | 
| 377 | 
> | 
            v_k = cross(v_maxI, v_j); | 
| 378 | 
> | 
            v_k.normalize(); | 
| 379 | 
> | 
            v_j = cross(v_k, v_maxI); | 
| 380 | 
> | 
            v.setRow(j, v_j); | 
| 381 | 
> | 
            v.setRow(k, v_k); | 
| 382 | 
> | 
 | 
| 383 | 
> | 
 | 
| 384 | 
> | 
            // transpose vectors back to columns | 
| 385 | 
> | 
            v = v.transpose(); | 
| 386 | 
> | 
            return; | 
| 387 | 
> | 
            } | 
| 388 | 
> | 
        } | 
| 389 | 
> | 
 | 
| 390 | 
> | 
        // the three eigenvalues are different, just sort the eigenvectors | 
| 391 | 
> | 
        // to align them with the x, y, and z axes | 
| 392 | 
> | 
 | 
| 393 | 
> | 
        // find the vector with the largest x element, make that vector | 
| 394 | 
> | 
        // the first vector | 
| 395 | 
> | 
        maxVal = fabs(v(0, 0)); | 
| 396 | 
> | 
        maxI = 0; | 
| 397 | 
> | 
        for (i = 1; i < 3; i++) { | 
| 398 | 
> | 
            if (maxVal < (tmp = fabs(v(i, 0)))) { | 
| 399 | 
> | 
                maxVal = tmp; | 
| 400 | 
> | 
                maxI = i; | 
| 401 | 
> | 
            } | 
| 402 | 
> | 
        } | 
| 403 | 
> | 
 | 
| 404 | 
> | 
        // swap eigenvalue and eigenvector | 
| 405 | 
> | 
        if (maxI != 0) { | 
| 406 | 
> | 
            tmp = w(maxI); | 
| 407 | 
> | 
            w(maxI) = w(0); | 
| 408 | 
> | 
            w(0) = tmp; | 
| 409 | 
> | 
            v.swapRow(maxI, 0); | 
| 410 | 
> | 
        } | 
| 411 | 
> | 
        // do the same for the y element | 
| 412 | 
> | 
        if (fabs(v(1, 1)) < fabs(v(2, 1))) { | 
| 413 | 
> | 
            tmp = w(2); | 
| 414 | 
> | 
            w(2) = w(1); | 
| 415 | 
> | 
            w(1) = tmp; | 
| 416 | 
> | 
            v.swapRow(2, 1); | 
| 417 | 
> | 
        } | 
| 418 | 
> | 
 | 
| 419 | 
> | 
        // ensure that the sign of the eigenvectors is correct | 
| 420 | 
> | 
        for (i = 0; i < 2; i++) { | 
| 421 | 
> | 
            if (v(i, i) < 0) { | 
| 422 | 
> | 
                v(i, 0) = -v(i, 0); | 
| 423 | 
> | 
                v(i, 1) = -v(i, 1); | 
| 424 | 
> | 
                v(i, 2) = -v(i, 2); | 
| 425 | 
> | 
            } | 
| 426 | 
> | 
        } | 
| 427 | 
> | 
 | 
| 428 | 
> | 
        // set sign of final eigenvector to ensure that determinant is positive | 
| 429 | 
> | 
        if (v.determinant() < 0) { | 
| 430 | 
> | 
            v(2, 0) = -v(2, 0); | 
| 431 | 
> | 
            v(2, 1) = -v(2, 1); | 
| 432 | 
> | 
            v(2, 2) = -v(2, 2); | 
| 433 | 
> | 
        } | 
| 434 | 
> | 
 | 
| 435 | 
> | 
        // transpose the eigenvectors back again | 
| 436 | 
> | 
        v = v.transpose(); | 
| 437 | 
> | 
        return ; | 
| 438 | 
> | 
    } | 
| 439 | 
> | 
    typedef SquareMatrix3<double> Mat3x3d; | 
| 440 | 
> | 
    typedef SquareMatrix3<double> RotMat3x3d; | 
| 441 | 
> | 
 | 
| 442 | 
> | 
} //namespace oopse | 
| 443 | 
> | 
#endif // MATH_SQUAREMATRIX_HPP | 
| 444 | 
> | 
 |