| 1 | gezelter | 1741 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ | 
| 2 |  |  |  | 
| 3 |  |  | /* | 
| 4 |  |  | Copyright (C) 2006 Ferdinando Ametrano | 
| 5 |  |  | Copyright (C) 2009 Frédéric Degraeve | 
| 6 |  |  |  | 
| 7 |  |  | This file is part of QuantLib, a free-software/open-source library | 
| 8 |  |  | for financial quantitative analysts and developers - http://quantlib.org/ | 
| 9 |  |  |  | 
| 10 |  |  | QuantLib is free software: you can redistribute it and/or modify it | 
| 11 |  |  | under the terms of the QuantLib license.  You should have received a | 
| 12 |  |  | copy of the license along with this program; if not, please email | 
| 13 |  |  | <quantlib-dev@lists.sf.net>. The license is also available online at | 
| 14 |  |  | <http://quantlib.org/license.shtml>. | 
| 15 |  |  |  | 
| 16 |  |  | This program is distributed in the hope that it will be useful, but WITHOUT | 
| 17 |  |  | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
| 18 |  |  | FOR A PARTICULAR PURPOSE.  See the license for more details. | 
| 19 |  |  | */ | 
| 20 |  |  |  | 
| 21 |  |  | #include "optimization/LineSearchBasedMethod.hpp" | 
| 22 |  |  | #include "optimization/Problem.hpp" | 
| 23 |  |  | #include "optimization/LineSearch.hpp" | 
| 24 |  |  | #include "optimization/Armijo.hpp" | 
| 25 |  |  | #include "utils/NumericConstant.hpp" | 
| 26 |  |  |  | 
| 27 |  |  | using namespace OpenMD; | 
| 28 |  |  | namespace QuantLib { | 
| 29 |  |  |  | 
| 30 |  |  | LineSearchBasedMethod::LineSearchBasedMethod(LineSearch* lineSearch) | 
| 31 |  |  | : lineSearch_(lineSearch) { | 
| 32 |  |  | if (!lineSearch_) | 
| 33 |  |  | lineSearch_ = new ArmijoLineSearch(); | 
| 34 |  |  | } | 
| 35 |  |  |  | 
| 36 |  |  | EndCriteria::Type | 
| 37 |  |  | LineSearchBasedMethod::minimize(Problem& P, | 
| 38 |  |  | const EndCriteria& endCriteria) { | 
| 39 |  |  | // Initializations | 
| 40 |  |  | RealType ftol = endCriteria.functionEpsilon(); | 
| 41 |  |  | size_t maxStationaryStateIterations_ | 
| 42 |  |  | = endCriteria.maxStationaryStateIterations(); | 
| 43 |  |  | EndCriteria::Type ecType = EndCriteria::None;   // reset end criteria | 
| 44 |  |  | P.reset();                                      // reset problem | 
| 45 |  |  | DynamicVector<RealType> x_ = P.currentValue(); // store the starting point | 
| 46 |  |  | size_t iterationNumber_ = 0; | 
| 47 |  |  | // dimension line search | 
| 48 |  |  | lineSearch_->searchDirection() = DynamicVector<RealType>(x_.size()); | 
| 49 |  |  | bool done = false; | 
| 50 |  |  |  | 
| 51 |  |  | // function and squared norm of gradient values; | 
| 52 |  |  | RealType fnew, fold, gold2; | 
| 53 |  |  | RealType fdiff; | 
| 54 |  |  | // classical initial value for line-search step | 
| 55 |  |  | RealType t = 1.0; | 
| 56 |  |  | // Set gradient g at the size of the optimization problem | 
| 57 |  |  | // search direction | 
| 58 |  |  | size_t sz = lineSearch_->searchDirection().size(); | 
| 59 |  |  | DynamicVector<RealType> prevGradient(sz), d(sz), sddiff(sz), direction(sz); | 
| 60 |  |  | // Initialize objective function, gradient prevGradient and | 
| 61 |  |  | // search direction | 
| 62 |  |  | P.setFunctionValue(P.valueAndGradient(prevGradient, x_)); | 
| 63 |  |  | P.setGradientNormValue(P.DotProduct(prevGradient, prevGradient)); | 
| 64 |  |  | lineSearch_->searchDirection() = -prevGradient; | 
| 65 |  |  |  | 
| 66 |  |  | bool first_time = true; | 
| 67 |  |  | // Loop over iterations | 
| 68 |  |  | do { | 
| 69 |  |  | // Linesearch | 
| 70 |  |  | if (!first_time) | 
| 71 |  |  | prevGradient = lineSearch_->lastGradient(); | 
| 72 |  |  | t = (*lineSearch_)(P, ecType, endCriteria, t); | 
| 73 |  |  | // don't throw: it can fail just because maxIterations exceeded | 
| 74 |  |  | //QL_REQUIRE(lineSearch_->succeed(), "line-search failed!"); | 
| 75 |  |  | if (lineSearch_->succeed()) | 
| 76 |  |  | { | 
| 77 |  |  | // Updates | 
| 78 |  |  |  | 
| 79 |  |  | // New point | 
| 80 |  |  | x_ = lineSearch_->lastX(); | 
| 81 |  |  | // New function value | 
| 82 |  |  | fold = P.functionValue(); | 
| 83 |  |  | P.setFunctionValue(lineSearch_->lastFunctionValue()); | 
| 84 |  |  | // New gradient and search direction vectors | 
| 85 |  |  |  | 
| 86 |  |  | // orthogonalization coef | 
| 87 |  |  | gold2 = P.gradientNormValue(); | 
| 88 |  |  | P.setGradientNormValue(lineSearch_->lastGradientNorm2()); | 
| 89 |  |  |  | 
| 90 |  |  | // conjugate gradient search direction | 
| 91 |  |  | direction = getUpdatedDirection(P, gold2, prevGradient); | 
| 92 |  |  |  | 
| 93 |  |  | sddiff = direction - lineSearch_->searchDirection(); | 
| 94 |  |  | lineSearch_->searchDirection() = direction; | 
| 95 |  |  | // Now compute accuracy and check end criteria | 
| 96 |  |  | // Numerical Recipes exit strategy on fx (see NR in C++, p.423) | 
| 97 |  |  | fnew = P.functionValue(); | 
| 98 |  |  | fdiff = 2.0*std::fabs(fnew-fold) / | 
| 99 |  |  | (std::fabs(fnew) + std::fabs(fold) + NumericConstant::epsilon); | 
| 100 |  |  | std::cerr << "fdiff = " << fdiff << "ftol = " << ftol << "\n"; | 
| 101 |  |  | if (fdiff < ftol || | 
| 102 |  |  | endCriteria.checkMaxIterations(iterationNumber_, ecType)) { | 
| 103 |  |  | endCriteria.checkStationaryFunctionValue(0.0, 0.0, | 
| 104 |  |  | maxStationaryStateIterations_, ecType); | 
| 105 |  |  | endCriteria.checkMaxIterations(iterationNumber_, ecType); | 
| 106 |  |  | return ecType; | 
| 107 |  |  | } | 
| 108 |  |  | P.setCurrentValue(x_);      // update problem current value | 
| 109 |  |  | ++iterationNumber_;         // Increase iteration number | 
| 110 |  |  | std::cerr << "in = " << iterationNumber_ << "\n"; | 
| 111 |  |  | first_time = false; | 
| 112 |  |  | } else { | 
| 113 |  |  | done = true; | 
| 114 |  |  | } | 
| 115 |  |  | } while (!done); | 
| 116 |  |  | P.setCurrentValue(x_); | 
| 117 |  |  | return ecType; | 
| 118 |  |  | } | 
| 119 |  |  |  | 
| 120 |  |  | } |