| 1 | 
gezelter | 
1600 | 
/* | 
| 2 | 
  | 
  | 
 * Matpack Wigner3jm special function imported and modified for use in | 
| 3 | 
  | 
  | 
 * OpenMD | 
| 4 | 
  | 
  | 
 *                                                                               | 
| 5 | 
  | 
  | 
 * Matpack Library Release 1.9.0                                                 | 
| 6 | 
  | 
  | 
 * Copyright (C) 1991-2003 by Berndt M. Gammel. All rights reserved.             | 
| 7 | 
  | 
  | 
 * | 
| 8 | 
  | 
  | 
 * Permission to use, copy, and distribute Matpack in its entirety | 
| 9 | 
  | 
  | 
 * and its documentation for non-commercial purpose and without fee | 
| 10 | 
  | 
  | 
 * is hereby granted, provided that this license information and | 
| 11 | 
  | 
  | 
 * copyright notice appear unmodified in all copies.  This software | 
| 12 | 
  | 
  | 
 * is provided 'as is' without express or implied warranty.  In no | 
| 13 | 
  | 
  | 
 * event will the author be held liable for any damages arising from | 
| 14 | 
  | 
  | 
 * the use of this software. | 
| 15 | 
  | 
  | 
 * | 
| 16 | 
  | 
  | 
 * Note that distributing Matpack 'bundled' in with any product is | 
| 17 | 
  | 
  | 
 * considered to be a 'commercial purpose'. | 
| 18 | 
  | 
  | 
 * | 
| 19 | 
  | 
  | 
 * The software may be modified for your own purposes, but modified | 
| 20 | 
  | 
  | 
 * versions may not be distributed without prior consent of the | 
| 21 | 
  | 
  | 
 * author. | 
| 22 | 
  | 
  | 
 *                                                                   | 
| 23 | 
  | 
  | 
 * Read the COPYRIGHT and README files in this distribution about | 
| 24 | 
  | 
  | 
 * registration and installation of Matpack. | 
| 25 | 
  | 
  | 
 */ | 
| 26 | 
  | 
  | 
 | 
| 27 | 
  | 
  | 
#include "Wigner3jm.hpp" | 
| 28 | 
  | 
  | 
#include <cmath>  | 
| 29 | 
  | 
  | 
#include <cfloat> | 
| 30 | 
  | 
  | 
#include <cstdio> | 
| 31 | 
  | 
  | 
#include "utils/simError.h" | 
| 32 | 
  | 
  | 
 | 
| 33 | 
  | 
  | 
namespace MATPACK { | 
| 34 | 
  | 
  | 
   | 
| 35 | 
  | 
  | 
  //-----------------------------------------------------------------------------// | 
| 36 | 
  | 
  | 
  // | 
| 37 | 
  | 
  | 
  // void ThreeJSymbolM (RealType l1, RealType l2, RealType l3, RealType m1,  | 
| 38 | 
  | 
  | 
  //                     RealType &m2min, RealType &m2max, RealType *thrcof, int ndim,  | 
| 39 | 
  | 
  | 
  //                     int &errflag) | 
| 40 | 
  | 
  | 
  // | 
| 41 | 
  | 
  | 
  // Evaluate the Wigner 3j symbol  | 
| 42 | 
  | 
  | 
  // | 
| 43 | 
  | 
  | 
  //       g(m2) = ( l1  l2     l3  ) | 
| 44 | 
  | 
  | 
  //               ( m1  m2  -m1-m2 ) | 
| 45 | 
  | 
  | 
  //  | 
| 46 | 
  | 
  | 
  // for all allowed values of m2, the other parameters being held fixed. | 
| 47 | 
  | 
  | 
  // | 
| 48 | 
  | 
  | 
  // Input Arguments: | 
| 49 | 
  | 
  | 
  // ---------------- | 
| 50 | 
  | 
  | 
  // | 
| 51 | 
  | 
  | 
  //   RealType l1  | 
| 52 | 
  | 
  | 
  //   RealType l2 | 
| 53 | 
  | 
  | 
  //   RealType l3 | 
| 54 | 
  | 
  | 
  //   RealType m1        Parameters in 3j symbol. | 
| 55 | 
  | 
  | 
  // | 
| 56 | 
  | 
  | 
  //   int  ndim          Declared length of thrcof in calling program. | 
| 57 | 
  | 
  | 
  // | 
| 58 | 
  | 
  | 
  // Output Arguments: | 
| 59 | 
  | 
  | 
  // ----------------- | 
| 60 | 
  | 
  | 
  // | 
| 61 | 
  | 
  | 
  //   RealType &m2min    Smallest allowable m2 in 3j symbol. | 
| 62 | 
  | 
  | 
  //   RealType &m2max    Largest allowable m2 in 3j symbol. | 
| 63 | 
  | 
  | 
  //   RealType *thrcof   Set of 3j coefficients generated by evaluating the | 
| 64 | 
  | 
  | 
  //                      3j symbol for all allowed values of m2.  thrcof(i) | 
| 65 | 
  | 
  | 
  //                      will contain g(m2min+i), i=0,2,...,m2max-m2min. | 
| 66 | 
  | 
  | 
  // | 
| 67 | 
  | 
  | 
  //   int &errflag       Error flag. | 
| 68 | 
  | 
  | 
  //                      errflag=0  No errors. | 
| 69 | 
  | 
  | 
  //                      errflag=1  Either l1 < abs(m1) or l1+abs(m1) non-integer. | 
| 70 | 
  | 
  | 
  //                      errflag=2  abs(l1-l2)<= l3 <= l1+l2 not satisfied. | 
| 71 | 
  | 
  | 
  //                      errflag=3  l1+l2+l3 not an integer. | 
| 72 | 
  | 
  | 
  //                      errflag=4  m2max-m2min not an integer. | 
| 73 | 
  | 
  | 
  //                      errflag=5  m2max less than m2min. | 
| 74 | 
  | 
  | 
  //                      errflag=6  ndim less than m2max-m2min+1. | 
| 75 | 
  | 
  | 
  // Description: | 
| 76 | 
  | 
  | 
  // ------------ | 
| 77 | 
  | 
  | 
  // | 
| 78 | 
  | 
  | 
  // Although conventionally the parameters of the vector addition | 
| 79 | 
  | 
  | 
  // coefficients satisfy certain restrictions, such as being integers | 
| 80 | 
  | 
  | 
  // or integers plus 1/2, the restrictions imposed on input to this | 
| 81 | 
  | 
  | 
  // subroutine are somewhat weaker. See, for example, Section 27.9 of | 
| 82 | 
  | 
  | 
  // Abramowitz and Stegun or Appendix C of Volume II of A. Messiah. | 
| 83 | 
  | 
  | 
  // | 
| 84 | 
  | 
  | 
  // The restrictions imposed by this subroutine are | 
| 85 | 
  | 
  | 
  // | 
| 86 | 
  | 
  | 
  //       1. l1 >= abs(m1) and l1+abs(m1) must be an integer | 
| 87 | 
  | 
  | 
  //       2. abs(l1-l2) <= l3 <= l1+l2 | 
| 88 | 
  | 
  | 
  //       3. l1+l2+l3 must be an integer | 
| 89 | 
  | 
  | 
  //       4. m2max-m2min must be an integer, where | 
| 90 | 
  | 
  | 
  //          m2max=min(l2,l3-m1) and m2min=max(-l2,-l3-m1) | 
| 91 | 
  | 
  | 
  // | 
| 92 | 
  | 
  | 
  // If the conventional restrictions are satisfied, then these | 
| 93 | 
  | 
  | 
  // restrictions are also met. | 
| 94 | 
  | 
  | 
  // | 
| 95 | 
  | 
  | 
  // The user should be cautious in using input parameters that do | 
| 96 | 
  | 
  | 
  // not satisfy the conventional restrictions. For example, the | 
| 97 | 
  | 
  | 
  // the subroutine produces values of | 
| 98 | 
  | 
  | 
  //       g(m2) = (0.75 1.50   1.75  ) | 
| 99 | 
  | 
  | 
  //               (0.25  m2  -0.25-m2) | 
| 100 | 
  | 
  | 
  // for m2=-1.5,-0.5,0.5,1.5 but none of the symmetry properties of the | 
| 101 | 
  | 
  | 
  // 3j symbol, set forth on page 1056 of Messiah, is satisfied. | 
| 102 | 
  | 
  | 
  // | 
| 103 | 
  | 
  | 
  // The subroutine generates g(m2min), g(m2min+1), ..., g(m2max)  | 
| 104 | 
  | 
  | 
  // where m2min and m2max are defined above. The sequence g(m2) is  | 
| 105 | 
  | 
  | 
  // generated by a three-term recurrence algorithm with scaling to  | 
| 106 | 
  | 
  | 
  // control overflow. Both backward and forward recurrence are used to  | 
| 107 | 
  | 
  | 
  // maintain numerical stability. The two recurrence sequences are  | 
| 108 | 
  | 
  | 
  // matched at an interior point and are normalized from the unitary  | 
| 109 | 
  | 
  | 
  // property of 3j coefficients and Wigner's phase convention.  | 
| 110 | 
  | 
  | 
  // | 
| 111 | 
  | 
  | 
  // The algorithm is suited to applications in which large quantum  | 
| 112 | 
  | 
  | 
  // numbers arise, such as in molecular dynamics.  | 
| 113 | 
  | 
  | 
  // | 
| 114 | 
  | 
  | 
  // References: | 
| 115 | 
  | 
  | 
  // ----------- | 
| 116 | 
  | 
  | 
  //  1. Abramowitz, M., and Stegun, I. A., Eds., Handbook | 
| 117 | 
  | 
  | 
  //     of Mathematical Functions with Formulas, Graphs | 
| 118 | 
  | 
  | 
  //     and Mathematical Tables, NBS Applied Mathematics | 
| 119 | 
  | 
  | 
  //     Series 55, June 1964 and subsequent printings. | 
| 120 | 
  | 
  | 
  //  2. Messiah, Albert., Quantum Mechanics, Volume II, | 
| 121 | 
  | 
  | 
  //     North-Holland Publishing Company, 1963. | 
| 122 | 
  | 
  | 
  //  3. Schulten, Klaus and Gordon, Roy G., Exact recursive | 
| 123 | 
  | 
  | 
  //     evaluation of 3j and 6j coefficients for quantum- | 
| 124 | 
  | 
  | 
  //     mechanical coupling of angular momenta, J Math | 
| 125 | 
  | 
  | 
  //     Phys, v 16, no. 10, October 1975, pp. 1961-1970. | 
| 126 | 
  | 
  | 
  //  4. Schulten, Klaus and Gordon, Roy G., Semiclassical | 
| 127 | 
  | 
  | 
  //     approximations to 3j  and 6j coefficients for | 
| 128 | 
  | 
  | 
  //     quantum-mechanical coupling of angular momenta, | 
| 129 | 
  | 
  | 
  //     J Math Phys, v 16, no. 10, October 1975, pp. 1971-1988. | 
| 130 | 
  | 
  | 
  //  5. Schulten, Klaus and Gordon, Roy G., Recursive | 
| 131 | 
  | 
  | 
  //     evaluation of 3j and 6j coefficients, Computer | 
| 132 | 
  | 
  | 
  //     Phys Comm, v 11, 1976, pp. 269-278. | 
| 133 | 
  | 
  | 
  //  6. SLATEC library, category  C19,  | 
| 134 | 
  | 
  | 
  //     double precision algorithm DRC3JM.F | 
| 135 | 
  | 
  | 
  //     Keywords: 3j coefficients, 3j symbols, Clebsch-Gordan coefficients,  | 
| 136 | 
  | 
  | 
  //               Racah coefficients, vector addition coefficients, | 
| 137 | 
  | 
  | 
  //               Wigner coefficients | 
| 138 | 
  | 
  | 
  //     Author:   Gordon, R. G., Harvard University | 
| 139 | 
  | 
  | 
  //               Schulten, K., Max Planck Institute | 
| 140 | 
  | 
  | 
  //     Revision history  (YYMMDD) | 
| 141 | 
  | 
  | 
  //     750101  DATE WRITTEN  | 
| 142 | 
  | 
  | 
  //     880515  SLATEC prologue added by G. C. Nielson, NBS; parameters  | 
| 143 | 
  | 
  | 
  //             HUGE and TINY revised to depend on D1MACH.  | 
| 144 | 
  | 
  | 
  //     891229  Prologue description rewritten; other prologue sections  | 
| 145 | 
  | 
  | 
  //             revised; MMATCH (location of match point for recurrences)  | 
| 146 | 
  | 
  | 
  //             removed from argument list; argument IER changed to serve  | 
| 147 | 
  | 
  | 
  //             only as an error flag (previously, in cases without error,  | 
| 148 | 
  | 
  | 
  //             it returned the number of scalings); number of error codes  | 
| 149 | 
  | 
  | 
  //             increased to provide more precise error information;  | 
| 150 | 
  | 
  | 
  //             program comments revised; SLATEC error handler calls  | 
| 151 | 
  | 
  | 
  //             introduced to enable printing of error messages to meet  | 
| 152 | 
  | 
  | 
  //             SLATEC standards. These changes were done by D. W. Lozier,  | 
| 153 | 
  | 
  | 
  //             M. A. McClain and J. M. Smith of the National Institute  | 
| 154 | 
  | 
  | 
  //             of Standards and Technology, formerly NBS.  | 
| 155 | 
  | 
  | 
  //     910415  Mixed type expressions eliminated; variable C1 initialized;  | 
| 156 | 
  | 
  | 
  //             description of THRCOF expanded. These changes were done by  | 
| 157 | 
  | 
  | 
  //             D. W. Lozier. | 
| 158 | 
  | 
  | 
  //  7. Rewritting of the SLATEX algorithm in C++ and adaption to the | 
| 159 | 
  | 
  | 
  //     Matpack C++ Numerics and Graphics Library by Berndt M. Gammel | 
| 160 | 
  | 
  | 
  //     in June 1997. | 
| 161 | 
  | 
  | 
  // | 
| 162 | 
  | 
  | 
  //-----------------------------------------------------------------------------// | 
| 163 | 
  | 
  | 
   | 
| 164 | 
  | 
  | 
   | 
| 165 | 
  | 
  | 
  void Wigner3jm(RealType l1, RealType l2, RealType l3, RealType m1,  | 
| 166 | 
  | 
  | 
                 RealType &m2min, RealType &m2max, RealType *thrcof, int ndim,  | 
| 167 | 
  | 
  | 
                 int &errflag) { | 
| 168 | 
  | 
  | 
     | 
| 169 | 
  | 
  | 
    // In single precision, the largest floating point number is not | 
| 170 | 
  | 
  | 
    // the same as in double precision: | 
| 171 | 
  | 
  | 
#ifdef SINGLE_PRECISION | 
| 172 | 
  | 
  | 
    RealType MaxFloat = FLT_MAX; | 
| 173 | 
  | 
  | 
#else | 
| 174 | 
  | 
  | 
    RealType MaxFloat = DBL_MAX; | 
| 175 | 
  | 
  | 
#endif | 
| 176 | 
  | 
  | 
     | 
| 177 | 
  | 
  | 
    const RealType zero = 0.0, eps = 0.01, one = 1.0, two = 2.0; | 
| 178 | 
  | 
  | 
     | 
| 179 | 
  | 
  | 
    int nfin, nlim, i, n, index, lstep, nfinp1, nfinp2, nfinp3, nstep2; | 
| 180 | 
  | 
  | 
    RealType oldfac, dv, newfac, sumbac = 0.0, thresh, a1s, sumfor, sumuni,  | 
| 181 | 
  | 
  | 
      sum1, sum2, x, y, m2, m3, x1, x2, x3, y1, y2, y3, cnorm,  | 
| 182 | 
  | 
  | 
      ratio, a1, c1, c2, c1old = 0.0, sign1, sign2; | 
| 183 | 
  | 
  | 
     | 
| 184 | 
  | 
  | 
    // Parameter adjustments | 
| 185 | 
  | 
  | 
    --thrcof; | 
| 186 | 
  | 
  | 
     | 
| 187 | 
  | 
  | 
    errflag = 0; | 
| 188 | 
  | 
  | 
     | 
| 189 | 
  | 
  | 
    // "hugeRealType" is the square root of one twentieth of the | 
| 190 | 
  | 
  | 
    // largest floating point number, approximately. | 
| 191 | 
  | 
  | 
 | 
| 192 | 
  | 
  | 
    RealType hugeRealType   = sqrt(MaxFloat / 20.0), | 
| 193 | 
  | 
  | 
      srhuge = sqrt(hugeRealType), | 
| 194 | 
  | 
  | 
      tiny   = one / hugeRealType, | 
| 195 | 
  | 
  | 
      srtiny = one / srhuge; | 
| 196 | 
  | 
  | 
     | 
| 197 | 
  | 
  | 
    // lmatch = zero | 
| 198 | 
  | 
  | 
     | 
| 199 | 
  | 
  | 
    //  Check error conditions 1, 2, and 3.  | 
| 200 | 
  | 
  | 
    if (l1 - fabs(m1) + eps < zero  | 
| 201 | 
  | 
  | 
        || fmod(l1 + fabs(m1) + eps, one) >= eps + eps) { | 
| 202 | 
  | 
  | 
      errflag = 1; | 
| 203 | 
  | 
  | 
       | 
| 204 | 
  | 
  | 
      sprintf( painCave.errMsg, "%s: %s", "ThreeJSymbolM", | 
| 205 | 
  | 
  | 
               "l1-abs(m1) less than zero or l1+abs(m1) not integer."); | 
| 206 | 
  | 
  | 
      painCave.isFatal = 1; | 
| 207 | 
  | 
  | 
      simError(); | 
| 208 | 
  | 
  | 
       | 
| 209 | 
  | 
  | 
      return; | 
| 210 | 
  | 
  | 
    } else if (l1+l2-l3 < -eps || l1-l2+l3 < -eps || -(l1) + l2+l3 < -eps) { | 
| 211 | 
  | 
  | 
      errflag = 2; | 
| 212 | 
  | 
  | 
       | 
| 213 | 
  | 
  | 
      sprintf( painCave.errMsg, "%s: %s", "ThreeJSymbolM", | 
| 214 | 
  | 
  | 
               "l1, l2, l3 do not satisfy triangular condition."); | 
| 215 | 
  | 
  | 
      painCave.isFatal = 1; | 
| 216 | 
  | 
  | 
      simError(); | 
| 217 | 
  | 
  | 
       | 
| 218 | 
  | 
  | 
      return; | 
| 219 | 
  | 
  | 
    } else if (fmod(l1 + l2 + l3 + eps, one) >= eps + eps) { | 
| 220 | 
  | 
  | 
      errflag = 3; | 
| 221 | 
  | 
  | 
       | 
| 222 | 
  | 
  | 
      sprintf( painCave.errMsg,  "%s: %s", "ThreeJSymbolM", | 
| 223 | 
  | 
  | 
               "l1+l2+l3 not integer."); | 
| 224 | 
  | 
  | 
      painCave.isFatal = 1; | 
| 225 | 
  | 
  | 
      simError(); | 
| 226 | 
  | 
  | 
       | 
| 227 | 
  | 
  | 
      return; | 
| 228 | 
  | 
  | 
    } | 
| 229 | 
  | 
  | 
     | 
| 230 | 
  | 
  | 
    // limits for m2  | 
| 231 | 
  | 
  | 
    m2min = MpMax(-l2,-l3-m1); | 
| 232 | 
  | 
  | 
    m2max = MpMin(l2,l3-m1); | 
| 233 | 
  | 
  | 
     | 
| 234 | 
  | 
  | 
    // Check error condition 4.  | 
| 235 | 
  | 
  | 
    if (fmod(m2max - m2min + eps, one) >= eps + eps) { | 
| 236 | 
  | 
  | 
      errflag = 4; | 
| 237 | 
  | 
  | 
       | 
| 238 | 
  | 
  | 
      sprintf( painCave.errMsg, "%s: %s", "ThreeJSymbolM", | 
| 239 | 
  | 
  | 
               "m2max-m2min not integer."); | 
| 240 | 
  | 
  | 
      painCave.isFatal = 1; | 
| 241 | 
  | 
  | 
      simError(); | 
| 242 | 
  | 
  | 
       | 
| 243 | 
  | 
  | 
      return; | 
| 244 | 
  | 
  | 
    } | 
| 245 | 
  | 
  | 
    if (m2min < m2max - eps) goto L20; | 
| 246 | 
  | 
  | 
    if (m2min < m2max + eps) goto L10; | 
| 247 | 
  | 
  | 
     | 
| 248 | 
  | 
  | 
    //  Check error condition 5.  | 
| 249 | 
  | 
  | 
    errflag = 5; | 
| 250 | 
  | 
  | 
     | 
| 251 | 
  | 
  | 
    sprintf( painCave.errMsg, "%s: %s", "ThreeJSymbolM", | 
| 252 | 
  | 
  | 
             "m2min greater than m2max."); | 
| 253 | 
  | 
  | 
    painCave.isFatal = 1; | 
| 254 | 
  | 
  | 
    simError(); | 
| 255 | 
  | 
  | 
     | 
| 256 | 
  | 
  | 
    return; | 
| 257 | 
  | 
  | 
     | 
| 258 | 
  | 
  | 
    // This is reached in case that m2 and m3 can take only one value. | 
| 259 | 
  | 
  | 
  L10: | 
| 260 | 
  | 
  | 
    // mscale = 0  | 
| 261 | 
  | 
  | 
    thrcof[1] = (odd(int(fabs(l2-l3-m1)+eps)) ? -one : one) / sqrt(l1+l2+l3+one); | 
| 262 | 
  | 
  | 
    return; | 
| 263 | 
  | 
  | 
     | 
| 264 | 
  | 
  | 
    // This is reached in case that M1 and M2 take more than one | 
| 265 | 
  | 
  | 
    // value. | 
| 266 | 
  | 
  | 
  L20: | 
| 267 | 
  | 
  | 
    // mscale = 0  | 
| 268 | 
  | 
  | 
    nfin = int(m2max - m2min + one + eps); | 
| 269 | 
  | 
  | 
    if (ndim - nfin >= 0) goto L23; | 
| 270 | 
  | 
  | 
     | 
| 271 | 
  | 
  | 
    // Check error condition 6.  | 
| 272 | 
  | 
  | 
     | 
| 273 | 
  | 
  | 
    errflag = 6; | 
| 274 | 
  | 
  | 
    sprintf( painCave.errMsg, "%s: %s", "ThreeJSymbolM", | 
| 275 | 
  | 
  | 
             "Dimension of result array for 3j coefficients too small."); | 
| 276 | 
  | 
  | 
    painCave.isFatal = 1; | 
| 277 | 
  | 
  | 
    simError(); | 
| 278 | 
  | 
  | 
     | 
| 279 | 
  | 
  | 
    return; | 
| 280 | 
  | 
  | 
     | 
| 281 | 
  | 
  | 
    //  Start of forward recursion from m2 = m2min  | 
| 282 | 
  | 
  | 
     | 
| 283 | 
  | 
  | 
  L23: | 
| 284 | 
  | 
  | 
    m2 = m2min; | 
| 285 | 
  | 
  | 
    thrcof[1] = srtiny; | 
| 286 | 
  | 
  | 
    newfac = 0.0; | 
| 287 | 
  | 
  | 
    c1 = 0.0; | 
| 288 | 
  | 
  | 
    sum1 = tiny; | 
| 289 | 
  | 
  | 
     | 
| 290 | 
  | 
  | 
    lstep = 1; | 
| 291 | 
  | 
  | 
  L30: | 
| 292 | 
  | 
  | 
    ++lstep; | 
| 293 | 
  | 
  | 
    m2 += one; | 
| 294 | 
  | 
  | 
    m3 = -m1 - m2; | 
| 295 | 
  | 
  | 
     | 
| 296 | 
  | 
  | 
    oldfac = newfac; | 
| 297 | 
  | 
  | 
    a1 = (l2 - m2 + one) * (l2 + m2) * (l3 + m3 + one) * (l3 - m3); | 
| 298 | 
  | 
  | 
    newfac = sqrt(a1); | 
| 299 | 
  | 
  | 
     | 
| 300 | 
  | 
  | 
    dv = (l1+l2+l3+one) * (l2+l3-l1) - (l2-m2+one) * (l3+m3+one)  | 
| 301 | 
  | 
  | 
      - (l2+m2-one) * (l3-m3-one); | 
| 302 | 
  | 
  | 
     | 
| 303 | 
  | 
  | 
    if (lstep - 2 > 0) c1old = fabs(c1); | 
| 304 | 
  | 
  | 
     | 
| 305 | 
  | 
  | 
    // L32: | 
| 306 | 
  | 
  | 
    c1 = -dv / newfac; | 
| 307 | 
  | 
  | 
     | 
| 308 | 
  | 
  | 
    if (lstep > 2) goto L60; | 
| 309 | 
  | 
  | 
     | 
| 310 | 
  | 
  | 
    //  If m2 = m2min + 1, the third term in the recursion equation | 
| 311 | 
  | 
  | 
    //  vanishes, hence | 
| 312 | 
  | 
  | 
     | 
| 313 | 
  | 
  | 
    x = srtiny * c1; | 
| 314 | 
  | 
  | 
    thrcof[2] = x; | 
| 315 | 
  | 
  | 
    sum1 += tiny * c1 * c1; | 
| 316 | 
  | 
  | 
    if (lstep == nfin) goto L220; | 
| 317 | 
  | 
  | 
    goto L30; | 
| 318 | 
  | 
  | 
     | 
| 319 | 
  | 
  | 
  L60: | 
| 320 | 
  | 
  | 
    c2 = -oldfac / newfac; | 
| 321 | 
  | 
  | 
     | 
| 322 | 
  | 
  | 
    // Recursion to the next 3j coefficient  | 
| 323 | 
  | 
  | 
    x = c1 * thrcof[lstep-1] + c2 * thrcof[lstep-2]; | 
| 324 | 
  | 
  | 
    thrcof[lstep] = x; | 
| 325 | 
  | 
  | 
    sumfor = sum1; | 
| 326 | 
  | 
  | 
    sum1 += x * x; | 
| 327 | 
  | 
  | 
    if (lstep == nfin) goto L100; | 
| 328 | 
  | 
  | 
     | 
| 329 | 
  | 
  | 
    // See if last unnormalized 3j coefficient exceeds srhuge  | 
| 330 | 
  | 
  | 
     | 
| 331 | 
  | 
  | 
    if (fabs(x) < srhuge) goto L80; | 
| 332 | 
  | 
  | 
     | 
| 333 | 
  | 
  | 
    // This is reached if last 3j coefficient larger than srhuge, so | 
| 334 | 
  | 
  | 
    // that the recursion series thrcof(1), ... , thrcof(lstep) has to | 
| 335 | 
  | 
  | 
    // be rescaled to prevent overflow | 
| 336 | 
  | 
  | 
     | 
| 337 | 
  | 
  | 
    // mscale = mscale + 1  | 
| 338 | 
  | 
  | 
    for (i = 1; i <= lstep; ++i) { | 
| 339 | 
  | 
  | 
      if (fabs(thrcof[i]) < srtiny) thrcof[i] = zero; | 
| 340 | 
  | 
  | 
      thrcof[i] /= srhuge; | 
| 341 | 
  | 
  | 
    } | 
| 342 | 
  | 
  | 
    sum1 /= hugeRealType; | 
| 343 | 
  | 
  | 
    sumfor /= hugeRealType; | 
| 344 | 
  | 
  | 
    x /= srhuge; | 
| 345 | 
  | 
  | 
     | 
| 346 | 
  | 
  | 
    // As long as abs(c1) is decreasing, the recursion proceeds | 
| 347 | 
  | 
  | 
    // towards increasing 3j values and, hence, is numerically stable. | 
| 348 | 
  | 
  | 
    // Once an increase of abs(c1) is detected, the recursion | 
| 349 | 
  | 
  | 
    // direction is reversed. | 
| 350 | 
  | 
  | 
     | 
| 351 | 
  | 
  | 
  L80: | 
| 352 | 
  | 
  | 
    if (c1old - fabs(c1) > 0.0) goto L30; | 
| 353 | 
  | 
  | 
     | 
| 354 | 
  | 
  | 
    //  Keep three 3j coefficients around mmatch for comparison later | 
| 355 | 
  | 
  | 
    //  with backward recursion values. | 
| 356 | 
  | 
  | 
     | 
| 357 | 
  | 
  | 
  L100: | 
| 358 | 
  | 
  | 
    // mmatch = m2 - 1  | 
| 359 | 
  | 
  | 
    nstep2 = nfin - lstep + 3; | 
| 360 | 
  | 
  | 
    x1 = x; | 
| 361 | 
  | 
  | 
    x2 = thrcof[lstep-1]; | 
| 362 | 
  | 
  | 
    x3 = thrcof[lstep-2]; | 
| 363 | 
  | 
  | 
     | 
| 364 | 
  | 
  | 
    //  Starting backward recursion from m2max taking nstep2 steps, so | 
| 365 | 
  | 
  | 
    //  that forwards and backwards recursion overlap at the three | 
| 366 | 
  | 
  | 
    //  points m2 = mmatch+1, mmatch, mmatch-1. | 
| 367 | 
  | 
  | 
     | 
| 368 | 
  | 
  | 
    nfinp1 = nfin + 1; | 
| 369 | 
  | 
  | 
    nfinp2 = nfin + 2; | 
| 370 | 
  | 
  | 
    nfinp3 = nfin + 3; | 
| 371 | 
  | 
  | 
    thrcof[nfin] = srtiny; | 
| 372 | 
  | 
  | 
    sum2 = tiny; | 
| 373 | 
  | 
  | 
     | 
| 374 | 
  | 
  | 
    m2 = m2max + two; | 
| 375 | 
  | 
  | 
    lstep = 1; | 
| 376 | 
  | 
  | 
  L110: | 
| 377 | 
  | 
  | 
    ++lstep; | 
| 378 | 
  | 
  | 
    m2 -= one; | 
| 379 | 
  | 
  | 
    m3 = -m1 - m2; | 
| 380 | 
  | 
  | 
    oldfac = newfac; | 
| 381 | 
  | 
  | 
    a1s = (l2-m2+two) * (l2+m2-one) * (l3+m3+two) * (l3-m3-one); | 
| 382 | 
  | 
  | 
    newfac = sqrt(a1s); | 
| 383 | 
  | 
  | 
    dv = (l1+l2+l3+one) * (l2+l3-l1) - (l2-m2+one) * (l3+m3+one) | 
| 384 | 
  | 
  | 
      - (l2+m2-one) * (l3-m3-one); | 
| 385 | 
  | 
  | 
    c1 = -dv / newfac; | 
| 386 | 
  | 
  | 
    if (lstep > 2) goto L120; | 
| 387 | 
  | 
  | 
     | 
| 388 | 
  | 
  | 
    // if m2 = m2max + 1 the third term in the recursion equation | 
| 389 | 
  | 
  | 
    // vanishes | 
| 390 | 
  | 
  | 
     | 
| 391 | 
  | 
  | 
    y = srtiny * c1; | 
| 392 | 
  | 
  | 
    thrcof[nfin - 1] = y; | 
| 393 | 
  | 
  | 
    if (lstep == nstep2) goto L200; | 
| 394 | 
  | 
  | 
    sumbac = sum2; | 
| 395 | 
  | 
  | 
    sum2 += y * y; | 
| 396 | 
  | 
  | 
    goto L110; | 
| 397 | 
  | 
  | 
     | 
| 398 | 
  | 
  | 
  L120: | 
| 399 | 
  | 
  | 
    c2 = -oldfac / newfac; | 
| 400 | 
  | 
  | 
     | 
| 401 | 
  | 
  | 
    // Recursion to the next 3j coefficient  | 
| 402 | 
  | 
  | 
     | 
| 403 | 
  | 
  | 
    y = c1 * thrcof[nfinp2 - lstep] + c2 * thrcof[nfinp3 - lstep]; | 
| 404 | 
  | 
  | 
     | 
| 405 | 
  | 
  | 
    if (lstep == nstep2) goto L200; | 
| 406 | 
  | 
  | 
     | 
| 407 | 
  | 
  | 
    thrcof[nfinp1 - lstep] = y; | 
| 408 | 
  | 
  | 
    sumbac = sum2; | 
| 409 | 
  | 
  | 
    sum2 += y * y; | 
| 410 | 
  | 
  | 
     | 
| 411 | 
  | 
  | 
    // See if last 3j coefficient exceeds SRHUGE  | 
| 412 | 
  | 
  | 
     | 
| 413 | 
  | 
  | 
    if (fabs(y) < srhuge) goto L110; | 
| 414 | 
  | 
  | 
     | 
| 415 | 
  | 
  | 
    // This is reached if last 3j coefficient larger than srhuge, so | 
| 416 | 
  | 
  | 
    // that the recursion series | 
| 417 | 
  | 
  | 
    // thrcof(nfin), ... , thrcof(nfin-lstep+1)  | 
| 418 | 
  | 
  | 
    // has to be rescaled to prevent overflow. | 
| 419 | 
  | 
  | 
     | 
| 420 | 
  | 
  | 
    // mscale = mscale + 1  | 
| 421 | 
  | 
  | 
    for (i = 1; i <= lstep; ++i) { | 
| 422 | 
  | 
  | 
      index = nfin - i + 1; | 
| 423 | 
  | 
  | 
      if (fabs(thrcof[index]) < srtiny) thrcof[index] = zero; | 
| 424 | 
  | 
  | 
      thrcof[index] /= srhuge; | 
| 425 | 
  | 
  | 
    } | 
| 426 | 
  | 
  | 
    sum2 /= hugeRealType; | 
| 427 | 
  | 
  | 
    sumbac /= hugeRealType; | 
| 428 | 
  | 
  | 
     | 
| 429 | 
  | 
  | 
    goto L110; | 
| 430 | 
  | 
  | 
     | 
| 431 | 
  | 
  | 
    //  The forward recursion 3j coefficients x1, x2, x3 are to be | 
| 432 | 
  | 
  | 
    //  matched with the corresponding backward recursion values y1, | 
| 433 | 
  | 
  | 
    //  y2, y3. | 
| 434 | 
  | 
  | 
     | 
| 435 | 
  | 
  | 
  L200: | 
| 436 | 
  | 
  | 
    y3 = y; | 
| 437 | 
  | 
  | 
    y2 = thrcof[nfinp2-lstep]; | 
| 438 | 
  | 
  | 
    y1 = thrcof[nfinp3-lstep]; | 
| 439 | 
  | 
  | 
     | 
| 440 | 
  | 
  | 
    //  Determine now ratio such that yi = ratio * xi (i=1,2,3) holds | 
| 441 | 
  | 
  | 
    //  with minimal error. | 
| 442 | 
  | 
  | 
     | 
| 443 | 
  | 
  | 
    ratio = (x1*y1 + x2*y2 + x3*y3) / (x1*x1 + x2*x2 + x3*x3); | 
| 444 | 
  | 
  | 
    nlim = nfin - nstep2 + 1; | 
| 445 | 
  | 
  | 
     | 
| 446 | 
  | 
  | 
    if (fabs(ratio) < one) goto L211; | 
| 447 | 
  | 
  | 
    for (n = 1; n <= nlim; ++n) | 
| 448 | 
  | 
  | 
      thrcof[n] = ratio * thrcof[n]; | 
| 449 | 
  | 
  | 
    sumuni = ratio * ratio * sumfor + sumbac; | 
| 450 | 
  | 
  | 
    goto L230; | 
| 451 | 
  | 
  | 
     | 
| 452 | 
  | 
  | 
  L211: | 
| 453 | 
  | 
  | 
    ++nlim; | 
| 454 | 
  | 
  | 
    ratio = one / ratio; | 
| 455 | 
  | 
  | 
    for (n = nlim; n <= nfin; ++n)  | 
| 456 | 
  | 
  | 
      thrcof[n] = ratio * thrcof[n]; | 
| 457 | 
  | 
  | 
    sumuni = sumfor + ratio * ratio * sumbac; | 
| 458 | 
  | 
  | 
    goto L230; | 
| 459 | 
  | 
  | 
     | 
| 460 | 
  | 
  | 
  L220: | 
| 461 | 
  | 
  | 
    sumuni = sum1; | 
| 462 | 
  | 
  | 
     | 
| 463 | 
  | 
  | 
    // Normalize 3j coefficients  | 
| 464 | 
  | 
  | 
     | 
| 465 | 
  | 
  | 
  L230: | 
| 466 | 
  | 
  | 
    cnorm = one / sqrt((l1+l1+one) * sumuni); | 
| 467 | 
  | 
  | 
     | 
| 468 | 
  | 
  | 
    // Sign convention for last 3j coefficient determines overall | 
| 469 | 
  | 
  | 
    // phase | 
| 470 | 
  | 
  | 
     | 
| 471 | 
  | 
  | 
    sign1 = sign(thrcof[nfin]); | 
| 472 | 
  | 
  | 
    sign2 = odd(int(fabs(l2-l3-m1)+eps)) ? -one : one; | 
| 473 | 
  | 
  | 
    if (sign1 * sign2 <= 0.0) goto L235; | 
| 474 | 
  | 
  | 
    else goto L236; | 
| 475 | 
  | 
  | 
     | 
| 476 | 
  | 
  | 
  L235: | 
| 477 | 
  | 
  | 
    cnorm = -cnorm; | 
| 478 | 
  | 
  | 
     | 
| 479 | 
  | 
  | 
  L236: | 
| 480 | 
  | 
  | 
    if (fabs(cnorm) < one) goto L250; | 
| 481 | 
  | 
  | 
     | 
| 482 | 
  | 
  | 
    for (n = 1; n <= nfin; ++n) | 
| 483 | 
  | 
  | 
      thrcof[n] = cnorm * thrcof[n]; | 
| 484 | 
  | 
  | 
    return; | 
| 485 | 
  | 
  | 
     | 
| 486 | 
  | 
  | 
  L250: | 
| 487 | 
  | 
  | 
    thresh = tiny / fabs(cnorm); | 
| 488 | 
  | 
  | 
    for (n = 1; n <= nfin; ++n) { | 
| 489 | 
  | 
  | 
      if (fabs(thrcof[n]) < thresh) thrcof[n] = zero; | 
| 490 | 
  | 
  | 
      thrcof[n] = cnorm * thrcof[n]; | 
| 491 | 
  | 
  | 
    } | 
| 492 | 
  | 
  | 
  } | 
| 493 | 
  | 
  | 
} |