| 1 | 
  | 
/* | 
| 2 | 
< | 
 * Copyright (C) 2000-2004  Object Oriented Parallel Simulation Engine (OOPSE) project | 
| 3 | 
< | 
 *  | 
| 4 | 
< | 
 * Contact: oopse@oopse.org | 
| 5 | 
< | 
 *  | 
| 6 | 
< | 
 * This program is free software; you can redistribute it and/or | 
| 7 | 
< | 
 * modify it under the terms of the GNU Lesser General Public License | 
| 8 | 
< | 
 * as published by the Free Software Foundation; either version 2.1 | 
| 9 | 
< | 
 * of the License, or (at your option) any later version. | 
| 10 | 
< | 
 * All we ask is that proper credit is given for our work, which includes | 
| 11 | 
< | 
 * - but is not limited to - adding the above copyright notice to the beginning | 
| 12 | 
< | 
 * of your source code files, and to any copyright notice that you may distribute | 
| 13 | 
< | 
 * with programs based on this work. | 
| 14 | 
< | 
 *  | 
| 15 | 
< | 
 * This program is distributed in the hope that it will be useful, | 
| 16 | 
< | 
 * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
| 17 | 
< | 
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
| 18 | 
< | 
 * GNU Lesser General Public License for more details. | 
| 19 | 
< | 
 *  | 
| 20 | 
< | 
 * You should have received a copy of the GNU Lesser General Public License | 
| 21 | 
< | 
 * along with this program; if not, write to the Free Software | 
| 22 | 
< | 
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA. | 
| 2 | 
> | 
 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | 
  | 
 * | 
| 4 | 
+ | 
 * The University of Notre Dame grants you ("Licensee") a | 
| 5 | 
+ | 
 * non-exclusive, royalty free, license to use, modify and | 
| 6 | 
+ | 
 * redistribute this software in source and binary code form, provided | 
| 7 | 
+ | 
 * that the following conditions are met: | 
| 8 | 
+ | 
 * | 
| 9 | 
+ | 
 * 1. Acknowledgement of the program authors must be made in any | 
| 10 | 
+ | 
 *    publication of scientific results based in part on use of the | 
| 11 | 
+ | 
 *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | 
+ | 
 *    the article in which the program was described (Matthew | 
| 13 | 
+ | 
 *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | 
+ | 
 *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | 
+ | 
 *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | 
+ | 
 *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | 
+ | 
 * | 
| 18 | 
+ | 
 * 2. Redistributions of source code must retain the above copyright | 
| 19 | 
+ | 
 *    notice, this list of conditions and the following disclaimer. | 
| 20 | 
+ | 
 * | 
| 21 | 
+ | 
 * 3. Redistributions in binary form must reproduce the above copyright | 
| 22 | 
+ | 
 *    notice, this list of conditions and the following disclaimer in the | 
| 23 | 
+ | 
 *    documentation and/or other materials provided with the | 
| 24 | 
+ | 
 *    distribution. | 
| 25 | 
+ | 
 * | 
| 26 | 
+ | 
 * This software is provided "AS IS," without a warranty of any | 
| 27 | 
+ | 
 * kind. All express or implied conditions, representations and | 
| 28 | 
+ | 
 * warranties, including any implied warranty of merchantability, | 
| 29 | 
+ | 
 * fitness for a particular purpose or non-infringement, are hereby | 
| 30 | 
+ | 
 * excluded.  The University of Notre Dame and its licensors shall not | 
| 31 | 
+ | 
 * be liable for any damages suffered by licensee as a result of | 
| 32 | 
+ | 
 * using, modifying or distributing the software or its | 
| 33 | 
+ | 
 * derivatives. In no event will the University of Notre Dame or its | 
| 34 | 
+ | 
 * licensors be liable for any lost revenue, profit or data, or for | 
| 35 | 
+ | 
 * direct, indirect, special, consequential, incidental or punitive | 
| 36 | 
+ | 
 * damages, however caused and regardless of the theory of liability, | 
| 37 | 
+ | 
 * arising out of the use of or inability to use software, even if the | 
| 38 | 
+ | 
 * University of Notre Dame has been advised of the possibility of | 
| 39 | 
+ | 
 * such damages. | 
| 40 | 
  | 
 */ | 
| 41 | 
< | 
 | 
| 41 | 
> | 
  | 
| 42 | 
  | 
/** | 
| 43 | 
  | 
 * @file SquareMatrix3.hpp | 
| 44 | 
  | 
 * @author Teng Lin | 
| 47 | 
  | 
 */ | 
| 48 | 
  | 
#ifndef MATH_SQUAREMATRIX3_HPP | 
| 49 | 
  | 
#define  MATH_SQUAREMATRIX3_HPP | 
| 50 | 
< | 
 | 
| 50 | 
> | 
#include <vector> | 
| 51 | 
  | 
#include "Quaternion.hpp" | 
| 52 | 
  | 
#include "SquareMatrix.hpp" | 
| 53 | 
  | 
#include "Vector3.hpp" | 
| 54 | 
< | 
 | 
| 54 | 
> | 
#include "utils/NumericConstant.hpp" | 
| 55 | 
  | 
namespace oopse { | 
| 56 | 
  | 
 | 
| 57 | 
< | 
    template<typename Real> | 
| 58 | 
< | 
    class SquareMatrix3 : public SquareMatrix<Real, 3> { | 
| 59 | 
< | 
        public: | 
| 57 | 
> | 
  template<typename Real> | 
| 58 | 
> | 
  class SquareMatrix3 : public SquareMatrix<Real, 3> { | 
| 59 | 
> | 
  public: | 
| 60 | 
> | 
 | 
| 61 | 
> | 
    typedef Real ElemType; | 
| 62 | 
> | 
    typedef Real* ElemPoinerType; | 
| 63 | 
  | 
             | 
| 64 | 
< | 
            /** default constructor */ | 
| 65 | 
< | 
            SquareMatrix3() : SquareMatrix<Real, 3>() { | 
| 66 | 
< | 
            } | 
| 64 | 
> | 
    /** default constructor */ | 
| 65 | 
> | 
    SquareMatrix3() : SquareMatrix<Real, 3>() { | 
| 66 | 
> | 
    } | 
| 67 | 
  | 
 | 
| 68 | 
< | 
            /** copy  constructor */ | 
| 69 | 
< | 
            SquareMatrix3(const SquareMatrix<Real, 3>& m)  : SquareMatrix<Real, 3>(m) { | 
| 70 | 
< | 
            } | 
| 68 | 
> | 
    /** Constructs and initializes every element of this matrix to a scalar */  | 
| 69 | 
> | 
    SquareMatrix3(Real s) : SquareMatrix<Real,3>(s){ | 
| 70 | 
> | 
    } | 
| 71 | 
  | 
 | 
| 72 | 
< | 
            SquareMatrix3( const Vector3<Real>& eulerAngles) { | 
| 73 | 
< | 
                setupRotMat(eulerAngles); | 
| 74 | 
< | 
            } | 
| 56 | 
< | 
             | 
| 57 | 
< | 
            SquareMatrix3(Real phi, Real theta, Real psi) { | 
| 58 | 
< | 
                setupRotMat(phi, theta, psi); | 
| 59 | 
< | 
            } | 
| 72 | 
> | 
    /** Constructs and initializes from an array */  | 
| 73 | 
> | 
    SquareMatrix3(Real* array) : SquareMatrix<Real,3>(array){ | 
| 74 | 
> | 
    } | 
| 75 | 
  | 
 | 
| 61 | 
– | 
            SquareMatrix3(const Quaternion<Real>& q) { | 
| 62 | 
– | 
                *this = q.toRotationMatrix3(); | 
| 63 | 
– | 
            } | 
| 76 | 
  | 
 | 
| 77 | 
< | 
            SquareMatrix3(Real w, Real x, Real y, Real z) { | 
| 78 | 
< | 
                Quaternion<Real> q(w, x, y, z); | 
| 79 | 
< | 
                *this = q.toRotationMatrix3(); | 
| 68 | 
< | 
            } | 
| 77 | 
> | 
    /** copy  constructor */ | 
| 78 | 
> | 
    SquareMatrix3(const SquareMatrix<Real, 3>& m)  : SquareMatrix<Real, 3>(m) { | 
| 79 | 
> | 
    } | 
| 80 | 
  | 
             | 
| 81 | 
< | 
            /** copy assignment operator */ | 
| 82 | 
< | 
            SquareMatrix3<Real>& operator =(const SquareMatrix<Real, 3>& m) { | 
| 83 | 
< | 
                if (this == &m) | 
| 84 | 
< | 
                    return *this; | 
| 85 | 
< | 
                 SquareMatrix<Real, 3>::operator=(m); | 
| 86 | 
< | 
                 return *this; | 
| 87 | 
< | 
            } | 
| 81 | 
> | 
    SquareMatrix3( const Vector3<Real>& eulerAngles) { | 
| 82 | 
> | 
      setupRotMat(eulerAngles); | 
| 83 | 
> | 
    } | 
| 84 | 
> | 
             | 
| 85 | 
> | 
    SquareMatrix3(Real phi, Real theta, Real psi) { | 
| 86 | 
> | 
      setupRotMat(phi, theta, psi); | 
| 87 | 
> | 
    } | 
| 88 | 
  | 
 | 
| 89 | 
< | 
            /** | 
| 90 | 
< | 
             * Sets this matrix to a rotation matrix by three euler angles | 
| 80 | 
< | 
             * @ param euler | 
| 81 | 
< | 
             */ | 
| 82 | 
< | 
            void setupRotMat(const Vector3<Real>& eulerAngles) { | 
| 83 | 
< | 
                setupRotMat(eulerAngles[0], eulerAngles[1], eulerAngles[2]); | 
| 84 | 
< | 
            } | 
| 89 | 
> | 
    SquareMatrix3(const Quaternion<Real>& q) { | 
| 90 | 
> | 
      setupRotMat(q); | 
| 91 | 
  | 
 | 
| 92 | 
< | 
            /** | 
| 87 | 
< | 
             * Sets this matrix to a rotation matrix by three euler angles | 
| 88 | 
< | 
             * @param phi | 
| 89 | 
< | 
             * @param theta | 
| 90 | 
< | 
             * @psi theta | 
| 91 | 
< | 
             */ | 
| 92 | 
< | 
            void setupRotMat(Real phi, Real theta, Real psi) { | 
| 93 | 
< | 
                Real sphi, stheta, spsi; | 
| 94 | 
< | 
                Real cphi, ctheta, cpsi; | 
| 92 | 
> | 
    } | 
| 93 | 
  | 
 | 
| 94 | 
< | 
                sphi = sin(phi); | 
| 95 | 
< | 
                stheta = sin(theta); | 
| 96 | 
< | 
                spsi = sin(psi); | 
| 97 | 
< | 
                cphi = cos(phi); | 
| 98 | 
< | 
                ctheta = cos(theta); | 
| 99 | 
< | 
                cpsi = cos(psi); | 
| 94 | 
> | 
    SquareMatrix3(Real w, Real x, Real y, Real z) { | 
| 95 | 
> | 
      setupRotMat(w, x, y, z); | 
| 96 | 
> | 
    } | 
| 97 | 
> | 
             | 
| 98 | 
> | 
    /** copy assignment operator */ | 
| 99 | 
> | 
    SquareMatrix3<Real>& operator =(const SquareMatrix<Real, 3>& m) { | 
| 100 | 
> | 
      if (this == &m) | 
| 101 | 
> | 
        return *this; | 
| 102 | 
> | 
      SquareMatrix<Real, 3>::operator=(m); | 
| 103 | 
> | 
      return *this; | 
| 104 | 
> | 
    } | 
| 105 | 
  | 
 | 
| 103 | 
– | 
                data_[0][0] = cpsi * cphi - ctheta * sphi * spsi; | 
| 104 | 
– | 
                data_[0][1] = cpsi * sphi + ctheta * cphi * spsi; | 
| 105 | 
– | 
                data_[0][2] = spsi * stheta; | 
| 106 | 
– | 
                 | 
| 107 | 
– | 
                data_[1][0] = -spsi * ctheta - ctheta * sphi * cpsi; | 
| 108 | 
– | 
                data_[1][1] = -spsi * stheta + ctheta * cphi * cpsi; | 
| 109 | 
– | 
                data_[1][2] = cpsi * stheta; | 
| 106 | 
  | 
 | 
| 107 | 
< | 
                data_[2][0] = stheta * sphi; | 
| 108 | 
< | 
                data_[2][1] = -stheta * cphi; | 
| 109 | 
< | 
                data_[2][2] = ctheta; | 
| 110 | 
< | 
            } | 
| 107 | 
> | 
    SquareMatrix3<Real>& operator =(const Quaternion<Real>& q) { | 
| 108 | 
> | 
      this->setupRotMat(q); | 
| 109 | 
> | 
      return *this; | 
| 110 | 
> | 
    } | 
| 111 | 
  | 
 | 
| 112 | 
+ | 
    /** | 
| 113 | 
+ | 
     * Sets this matrix to a rotation matrix by three euler angles | 
| 114 | 
+ | 
     * @ param euler | 
| 115 | 
+ | 
     */ | 
| 116 | 
+ | 
    void setupRotMat(const Vector3<Real>& eulerAngles) { | 
| 117 | 
+ | 
      setupRotMat(eulerAngles[0], eulerAngles[1], eulerAngles[2]); | 
| 118 | 
+ | 
    } | 
| 119 | 
  | 
 | 
| 120 | 
< | 
            /** | 
| 121 | 
< | 
             * Sets this matrix to a rotation matrix by quaternion | 
| 122 | 
< | 
             * @param quat | 
| 123 | 
< | 
            */ | 
| 124 | 
< | 
            void setupRotMat(const Quaternion<Real>& quat) { | 
| 125 | 
< | 
                *this = quat.toRotationMatrix3(); | 
| 126 | 
< | 
            } | 
| 120 | 
> | 
    /** | 
| 121 | 
> | 
     * Sets this matrix to a rotation matrix by three euler angles | 
| 122 | 
> | 
     * @param phi | 
| 123 | 
> | 
     * @param theta | 
| 124 | 
> | 
     * @psi theta | 
| 125 | 
> | 
     */ | 
| 126 | 
> | 
    void setupRotMat(Real phi, Real theta, Real psi) { | 
| 127 | 
> | 
      Real sphi, stheta, spsi; | 
| 128 | 
> | 
      Real cphi, ctheta, cpsi; | 
| 129 | 
  | 
 | 
| 130 | 
< | 
            /** | 
| 131 | 
< | 
             * Sets this matrix to a rotation matrix by quaternion | 
| 132 | 
< | 
             * @param w the first element  | 
| 133 | 
< | 
             * @param x the second element | 
| 134 | 
< | 
             * @param y the third element | 
| 135 | 
< | 
             * @param z the fourth element | 
| 131 | 
< | 
            */ | 
| 132 | 
< | 
            void setupRotMat(Real w, Real x, Real y, Real z) { | 
| 133 | 
< | 
                Quaternion<Real> q(w, x, y, z); | 
| 134 | 
< | 
                *this = q.toRotationMatrix3(); | 
| 135 | 
< | 
            } | 
| 130 | 
> | 
      sphi = sin(phi); | 
| 131 | 
> | 
      stheta = sin(theta); | 
| 132 | 
> | 
      spsi = sin(psi); | 
| 133 | 
> | 
      cphi = cos(phi); | 
| 134 | 
> | 
      ctheta = cos(theta); | 
| 135 | 
> | 
      cpsi = cos(psi); | 
| 136 | 
  | 
 | 
| 137 | 
< | 
            /** | 
| 138 | 
< | 
             * Returns the quaternion from this rotation matrix | 
| 139 | 
< | 
             * @return the quaternion from this rotation matrix | 
| 140 | 
< | 
             * @exception invalid rotation matrix | 
| 141 | 
< | 
            */             | 
| 142 | 
< | 
            Quaternion<Real> toQuaternion() { | 
| 143 | 
< | 
                Quaternion<Real> q; | 
| 144 | 
< | 
                Real t, s; | 
| 145 | 
< | 
                Real ad1, ad2, ad3;     | 
| 146 | 
< | 
                t = data_[0][0] + data_[1][1] + data_[2][2] + 1.0; | 
| 137 | 
> | 
      this->data_[0][0] = cpsi * cphi - ctheta * sphi * spsi; | 
| 138 | 
> | 
      this->data_[0][1] = cpsi * sphi + ctheta * cphi * spsi; | 
| 139 | 
> | 
      this->data_[0][2] = spsi * stheta; | 
| 140 | 
> | 
                 | 
| 141 | 
> | 
      this->data_[1][0] = -spsi * ctheta - ctheta * sphi * cpsi; | 
| 142 | 
> | 
      this->data_[1][1] = -spsi * stheta + ctheta * cphi * cpsi; | 
| 143 | 
> | 
      this->data_[1][2] = cpsi * stheta; | 
| 144 | 
  | 
 | 
| 145 | 
< | 
                if( t > 0.0 ){ | 
| 145 | 
> | 
      this->data_[2][0] = stheta * sphi; | 
| 146 | 
> | 
      this->data_[2][1] = -stheta * cphi; | 
| 147 | 
> | 
      this->data_[2][2] = ctheta; | 
| 148 | 
> | 
    } | 
| 149 | 
  | 
 | 
| 150 | 
– | 
                    s = 0.5 / sqrt( t ); | 
| 151 | 
– | 
                    q[0] = 0.25 / s; | 
| 152 | 
– | 
                    q[1] = (data_[1][2] - data_[2][1]) * s; | 
| 153 | 
– | 
                    q[2] = (data_[2][0] - data_[0][2]) * s; | 
| 154 | 
– | 
                    q[3] = (data_[0][1] - data_[1][0]) * s; | 
| 155 | 
– | 
                } else { | 
| 150 | 
  | 
 | 
| 151 | 
< | 
                    ad1 = fabs( data_[0][0] ); | 
| 152 | 
< | 
                    ad2 = fabs( data_[1][1] ); | 
| 153 | 
< | 
                    ad3 = fabs( data_[2][2] ); | 
| 151 | 
> | 
    /** | 
| 152 | 
> | 
     * Sets this matrix to a rotation matrix by quaternion | 
| 153 | 
> | 
     * @param quat | 
| 154 | 
> | 
     */ | 
| 155 | 
> | 
    void setupRotMat(const Quaternion<Real>& quat) { | 
| 156 | 
> | 
      setupRotMat(quat.w(), quat.x(), quat.y(), quat.z()); | 
| 157 | 
> | 
    } | 
| 158 | 
  | 
 | 
| 159 | 
< | 
                    if( ad1 >= ad2 && ad1 >= ad3 ){ | 
| 159 | 
> | 
    /** | 
| 160 | 
> | 
     * Sets this matrix to a rotation matrix by quaternion | 
| 161 | 
> | 
     * @param w the first element  | 
| 162 | 
> | 
     * @param x the second element | 
| 163 | 
> | 
     * @param y the third element | 
| 164 | 
> | 
     * @param z the fourth element | 
| 165 | 
> | 
     */ | 
| 166 | 
> | 
    void setupRotMat(Real w, Real x, Real y, Real z) { | 
| 167 | 
> | 
      Quaternion<Real> q(w, x, y, z); | 
| 168 | 
> | 
      *this = q.toRotationMatrix3(); | 
| 169 | 
> | 
    } | 
| 170 | 
  | 
 | 
| 171 | 
< | 
                        s = 2.0 * sqrt( 1.0 + data_[0][0] - data_[1][1] - data_[2][2] ); | 
| 172 | 
< | 
                        q[0] = (data_[1][2] + data_[2][1]) / s; | 
| 173 | 
< | 
                        q[1] = 0.5 / s; | 
| 166 | 
< | 
                        q[2] = (data_[0][1] + data_[1][0]) / s; | 
| 167 | 
< | 
                        q[3] = (data_[0][2] + data_[2][0]) / s; | 
| 168 | 
< | 
                    } else if ( ad2 >= ad1 && ad2 >= ad3 ) { | 
| 169 | 
< | 
                        s = sqrt( 1.0 + data_[1][1] - data_[0][0] - data_[2][2] ) * 2.0; | 
| 170 | 
< | 
                        q[0] = (data_[0][2] + data_[2][0]) / s; | 
| 171 | 
< | 
                        q[1] = (data_[0][1] + data_[1][0]) / s; | 
| 172 | 
< | 
                        q[2] = 0.5 / s; | 
| 173 | 
< | 
                        q[3] = (data_[1][2] + data_[2][1]) / s; | 
| 174 | 
< | 
                    } else { | 
| 171 | 
> | 
    void setupSkewMat(Vector3<Real> v) { | 
| 172 | 
> | 
        setupSkewMat(v[0], v[1], v[2]); | 
| 173 | 
> | 
    } | 
| 174 | 
  | 
 | 
| 175 | 
< | 
                        s = sqrt( 1.0 + data_[2][2] - data_[0][0] - data_[1][1] ) * 2.0; | 
| 176 | 
< | 
                        q[0] = (data_[0][1] + data_[1][0]) / s; | 
| 177 | 
< | 
                        q[1] = (data_[0][2] + data_[2][0]) / s; | 
| 178 | 
< | 
                        q[2] = (data_[1][2] + data_[2][1]) / s; | 
| 179 | 
< | 
                        q[3] = 0.5 / s; | 
| 180 | 
< | 
                    } | 
| 181 | 
< | 
                }              | 
| 175 | 
> | 
    void setupSkewMat(Real v1, Real v2, Real v3) { | 
| 176 | 
> | 
        this->data_[0][0] = 0; | 
| 177 | 
> | 
        this->data_[0][1] = -v3; | 
| 178 | 
> | 
        this->data_[0][2] = v2; | 
| 179 | 
> | 
        this->data_[1][0] = v3; | 
| 180 | 
> | 
        this->data_[1][1] = 0; | 
| 181 | 
> | 
        this->data_[1][2] = -v1; | 
| 182 | 
> | 
        this->data_[2][0] = -v2; | 
| 183 | 
> | 
        this->data_[2][1] = v1; | 
| 184 | 
> | 
        this->data_[2][2] = 0; | 
| 185 | 
> | 
         | 
| 186 | 
> | 
         | 
| 187 | 
> | 
    } | 
| 188 | 
  | 
 | 
| 189 | 
< | 
                return q; | 
| 189 | 
> | 
 | 
| 190 | 
> | 
 | 
| 191 | 
> | 
    /** | 
| 192 | 
> | 
     * Returns the quaternion from this rotation matrix | 
| 193 | 
> | 
     * @return the quaternion from this rotation matrix | 
| 194 | 
> | 
     * @exception invalid rotation matrix | 
| 195 | 
> | 
     */             | 
| 196 | 
> | 
    Quaternion<Real> toQuaternion() { | 
| 197 | 
> | 
      Quaternion<Real> q; | 
| 198 | 
> | 
      Real t, s; | 
| 199 | 
> | 
      Real ad1, ad2, ad3;     | 
| 200 | 
> | 
      t = this->data_[0][0] + this->data_[1][1] + this->data_[2][2] + 1.0; | 
| 201 | 
> | 
 | 
| 202 | 
> | 
      if( t > NumericConstant::epsilon ){ | 
| 203 | 
> | 
 | 
| 204 | 
> | 
        s = 0.5 / sqrt( t ); | 
| 205 | 
> | 
        q[0] = 0.25 / s; | 
| 206 | 
> | 
        q[1] = (this->data_[1][2] - this->data_[2][1]) * s; | 
| 207 | 
> | 
        q[2] = (this->data_[2][0] - this->data_[0][2]) * s; | 
| 208 | 
> | 
        q[3] = (this->data_[0][1] - this->data_[1][0]) * s; | 
| 209 | 
> | 
      } else { | 
| 210 | 
> | 
 | 
| 211 | 
> | 
        ad1 = this->data_[0][0]; | 
| 212 | 
> | 
        ad2 = this->data_[1][1]; | 
| 213 | 
> | 
        ad3 = this->data_[2][2]; | 
| 214 | 
> | 
 | 
| 215 | 
> | 
        if( ad1 >= ad2 && ad1 >= ad3 ){ | 
| 216 | 
> | 
 | 
| 217 | 
> | 
          s = 0.5 / sqrt( 1.0 + this->data_[0][0] - this->data_[1][1] - this->data_[2][2] ); | 
| 218 | 
> | 
          q[0] = (this->data_[1][2] - this->data_[2][1]) * s; | 
| 219 | 
> | 
          q[1] = 0.25 / s; | 
| 220 | 
> | 
          q[2] = (this->data_[0][1] + this->data_[1][0]) * s; | 
| 221 | 
> | 
          q[3] = (this->data_[0][2] + this->data_[2][0]) * s; | 
| 222 | 
> | 
        } else if ( ad2 >= ad1 && ad2 >= ad3 ) { | 
| 223 | 
> | 
          s = 0.5 / sqrt( 1.0 + this->data_[1][1] - this->data_[0][0] - this->data_[2][2] ); | 
| 224 | 
> | 
          q[0] = (this->data_[2][0] - this->data_[0][2] ) * s; | 
| 225 | 
> | 
          q[1] = (this->data_[0][1] + this->data_[1][0]) * s; | 
| 226 | 
> | 
          q[2] = 0.25 / s; | 
| 227 | 
> | 
          q[3] = (this->data_[1][2] + this->data_[2][1]) * s; | 
| 228 | 
> | 
        } else { | 
| 229 | 
> | 
 | 
| 230 | 
> | 
          s = 0.5 / sqrt( 1.0 + this->data_[2][2] - this->data_[0][0] - this->data_[1][1] ); | 
| 231 | 
> | 
          q[0] = (this->data_[0][1] - this->data_[1][0]) * s; | 
| 232 | 
> | 
          q[1] = (this->data_[0][2] + this->data_[2][0]) * s; | 
| 233 | 
> | 
          q[2] = (this->data_[1][2] + this->data_[2][1]) * s; | 
| 234 | 
> | 
          q[3] = 0.25 / s; | 
| 235 | 
> | 
        } | 
| 236 | 
> | 
      }              | 
| 237 | 
> | 
 | 
| 238 | 
> | 
      return q; | 
| 239 | 
  | 
                 | 
| 240 | 
< | 
            } | 
| 240 | 
> | 
    } | 
| 241 | 
  | 
 | 
| 242 | 
< | 
            /** | 
| 243 | 
< | 
             * Returns the euler angles from this rotation matrix | 
| 244 | 
< | 
             * @return the euler angles in a vector  | 
| 245 | 
< | 
             * @exception invalid rotation matrix | 
| 246 | 
< | 
             * We use so-called "x-convention", which is the most common definition.  | 
| 247 | 
< | 
             * In this convention, the rotation given by Euler angles (phi, theta, psi), where the first  | 
| 248 | 
< | 
             * rotation is by an angle phi about the z-axis, the second is by an angle   | 
| 249 | 
< | 
             * theta (0 <= theta <= 180)about the x-axis, and thethird is by an angle psi about the | 
| 250 | 
< | 
             * z-axis (again).  | 
| 251 | 
< | 
            */             | 
| 252 | 
< | 
            Vector3<Real> toEulerAngles() { | 
| 253 | 
< | 
                Vector<Real> myEuler; | 
| 254 | 
< | 
                Real phi,theta,psi,eps; | 
| 255 | 
< | 
                Real ctheta,stheta; | 
| 242 | 
> | 
    /** | 
| 243 | 
> | 
     * Returns the euler angles from this rotation matrix | 
| 244 | 
> | 
     * @return the euler angles in a vector  | 
| 245 | 
> | 
     * @exception invalid rotation matrix | 
| 246 | 
> | 
     * We use so-called "x-convention", which is the most common definition.  | 
| 247 | 
> | 
     * In this convention, the rotation given by Euler angles (phi, theta,  | 
| 248 | 
> | 
     * psi), where the first rotation is by an angle phi about the z-axis,  | 
| 249 | 
> | 
     * the second is by an angle theta (0 <= theta <= 180) about the x-axis,  | 
| 250 | 
> | 
     * and the third is by an angle psi about the z-axis (again).  | 
| 251 | 
> | 
     */             | 
| 252 | 
> | 
    Vector3<Real> toEulerAngles() { | 
| 253 | 
> | 
      Vector3<Real> myEuler; | 
| 254 | 
> | 
      Real phi; | 
| 255 | 
> | 
      Real theta; | 
| 256 | 
> | 
      Real psi; | 
| 257 | 
> | 
      Real ctheta; | 
| 258 | 
> | 
      Real stheta; | 
| 259 | 
  | 
                 | 
| 260 | 
< | 
                // set the tolerance for Euler angles and rotation elements | 
| 260 | 
> | 
      // set the tolerance for Euler angles and rotation elements | 
| 261 | 
  | 
 | 
| 262 | 
< | 
                theta = acos(min(1.0,max(-1.0,data_[2][2]))); | 
| 263 | 
< | 
                ctheta = data_[2][2];  | 
| 264 | 
< | 
                stheta = sqrt(1.0 - ctheta * ctheta); | 
| 262 | 
> | 
      theta = acos(std::min((RealType)1.0, std::max((RealType)-1.0,this->data_[2][2]))); | 
| 263 | 
> | 
      ctheta = this->data_[2][2];  | 
| 264 | 
> | 
      stheta = sqrt(1.0 - ctheta * ctheta); | 
| 265 | 
  | 
 | 
| 266 | 
< | 
                // when sin(theta) is close to 0, we need to consider singularity | 
| 267 | 
< | 
                // In this case, we can assign an arbitary value to phi (or psi), and then determine  | 
| 268 | 
< | 
                // the psi (or phi) or vice-versa. We'll assume that phi always gets the rotation, and psi is 0 | 
| 269 | 
< | 
                // in cases of singularity.   | 
| 270 | 
< | 
                // we use atan2 instead of atan, since atan2 will give us -Pi to Pi.  | 
| 271 | 
< | 
                // Since 0 <= theta <= 180, sin(theta) will be always non-negative. Therefore, it never | 
| 272 | 
< | 
                // change the sign of both of the parameters passed to atan2. | 
| 266 | 
> | 
      // when sin(theta) is close to 0, we need to consider | 
| 267 | 
> | 
      // singularity In this case, we can assign an arbitary value to | 
| 268 | 
> | 
      // phi (or psi), and then determine the psi (or phi) or | 
| 269 | 
> | 
      // vice-versa. We'll assume that phi always gets the rotation, | 
| 270 | 
> | 
      // and psi is 0 in cases of singularity. | 
| 271 | 
> | 
      // we use atan2 instead of atan, since atan2 will give us -Pi to Pi.  | 
| 272 | 
> | 
      // Since 0 <= theta <= 180, sin(theta) will be always | 
| 273 | 
> | 
      // non-negative. Therefore, it will never change the sign of both of | 
| 274 | 
> | 
      // the parameters passed to atan2. | 
| 275 | 
  | 
 | 
| 276 | 
< | 
                if (fabs(stheta) <= oopse::epsilon){ | 
| 277 | 
< | 
                    psi = 0.0; | 
| 278 | 
< | 
                    phi = atan2(-data_[1][0], data_[0][0]);   | 
| 279 | 
< | 
                } | 
| 280 | 
< | 
                // we only have one unique solution | 
| 281 | 
< | 
                else{     | 
| 282 | 
< | 
                    phi = atan2(data_[2][0], -data_[2][1]); | 
| 283 | 
< | 
                    psi = atan2(data_[0][2], data_[1][2]); | 
| 284 | 
< | 
                } | 
| 276 | 
> | 
      if (fabs(stheta) < 1e-6){ | 
| 277 | 
> | 
        psi = 0.0; | 
| 278 | 
> | 
        phi = atan2(-this->data_[1][0], this->data_[0][0]);   | 
| 279 | 
> | 
      } | 
| 280 | 
> | 
      // we only have one unique solution | 
| 281 | 
> | 
      else{     | 
| 282 | 
> | 
        phi = atan2(this->data_[2][0], -this->data_[2][1]); | 
| 283 | 
> | 
        psi = atan2(this->data_[0][2], this->data_[1][2]); | 
| 284 | 
> | 
      } | 
| 285 | 
  | 
 | 
| 286 | 
< | 
                //wrap phi and psi, make sure they are in the range from 0 to 2*Pi | 
| 287 | 
< | 
                if (phi < 0) | 
| 288 | 
< | 
                  phi += M_PI; | 
| 286 | 
> | 
      //wrap phi and psi, make sure they are in the range from 0 to 2*Pi | 
| 287 | 
> | 
      if (phi < 0) | 
| 288 | 
> | 
        phi += 2.0 * M_PI; | 
| 289 | 
  | 
 | 
| 290 | 
< | 
                if (psi < 0) | 
| 291 | 
< | 
                  psi += M_PI; | 
| 290 | 
> | 
      if (psi < 0) | 
| 291 | 
> | 
        psi += 2.0 * M_PI; | 
| 292 | 
  | 
 | 
| 293 | 
< | 
                myEuler[0] = phi; | 
| 294 | 
< | 
                myEuler[1] = theta; | 
| 295 | 
< | 
                myEuler[2] = psi; | 
| 296 | 
< | 
 | 
| 297 | 
< | 
                return myEuler; | 
| 298 | 
< | 
            } | 
| 293 | 
> | 
      myEuler[0] = phi; | 
| 294 | 
> | 
      myEuler[1] = theta; | 
| 295 | 
> | 
      myEuler[2] = psi; | 
| 296 | 
> | 
 | 
| 297 | 
> | 
      return myEuler; | 
| 298 | 
> | 
    } | 
| 299 | 
  | 
             | 
| 300 | 
< | 
            /** Returns the determinant of this matrix. */ | 
| 301 | 
< | 
            Real determinant() const { | 
| 302 | 
< | 
                Real x,y,z; | 
| 300 | 
> | 
    /** Returns the determinant of this matrix. */ | 
| 301 | 
> | 
    Real determinant() const { | 
| 302 | 
> | 
      Real x,y,z; | 
| 303 | 
  | 
 | 
| 304 | 
< | 
                x = data_[0][0] * (data_[1][1] * data_[2][2] - data_[1][2] * data_[2][1]); | 
| 305 | 
< | 
                y = data_[0][1] * (data_[1][2] * data_[2][0] - data_[1][0] * data_[2][2]); | 
| 306 | 
< | 
                z = data_[0][2] * (data_[1][0] * data_[2][1] - data_[1][1] * data_[2][0]); | 
| 304 | 
> | 
      x = this->data_[0][0] * (this->data_[1][1] * this->data_[2][2] - this->data_[1][2] * this->data_[2][1]); | 
| 305 | 
> | 
      y = this->data_[0][1] * (this->data_[1][2] * this->data_[2][0] - this->data_[1][0] * this->data_[2][2]); | 
| 306 | 
> | 
      z = this->data_[0][2] * (this->data_[1][0] * this->data_[2][1] - this->data_[1][1] * this->data_[2][0]); | 
| 307 | 
  | 
 | 
| 308 | 
< | 
                return(x + y + z); | 
| 309 | 
< | 
            }             | 
| 308 | 
> | 
      return(x + y + z); | 
| 309 | 
> | 
    }             | 
| 310 | 
> | 
 | 
| 311 | 
> | 
    /** Returns the trace of this matrix. */ | 
| 312 | 
> | 
    Real trace() const { | 
| 313 | 
> | 
      return this->data_[0][0] + this->data_[1][1] + this->data_[2][2]; | 
| 314 | 
> | 
    } | 
| 315 | 
  | 
             | 
| 316 | 
< | 
            /** | 
| 317 | 
< | 
             * Sets the value of this matrix to  the inversion of itself.  | 
| 318 | 
< | 
             * @note since simple algorithm can be applied to inverse the 3 by 3 matrix, we hide the  | 
| 319 | 
< | 
             * implementation of inverse in SquareMatrix class | 
| 320 | 
< | 
             */ | 
| 321 | 
< | 
            SquareMatrix3<Real>  inverse() { | 
| 322 | 
< | 
                SquareMatrix3<Real> m; | 
| 323 | 
< | 
                double det = determinant(); | 
| 324 | 
< | 
                if (fabs(det) <= oopse::epsilon) { | 
| 325 | 
< | 
                //"The method was called on a matrix with |determinant| <= 1e-6.", | 
| 326 | 
< | 
                //"This is a runtime or a programming error in your application."); | 
| 327 | 
< | 
                } | 
| 316 | 
> | 
    /** | 
| 317 | 
> | 
     * Sets the value of this matrix to  the inversion of itself.  | 
| 318 | 
> | 
     * @note since simple algorithm can be applied to inverse the 3 by 3 matrix, we hide the  | 
| 319 | 
> | 
     * implementation of inverse in SquareMatrix class | 
| 320 | 
> | 
     */ | 
| 321 | 
> | 
    SquareMatrix3<Real>  inverse() const { | 
| 322 | 
> | 
      SquareMatrix3<Real> m; | 
| 323 | 
> | 
      RealType det = determinant(); | 
| 324 | 
> | 
      if (fabs(det) <= oopse::epsilon) { | 
| 325 | 
> | 
        //"The method was called on a matrix with |determinant| <= 1e-6.", | 
| 326 | 
> | 
        //"This is a runtime or a programming error in your application."); | 
| 327 | 
> | 
        std::vector<int> zeroDiagElementIndex; | 
| 328 | 
> | 
        for (int i =0; i < 3; ++i) { | 
| 329 | 
> | 
            if (fabs(this->data_[i][i]) <= oopse::epsilon) { | 
| 330 | 
> | 
                zeroDiagElementIndex.push_back(i); | 
| 331 | 
> | 
            } | 
| 332 | 
> | 
        } | 
| 333 | 
  | 
 | 
| 334 | 
< | 
                m(0, 0) = data_[1][1]*data_[2][2] - data_[1][2]*data_[2][1]; | 
| 335 | 
< | 
                m(1, 0) = data_[1][2]*data_[2][0] - data_[1][0]*data_[2][2]; | 
| 336 | 
< | 
                m(2, 0) = data_[1][0]*data_[2][1] - data_[1][1]*data_[2][0]; | 
| 337 | 
< | 
                m(0, 1) = data_[2][1]*data_[0][2] - data_[2][2]*data_[0][1]; | 
| 269 | 
< | 
                m(1, 1) = data_[2][2]*data_[0][0] - data_[2][0]*data_[0][2]; | 
| 270 | 
< | 
                m(2, 1) = data_[2][0]*data_[0][1] - data_[2][1]*data_[0][0]; | 
| 271 | 
< | 
                m(0, 2) = data_[0][1]*data_[1][2] - data_[0][2]*data_[1][1]; | 
| 272 | 
< | 
                m(1, 2) = data_[0][2]*data_[1][0] - data_[0][0]*data_[1][2]; | 
| 273 | 
< | 
                m(2, 2) = data_[0][0]*data_[1][1] - data_[0][1]*data_[1][0]; | 
| 334 | 
> | 
        if (zeroDiagElementIndex.size() == 2) { | 
| 335 | 
> | 
            int index = zeroDiagElementIndex[0]; | 
| 336 | 
> | 
            m(index, index) = 1.0 / this->data_[index][index]; | 
| 337 | 
> | 
        }else if (zeroDiagElementIndex.size() == 1) { | 
| 338 | 
  | 
 | 
| 339 | 
< | 
                m /= det; | 
| 340 | 
< | 
                return m; | 
| 339 | 
> | 
            int a = (zeroDiagElementIndex[0] + 1) % 3; | 
| 340 | 
> | 
            int b = (zeroDiagElementIndex[0] + 2) %3; | 
| 341 | 
> | 
            RealType denom = this->data_[a][a] * this->data_[b][b] - this->data_[b][a]*this->data_[a][b]; | 
| 342 | 
> | 
            m(a, a) = this->data_[b][b] /denom; | 
| 343 | 
> | 
            m(b, a) = -this->data_[b][a]/denom; | 
| 344 | 
> | 
 | 
| 345 | 
> | 
            m(a,b) = -this->data_[a][b]/denom; | 
| 346 | 
> | 
            m(b, b) = this->data_[a][a]/denom; | 
| 347 | 
> | 
                 | 
| 348 | 
> | 
        } | 
| 349 | 
> | 
       | 
| 350 | 
> | 
/* | 
| 351 | 
> | 
        for(std::vector<int>::iterator iter = zeroDiagElementIndex.begin(); iter != zeroDiagElementIndex.end() ++iter) { | 
| 352 | 
> | 
            if (this->data_[*iter][0] > oopse::epsilon || this->data_[*iter][1] ||this->data_[*iter][2] || | 
| 353 | 
> | 
                this->data_[0][*iter] > oopse::epsilon || this->data_[1][*iter] ||this->data_[2][*iter] ) { | 
| 354 | 
> | 
                std::cout << "can not inverse matrix" << std::endl; | 
| 355 | 
  | 
            } | 
| 356 | 
+ | 
        } | 
| 357 | 
+ | 
*/ | 
| 358 | 
+ | 
      } else { | 
| 359 | 
  | 
 | 
| 360 | 
< | 
            void diagonalize(SquareMatrix3<Real>& a, Vector3<Real>& w, SquareMatrix3<Real>& v) { | 
| 361 | 
< | 
                int i,j,k,maxI; | 
| 362 | 
< | 
                Real tmp, maxVal; | 
| 363 | 
< | 
                Vector3<Real> v_maxI, v_k, v_j; | 
| 360 | 
> | 
          m(0, 0) = this->data_[1][1]*this->data_[2][2] - this->data_[1][2]*this->data_[2][1]; | 
| 361 | 
> | 
          m(1, 0) = this->data_[1][2]*this->data_[2][0] - this->data_[1][0]*this->data_[2][2]; | 
| 362 | 
> | 
          m(2, 0) = this->data_[1][0]*this->data_[2][1] - this->data_[1][1]*this->data_[2][0]; | 
| 363 | 
> | 
          m(0, 1) = this->data_[2][1]*this->data_[0][2] - this->data_[2][2]*this->data_[0][1]; | 
| 364 | 
> | 
          m(1, 1) = this->data_[2][2]*this->data_[0][0] - this->data_[2][0]*this->data_[0][2]; | 
| 365 | 
> | 
          m(2, 1) = this->data_[2][0]*this->data_[0][1] - this->data_[2][1]*this->data_[0][0]; | 
| 366 | 
> | 
          m(0, 2) = this->data_[0][1]*this->data_[1][2] - this->data_[0][2]*this->data_[1][1]; | 
| 367 | 
> | 
          m(1, 2) = this->data_[0][2]*this->data_[1][0] - this->data_[0][0]*this->data_[1][2]; | 
| 368 | 
> | 
          m(2, 2) = this->data_[0][0]*this->data_[1][1] - this->data_[0][1]*this->data_[1][0]; | 
| 369 | 
  | 
 | 
| 370 | 
< | 
                // diagonalize using Jacobi | 
| 371 | 
< | 
                jacobi(a, w, v); | 
| 370 | 
> | 
          m /= det; | 
| 371 | 
> | 
        } | 
| 372 | 
> | 
      return m; | 
| 373 | 
> | 
    } | 
| 374 | 
  | 
 | 
| 375 | 
< | 
                // if all the eigenvalues are the same, return identity matrix | 
| 376 | 
< | 
                if (w[0] == w[1] && w[0] == w[2] ){ | 
| 289 | 
< | 
                      v = SquareMatrix3<Real>::identity(); | 
| 290 | 
< | 
                      return | 
| 291 | 
< | 
                } | 
| 292 | 
< | 
 | 
| 293 | 
< | 
                // transpose temporarily, it makes it easier to sort the eigenvectors | 
| 294 | 
< | 
                v = v.tanspose();  | 
| 375 | 
> | 
    SquareMatrix3<Real> transpose() const{ | 
| 376 | 
> | 
      SquareMatrix3<Real> result; | 
| 377 | 
  | 
                 | 
| 378 | 
< | 
                // if two eigenvalues are the same, re-orthogonalize to optimally line | 
| 379 | 
< | 
                // up the eigenvectors with the x, y, and z axes | 
| 380 | 
< | 
                for (i = 0; i < 3; i++) { | 
| 299 | 
< | 
                    if (w((i+1)%3) == w((i+2)%3)) {// two eigenvalues are the same | 
| 300 | 
< | 
                    // find maximum element of the independant eigenvector | 
| 301 | 
< | 
                    maxVal = fabs(v(i, 0)); | 
| 302 | 
< | 
                    maxI = 0; | 
| 303 | 
< | 
                    for (j = 1; j < 3; j++) { | 
| 304 | 
< | 
                        if (maxVal < (tmp = fabs(v(i, j)))){ | 
| 305 | 
< | 
                            maxVal = tmp; | 
| 306 | 
< | 
                            maxI = j; | 
| 307 | 
< | 
                        } | 
| 308 | 
< | 
                    } | 
| 309 | 
< | 
                     | 
| 310 | 
< | 
                    // swap the eigenvector into its proper position | 
| 311 | 
< | 
                    if (maxI != i) { | 
| 312 | 
< | 
                        tmp = w(maxI); | 
| 313 | 
< | 
                        w(maxI) = w(i); | 
| 314 | 
< | 
                        w(i) = tmp; | 
| 378 | 
> | 
      for (unsigned int i = 0; i < 3; i++) | 
| 379 | 
> | 
        for (unsigned int j = 0; j < 3; j++)               | 
| 380 | 
> | 
          result(j, i) = this->data_[i][j]; | 
| 381 | 
  | 
 | 
| 382 | 
< | 
                        v.swapRow(i, maxI); | 
| 383 | 
< | 
                    } | 
| 384 | 
< | 
                    // maximum element of eigenvector should be positive | 
| 385 | 
< | 
                    if (v(maxI, maxI) < 0) { | 
| 386 | 
< | 
                        v(maxI, 0) = -v(maxI, 0); | 
| 387 | 
< | 
                        v(maxI, 1) = -v(maxI, 1); | 
| 388 | 
< | 
                        v(maxI, 2) = -v(maxI, 2); | 
| 389 | 
< | 
                    } | 
| 382 | 
> | 
      return result; | 
| 383 | 
> | 
    } | 
| 384 | 
> | 
    /** | 
| 385 | 
> | 
     * Extract the eigenvalues and eigenvectors from a 3x3 matrix. | 
| 386 | 
> | 
     * The eigenvectors (the columns of V) will be normalized.  | 
| 387 | 
> | 
     * The eigenvectors are aligned optimally with the x, y, and z | 
| 388 | 
> | 
     * axes respectively. | 
| 389 | 
> | 
     * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is | 
| 390 | 
> | 
     *     overwritten              | 
| 391 | 
> | 
     * @param w will contain the eigenvalues of the matrix On return of this function | 
| 392 | 
> | 
     * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are  | 
| 393 | 
> | 
     *    normalized and mutually orthogonal.               | 
| 394 | 
> | 
     * @warning a will be overwritten | 
| 395 | 
> | 
     */ | 
| 396 | 
> | 
    static void diagonalize(SquareMatrix3<Real>& a, Vector3<Real>& w, SquareMatrix3<Real>& v);  | 
| 397 | 
> | 
  }; | 
| 398 | 
> | 
  /*========================================================================= | 
| 399 | 
  | 
 | 
| 400 | 
< | 
                    // re-orthogonalize the other two eigenvectors | 
| 401 | 
< | 
                    j = (maxI+1)%3; | 
| 327 | 
< | 
                    k = (maxI+2)%3; | 
| 400 | 
> | 
  Program:   Visualization Toolkit | 
| 401 | 
> | 
  Module:    $RCSfile: SquareMatrix3.hpp,v $ | 
| 402 | 
  | 
 | 
| 403 | 
< | 
                    v(j, 0) = 0.0;  | 
| 404 | 
< | 
                    v(j, 1) = 0.0;  | 
| 405 | 
< | 
                    v(j, 2) = 0.0; | 
| 332 | 
< | 
                    v(j, j) = 1.0; | 
| 403 | 
> | 
  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen | 
| 404 | 
> | 
  All rights reserved. | 
| 405 | 
> | 
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details. | 
| 406 | 
  | 
 | 
| 407 | 
< | 
                    /** @todo */ | 
| 408 | 
< | 
                    v_maxI = v.getRow(maxI); | 
| 409 | 
< | 
                    v_j = v.getRow(j); | 
| 337 | 
< | 
                    v_k = cross(v_maxI, v_j); | 
| 338 | 
< | 
                    v_k.normailze(); | 
| 339 | 
< | 
                    v_j = cross(v_k, v_maxI); | 
| 340 | 
< | 
                    v.setRow(j, v_j); | 
| 341 | 
< | 
                    v.setRow(k, v_k); | 
| 407 | 
> | 
  This software is distributed WITHOUT ANY WARRANTY; without even | 
| 408 | 
> | 
  the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR | 
| 409 | 
> | 
  PURPOSE.  See the above copyright notice for more information. | 
| 410 | 
  | 
 | 
| 411 | 
+ | 
  =========================================================================*/ | 
| 412 | 
+ | 
  template<typename Real> | 
| 413 | 
+ | 
  void SquareMatrix3<Real>::diagonalize(SquareMatrix3<Real>& a, Vector3<Real>& w,  | 
| 414 | 
+ | 
                                        SquareMatrix3<Real>& v) { | 
| 415 | 
+ | 
    int i,j,k,maxI; | 
| 416 | 
+ | 
    Real tmp, maxVal; | 
| 417 | 
+ | 
    Vector3<Real> v_maxI, v_k, v_j; | 
| 418 | 
  | 
 | 
| 419 | 
< | 
                    // transpose vectors back to columns | 
| 420 | 
< | 
                    v = v.transpose(); | 
| 421 | 
< | 
                    return; | 
| 422 | 
< | 
                    } | 
| 423 | 
< | 
                } | 
| 419 | 
> | 
    // diagonalize using Jacobi | 
| 420 | 
> | 
    jacobi(a, w, v); | 
| 421 | 
> | 
    // if all the eigenvalues are the same, return identity matrix | 
| 422 | 
> | 
    if (w[0] == w[1] && w[0] == w[2] ) { | 
| 423 | 
> | 
      v = SquareMatrix3<Real>::identity(); | 
| 424 | 
> | 
      return; | 
| 425 | 
> | 
    } | 
| 426 | 
  | 
 | 
| 427 | 
< | 
                // the three eigenvalues are different, just sort the eigenvectors | 
| 428 | 
< | 
                // to align them with the x, y, and z axes | 
| 427 | 
> | 
    // transpose temporarily, it makes it easier to sort the eigenvectors | 
| 428 | 
> | 
    v = v.transpose();  | 
| 429 | 
> | 
         | 
| 430 | 
> | 
    // if two eigenvalues are the same, re-orthogonalize to optimally line | 
| 431 | 
> | 
    // up the eigenvectors with the x, y, and z axes | 
| 432 | 
> | 
    for (i = 0; i < 3; i++) { | 
| 433 | 
> | 
      if (w((i+1)%3) == w((i+2)%3)) {// two eigenvalues are the same | 
| 434 | 
> | 
        // find maximum element of the independant eigenvector | 
| 435 | 
> | 
        maxVal = fabs(v(i, 0)); | 
| 436 | 
> | 
        maxI = 0; | 
| 437 | 
> | 
        for (j = 1; j < 3; j++) { | 
| 438 | 
> | 
          if (maxVal < (tmp = fabs(v(i, j)))){ | 
| 439 | 
> | 
            maxVal = tmp; | 
| 440 | 
> | 
            maxI = j; | 
| 441 | 
> | 
          } | 
| 442 | 
> | 
        } | 
| 443 | 
> | 
             | 
| 444 | 
> | 
        // swap the eigenvector into its proper position | 
| 445 | 
> | 
        if (maxI != i) { | 
| 446 | 
> | 
          tmp = w(maxI); | 
| 447 | 
> | 
          w(maxI) = w(i); | 
| 448 | 
> | 
          w(i) = tmp; | 
| 449 | 
  | 
 | 
| 450 | 
< | 
                // find the vector with the largest x element, make that vector | 
| 451 | 
< | 
                // the first vector | 
| 452 | 
< | 
                maxVal = fabs(v(0, 0)); | 
| 453 | 
< | 
                maxI = 0; | 
| 454 | 
< | 
                for (i = 1; i < 3; i++) { | 
| 455 | 
< | 
                    if (maxVal < (tmp = fabs(v(i, 0)))) { | 
| 456 | 
< | 
                        maxVal = tmp; | 
| 457 | 
< | 
                        maxI = i; | 
| 361 | 
< | 
                    } | 
| 362 | 
< | 
                } | 
| 450 | 
> | 
          v.swapRow(i, maxI); | 
| 451 | 
> | 
        } | 
| 452 | 
> | 
        // maximum element of eigenvector should be positive | 
| 453 | 
> | 
        if (v(maxI, maxI) < 0) { | 
| 454 | 
> | 
          v(maxI, 0) = -v(maxI, 0); | 
| 455 | 
> | 
          v(maxI, 1) = -v(maxI, 1); | 
| 456 | 
> | 
          v(maxI, 2) = -v(maxI, 2); | 
| 457 | 
> | 
        } | 
| 458 | 
  | 
 | 
| 459 | 
< | 
                // swap eigenvalue and eigenvector | 
| 460 | 
< | 
                if (maxI != 0) { | 
| 461 | 
< | 
                    tmp = w(maxI); | 
| 367 | 
< | 
                    w(maxI) = w(0); | 
| 368 | 
< | 
                    w(0) = tmp; | 
| 369 | 
< | 
                    v.swapRow(maxI, 0); | 
| 370 | 
< | 
                } | 
| 371 | 
< | 
                // do the same for the y element | 
| 372 | 
< | 
                if (fabs(v(1, 1)) < fabs(v(2, 1))) { | 
| 373 | 
< | 
                    tmp = w(2); | 
| 374 | 
< | 
                    w(2) = w(1); | 
| 375 | 
< | 
                    w(1) = tmp; | 
| 376 | 
< | 
                    v.swapRow(2, 1); | 
| 377 | 
< | 
                } | 
| 459 | 
> | 
        // re-orthogonalize the other two eigenvectors | 
| 460 | 
> | 
        j = (maxI+1)%3; | 
| 461 | 
> | 
        k = (maxI+2)%3; | 
| 462 | 
  | 
 | 
| 463 | 
< | 
                // ensure that the sign of the eigenvectors is correct | 
| 464 | 
< | 
                for (i = 0; i < 2; i++) { | 
| 465 | 
< | 
                    if (v(i, i) < 0) { | 
| 466 | 
< | 
                        v(i, 0) = -v(i, 0); | 
| 383 | 
< | 
                        v(i, 1) = -v(i, 1); | 
| 384 | 
< | 
                        v(i, 2) = -v(i, 2); | 
| 385 | 
< | 
                    } | 
| 386 | 
< | 
                } | 
| 463 | 
> | 
        v(j, 0) = 0.0;  | 
| 464 | 
> | 
        v(j, 1) = 0.0;  | 
| 465 | 
> | 
        v(j, 2) = 0.0; | 
| 466 | 
> | 
        v(j, j) = 1.0; | 
| 467 | 
  | 
 | 
| 468 | 
< | 
                // set sign of final eigenvector to ensure that determinant is positive | 
| 469 | 
< | 
                if (determinant(v) < 0) { | 
| 470 | 
< | 
                    v(2, 0) = -v(2, 0); | 
| 471 | 
< | 
                    v(2, 1) = -v(2, 1); | 
| 472 | 
< | 
                    v(2, 2) = -v(2, 2); | 
| 473 | 
< | 
                } | 
| 468 | 
> | 
        /** @todo */ | 
| 469 | 
> | 
        v_maxI = v.getRow(maxI); | 
| 470 | 
> | 
        v_j = v.getRow(j); | 
| 471 | 
> | 
        v_k = cross(v_maxI, v_j); | 
| 472 | 
> | 
        v_k.normalize(); | 
| 473 | 
> | 
        v_j = cross(v_k, v_maxI); | 
| 474 | 
> | 
        v.setRow(j, v_j); | 
| 475 | 
> | 
        v.setRow(k, v_k); | 
| 476 | 
  | 
 | 
| 395 | 
– | 
                // transpose the eigenvectors back again | 
| 396 | 
– | 
                v = v.transpose(); | 
| 397 | 
– | 
                return ; | 
| 398 | 
– | 
            } | 
| 399 | 
– | 
    }; | 
| 477 | 
  | 
 | 
| 478 | 
< | 
    typedef SquareMatrix3<double> Mat3x3d; | 
| 479 | 
< | 
    typedef SquareMatrix3<double> RotMat3x3d; | 
| 478 | 
> | 
        // transpose vectors back to columns | 
| 479 | 
> | 
        v = v.transpose(); | 
| 480 | 
> | 
        return; | 
| 481 | 
> | 
      } | 
| 482 | 
> | 
    } | 
| 483 | 
  | 
 | 
| 484 | 
+ | 
    // the three eigenvalues are different, just sort the eigenvectors | 
| 485 | 
+ | 
    // to align them with the x, y, and z axes | 
| 486 | 
+ | 
 | 
| 487 | 
+ | 
    // find the vector with the largest x element, make that vector | 
| 488 | 
+ | 
    // the first vector | 
| 489 | 
+ | 
    maxVal = fabs(v(0, 0)); | 
| 490 | 
+ | 
    maxI = 0; | 
| 491 | 
+ | 
    for (i = 1; i < 3; i++) { | 
| 492 | 
+ | 
      if (maxVal < (tmp = fabs(v(i, 0)))) { | 
| 493 | 
+ | 
        maxVal = tmp; | 
| 494 | 
+ | 
        maxI = i; | 
| 495 | 
+ | 
      } | 
| 496 | 
+ | 
    } | 
| 497 | 
+ | 
 | 
| 498 | 
+ | 
    // swap eigenvalue and eigenvector | 
| 499 | 
+ | 
    if (maxI != 0) { | 
| 500 | 
+ | 
      tmp = w(maxI); | 
| 501 | 
+ | 
      w(maxI) = w(0); | 
| 502 | 
+ | 
      w(0) = tmp; | 
| 503 | 
+ | 
      v.swapRow(maxI, 0); | 
| 504 | 
+ | 
    } | 
| 505 | 
+ | 
    // do the same for the y element | 
| 506 | 
+ | 
    if (fabs(v(1, 1)) < fabs(v(2, 1))) { | 
| 507 | 
+ | 
      tmp = w(2); | 
| 508 | 
+ | 
      w(2) = w(1); | 
| 509 | 
+ | 
      w(1) = tmp; | 
| 510 | 
+ | 
      v.swapRow(2, 1); | 
| 511 | 
+ | 
    } | 
| 512 | 
+ | 
 | 
| 513 | 
+ | 
    // ensure that the sign of the eigenvectors is correct | 
| 514 | 
+ | 
    for (i = 0; i < 2; i++) { | 
| 515 | 
+ | 
      if (v(i, i) < 0) { | 
| 516 | 
+ | 
        v(i, 0) = -v(i, 0); | 
| 517 | 
+ | 
        v(i, 1) = -v(i, 1); | 
| 518 | 
+ | 
        v(i, 2) = -v(i, 2); | 
| 519 | 
+ | 
      } | 
| 520 | 
+ | 
    } | 
| 521 | 
+ | 
 | 
| 522 | 
+ | 
    // set sign of final eigenvector to ensure that determinant is positive | 
| 523 | 
+ | 
    if (v.determinant() < 0) { | 
| 524 | 
+ | 
      v(2, 0) = -v(2, 0); | 
| 525 | 
+ | 
      v(2, 1) = -v(2, 1); | 
| 526 | 
+ | 
      v(2, 2) = -v(2, 2); | 
| 527 | 
+ | 
    } | 
| 528 | 
+ | 
 | 
| 529 | 
+ | 
    // transpose the eigenvectors back again | 
| 530 | 
+ | 
    v = v.transpose(); | 
| 531 | 
+ | 
    return ; | 
| 532 | 
+ | 
  } | 
| 533 | 
+ | 
 | 
| 534 | 
+ | 
  /** | 
| 535 | 
+ | 
   * Return the multiplication of two matrixes  (m1 * m2).  | 
| 536 | 
+ | 
   * @return the multiplication of two matrixes | 
| 537 | 
+ | 
   * @param m1 the first matrix | 
| 538 | 
+ | 
   * @param m2 the second matrix | 
| 539 | 
+ | 
   */ | 
| 540 | 
+ | 
  template<typename Real>  | 
| 541 | 
+ | 
  inline SquareMatrix3<Real> operator *(const SquareMatrix3<Real>& m1, const SquareMatrix3<Real>& m2) { | 
| 542 | 
+ | 
    SquareMatrix3<Real> result; | 
| 543 | 
+ | 
 | 
| 544 | 
+ | 
    for (unsigned int i = 0; i < 3; i++) | 
| 545 | 
+ | 
      for (unsigned int j = 0; j < 3; j++) | 
| 546 | 
+ | 
        for (unsigned int k = 0; k < 3; k++) | 
| 547 | 
+ | 
          result(i, j)  += m1(i, k) * m2(k, j);                 | 
| 548 | 
+ | 
 | 
| 549 | 
+ | 
    return result; | 
| 550 | 
+ | 
  } | 
| 551 | 
+ | 
 | 
| 552 | 
+ | 
  template<typename Real>  | 
| 553 | 
+ | 
  inline SquareMatrix3<Real> outProduct(const Vector3<Real>& v1, const Vector3<Real>& v2) { | 
| 554 | 
+ | 
    SquareMatrix3<Real> result; | 
| 555 | 
+ | 
 | 
| 556 | 
+ | 
    for (unsigned int i = 0; i < 3; i++) { | 
| 557 | 
+ | 
      for (unsigned int j = 0; j < 3; j++) { | 
| 558 | 
+ | 
        result(i, j)  = v1[i] * v2[j];                 | 
| 559 | 
+ | 
      } | 
| 560 | 
+ | 
    } | 
| 561 | 
+ | 
             | 
| 562 | 
+ | 
    return result;         | 
| 563 | 
+ | 
  } | 
| 564 | 
+ | 
 | 
| 565 | 
+ | 
     | 
| 566 | 
+ | 
  typedef SquareMatrix3<RealType> Mat3x3d; | 
| 567 | 
+ | 
  typedef SquareMatrix3<RealType> RotMat3x3d; | 
| 568 | 
+ | 
 | 
| 569 | 
  | 
} //namespace oopse | 
| 570 | 
  | 
#endif // MATH_SQUAREMATRIX_HPP | 
| 571 | 
+ | 
 |