| 1 | gezelter | 1539 | /* | 
| 2 |  |  | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | chuckv | 1538 | * | 
| 4 |  |  | * The University of Notre Dame grants you ("Licensee") a | 
| 5 |  |  | * non-exclusive, royalty free, license to use, modify and | 
| 6 |  |  | * redistribute this software in source and binary code form, provided | 
| 7 |  |  | * that the following conditions are met: | 
| 8 |  |  | * | 
| 9 |  |  | * 1. Redistributions of source code must retain the above copyright | 
| 10 |  |  | *    notice, this list of conditions and the following disclaimer. | 
| 11 |  |  | * | 
| 12 |  |  | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 |  |  | *    notice, this list of conditions and the following disclaimer in the | 
| 14 |  |  | *    documentation and/or other materials provided with the | 
| 15 |  |  | *    distribution. | 
| 16 |  |  | * | 
| 17 |  |  | * This software is provided "AS IS," without a warranty of any | 
| 18 |  |  | * kind. All express or implied conditions, representations and | 
| 19 |  |  | * warranties, including any implied warranty of merchantability, | 
| 20 |  |  | * fitness for a particular purpose or non-infringement, are hereby | 
| 21 |  |  | * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 |  |  | * be liable for any damages suffered by licensee as a result of | 
| 23 |  |  | * using, modifying or distributing the software or its | 
| 24 |  |  | * derivatives. In no event will the University of Notre Dame or its | 
| 25 |  |  | * licensors be liable for any lost revenue, profit or data, or for | 
| 26 |  |  | * direct, indirect, special, consequential, incidental or punitive | 
| 27 |  |  | * damages, however caused and regardless of the theory of liability, | 
| 28 |  |  | * arising out of the use of or inability to use software, even if the | 
| 29 |  |  | * University of Notre Dame has been advised of the possibility of | 
| 30 |  |  | * such damages. | 
| 31 |  |  | * | 
| 32 |  |  | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 |  |  | * research, please cite the appropriate papers when you publish your | 
| 34 |  |  | * work.  Good starting points are: | 
| 35 |  |  | * | 
| 36 |  |  | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 |  |  | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | gezelter | 1850 | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). | 
| 39 | gezelter | 1665 | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 |  |  | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | chuckv | 1538 | */ | 
| 42 | gezelter | 1549 | #include "parallel/ForceMatrixDecomposition.hpp" | 
| 43 | gezelter | 1539 | #include "math/SquareMatrix3.hpp" | 
| 44 | gezelter | 1544 | #include "nonbonded/NonBondedInteraction.hpp" | 
| 45 |  |  | #include "brains/SnapshotManager.hpp" | 
| 46 | gezelter | 1570 | #include "brains/PairList.hpp" | 
| 47 | chuckv | 1538 |  | 
| 48 | gezelter | 1541 | using namespace std; | 
| 49 | gezelter | 1539 | namespace OpenMD { | 
| 50 | chuckv | 1538 |  | 
| 51 | gezelter | 1593 | ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) { | 
| 52 |  |  |  | 
| 53 |  |  | // In a parallel computation, row and colum scans must visit all | 
| 54 |  |  | // surrounding cells (not just the 14 upper triangular blocks that | 
| 55 |  |  | // are used when the processor can see all pairs) | 
| 56 |  |  | #ifdef IS_MPI | 
| 57 | gezelter | 1612 | cellOffsets_.clear(); | 
| 58 |  |  | cellOffsets_.push_back( Vector3i(-1,-1,-1) ); | 
| 59 |  |  | cellOffsets_.push_back( Vector3i( 0,-1,-1) ); | 
| 60 |  |  | cellOffsets_.push_back( Vector3i( 1,-1,-1) ); | 
| 61 |  |  | cellOffsets_.push_back( Vector3i(-1, 0,-1) ); | 
| 62 |  |  | cellOffsets_.push_back( Vector3i( 0, 0,-1) ); | 
| 63 |  |  | cellOffsets_.push_back( Vector3i( 1, 0,-1) ); | 
| 64 |  |  | cellOffsets_.push_back( Vector3i(-1, 1,-1) ); | 
| 65 |  |  | cellOffsets_.push_back( Vector3i( 0, 1,-1) ); | 
| 66 |  |  | cellOffsets_.push_back( Vector3i( 1, 1,-1) ); | 
| 67 | gezelter | 1593 | cellOffsets_.push_back( Vector3i(-1,-1, 0) ); | 
| 68 |  |  | cellOffsets_.push_back( Vector3i( 0,-1, 0) ); | 
| 69 |  |  | cellOffsets_.push_back( Vector3i( 1,-1, 0) ); | 
| 70 | gezelter | 1612 | cellOffsets_.push_back( Vector3i(-1, 0, 0) ); | 
| 71 |  |  | cellOffsets_.push_back( Vector3i( 0, 0, 0) ); | 
| 72 |  |  | cellOffsets_.push_back( Vector3i( 1, 0, 0) ); | 
| 73 |  |  | cellOffsets_.push_back( Vector3i(-1, 1, 0) ); | 
| 74 |  |  | cellOffsets_.push_back( Vector3i( 0, 1, 0) ); | 
| 75 |  |  | cellOffsets_.push_back( Vector3i( 1, 1, 0) ); | 
| 76 |  |  | cellOffsets_.push_back( Vector3i(-1,-1, 1) ); | 
| 77 |  |  | cellOffsets_.push_back( Vector3i( 0,-1, 1) ); | 
| 78 |  |  | cellOffsets_.push_back( Vector3i( 1,-1, 1) ); | 
| 79 | gezelter | 1593 | cellOffsets_.push_back( Vector3i(-1, 0, 1) ); | 
| 80 | gezelter | 1612 | cellOffsets_.push_back( Vector3i( 0, 0, 1) ); | 
| 81 |  |  | cellOffsets_.push_back( Vector3i( 1, 0, 1) ); | 
| 82 |  |  | cellOffsets_.push_back( Vector3i(-1, 1, 1) ); | 
| 83 |  |  | cellOffsets_.push_back( Vector3i( 0, 1, 1) ); | 
| 84 |  |  | cellOffsets_.push_back( Vector3i( 1, 1, 1) ); | 
| 85 | gezelter | 1593 | #endif | 
| 86 |  |  | } | 
| 87 |  |  |  | 
| 88 |  |  |  | 
| 89 | gezelter | 1544 | /** | 
| 90 |  |  | * distributeInitialData is essentially a copy of the older fortran | 
| 91 |  |  | * SimulationSetup | 
| 92 |  |  | */ | 
| 93 | gezelter | 1549 | void ForceMatrixDecomposition::distributeInitialData() { | 
| 94 | gezelter | 1551 | snap_ = sman_->getCurrentSnapshot(); | 
| 95 |  |  | storageLayout_ = sman_->getStorageLayout(); | 
| 96 | gezelter | 1571 | ff_ = info_->getForceField(); | 
| 97 | gezelter | 1567 | nLocal_ = snap_->getNumberOfAtoms(); | 
| 98 | gezelter | 1723 |  | 
| 99 | gezelter | 1577 | nGroups_ = info_->getNLocalCutoffGroups(); | 
| 100 | gezelter | 1569 | // gather the information for atomtype IDs (atids): | 
| 101 | gezelter | 1583 | idents = info_->getIdentArray(); | 
| 102 | gezelter | 1569 | AtomLocalToGlobal = info_->getGlobalAtomIndices(); | 
| 103 |  |  | cgLocalToGlobal = info_->getGlobalGroupIndices(); | 
| 104 |  |  | vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); | 
| 105 | gezelter | 1586 |  | 
| 106 | gezelter | 1581 | massFactors = info_->getMassFactors(); | 
| 107 | gezelter | 1584 |  | 
| 108 | gezelter | 1587 | PairList* excludes = info_->getExcludedInteractions(); | 
| 109 |  |  | PairList* oneTwo = info_->getOneTwoInteractions(); | 
| 110 |  |  | PairList* oneThree = info_->getOneThreeInteractions(); | 
| 111 |  |  | PairList* oneFour = info_->getOneFourInteractions(); | 
| 112 | gezelter | 1723 |  | 
| 113 |  |  | if (needVelocities_) | 
| 114 |  |  | snap_->cgData.setStorageLayout(DataStorage::dslPosition | | 
| 115 |  |  | DataStorage::dslVelocity); | 
| 116 |  |  | else | 
| 117 |  |  | snap_->cgData.setStorageLayout(DataStorage::dslPosition); | 
| 118 |  |  |  | 
| 119 | gezelter | 1567 | #ifdef IS_MPI | 
| 120 |  |  |  | 
| 121 | gezelter | 1593 | MPI::Intracomm row = rowComm.getComm(); | 
| 122 |  |  | MPI::Intracomm col = colComm.getComm(); | 
| 123 | chuckv | 1538 |  | 
| 124 | gezelter | 1593 | AtomPlanIntRow = new Plan<int>(row, nLocal_); | 
| 125 |  |  | AtomPlanRealRow = new Plan<RealType>(row, nLocal_); | 
| 126 |  |  | AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_); | 
| 127 |  |  | AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_); | 
| 128 |  |  | AtomPlanPotRow = new Plan<potVec>(row, nLocal_); | 
| 129 | gezelter | 1541 |  | 
| 130 | gezelter | 1593 | AtomPlanIntColumn = new Plan<int>(col, nLocal_); | 
| 131 |  |  | AtomPlanRealColumn = new Plan<RealType>(col, nLocal_); | 
| 132 |  |  | AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_); | 
| 133 |  |  | AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_); | 
| 134 |  |  | AtomPlanPotColumn = new Plan<potVec>(col, nLocal_); | 
| 135 | gezelter | 1551 |  | 
| 136 | gezelter | 1593 | cgPlanIntRow = new Plan<int>(row, nGroups_); | 
| 137 |  |  | cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_); | 
| 138 |  |  | cgPlanIntColumn = new Plan<int>(col, nGroups_); | 
| 139 |  |  | cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_); | 
| 140 | gezelter | 1567 |  | 
| 141 | gezelter | 1593 | nAtomsInRow_ = AtomPlanIntRow->getSize(); | 
| 142 |  |  | nAtomsInCol_ = AtomPlanIntColumn->getSize(); | 
| 143 |  |  | nGroupsInRow_ = cgPlanIntRow->getSize(); | 
| 144 |  |  | nGroupsInCol_ = cgPlanIntColumn->getSize(); | 
| 145 |  |  |  | 
| 146 | gezelter | 1551 | // Modify the data storage objects with the correct layouts and sizes: | 
| 147 | gezelter | 1567 | atomRowData.resize(nAtomsInRow_); | 
| 148 | gezelter | 1551 | atomRowData.setStorageLayout(storageLayout_); | 
| 149 | gezelter | 1567 | atomColData.resize(nAtomsInCol_); | 
| 150 | gezelter | 1551 | atomColData.setStorageLayout(storageLayout_); | 
| 151 | gezelter | 1567 | cgRowData.resize(nGroupsInRow_); | 
| 152 | gezelter | 1551 | cgRowData.setStorageLayout(DataStorage::dslPosition); | 
| 153 | gezelter | 1567 | cgColData.resize(nGroupsInCol_); | 
| 154 | gezelter | 1723 | if (needVelocities_) | 
| 155 |  |  | // we only need column velocities if we need them. | 
| 156 |  |  | cgColData.setStorageLayout(DataStorage::dslPosition | | 
| 157 |  |  | DataStorage::dslVelocity); | 
| 158 |  |  | else | 
| 159 |  |  | cgColData.setStorageLayout(DataStorage::dslPosition); | 
| 160 |  |  |  | 
| 161 | gezelter | 1577 | identsRow.resize(nAtomsInRow_); | 
| 162 |  |  | identsCol.resize(nAtomsInCol_); | 
| 163 | gezelter | 1549 |  | 
| 164 | gezelter | 1593 | AtomPlanIntRow->gather(idents, identsRow); | 
| 165 |  |  | AtomPlanIntColumn->gather(idents, identsCol); | 
| 166 | gezelter | 1549 |  | 
| 167 | gezelter | 1589 | // allocate memory for the parallel objects | 
| 168 | gezelter | 1591 | atypesRow.resize(nAtomsInRow_); | 
| 169 |  |  | atypesCol.resize(nAtomsInCol_); | 
| 170 |  |  |  | 
| 171 |  |  | for (int i = 0; i < nAtomsInRow_; i++) | 
| 172 |  |  | atypesRow[i] = ff_->getAtomType(identsRow[i]); | 
| 173 |  |  | for (int i = 0; i < nAtomsInCol_; i++) | 
| 174 |  |  | atypesCol[i] = ff_->getAtomType(identsCol[i]); | 
| 175 |  |  |  | 
| 176 | gezelter | 1589 | pot_row.resize(nAtomsInRow_); | 
| 177 |  |  | pot_col.resize(nAtomsInCol_); | 
| 178 |  |  |  | 
| 179 | gezelter | 1760 | expot_row.resize(nAtomsInRow_); | 
| 180 |  |  | expot_col.resize(nAtomsInCol_); | 
| 181 |  |  |  | 
| 182 | gezelter | 1591 | AtomRowToGlobal.resize(nAtomsInRow_); | 
| 183 |  |  | AtomColToGlobal.resize(nAtomsInCol_); | 
| 184 | gezelter | 1593 | AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); | 
| 185 |  |  | AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); | 
| 186 |  |  |  | 
| 187 | gezelter | 1591 | cgRowToGlobal.resize(nGroupsInRow_); | 
| 188 |  |  | cgColToGlobal.resize(nGroupsInCol_); | 
| 189 | gezelter | 1593 | cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal); | 
| 190 |  |  | cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal); | 
| 191 | gezelter | 1541 |  | 
| 192 | gezelter | 1591 | massFactorsRow.resize(nAtomsInRow_); | 
| 193 |  |  | massFactorsCol.resize(nAtomsInCol_); | 
| 194 | gezelter | 1593 | AtomPlanRealRow->gather(massFactors, massFactorsRow); | 
| 195 |  |  | AtomPlanRealColumn->gather(massFactors, massFactorsCol); | 
| 196 | gezelter | 1569 |  | 
| 197 |  |  | groupListRow_.clear(); | 
| 198 | gezelter | 1577 | groupListRow_.resize(nGroupsInRow_); | 
| 199 | gezelter | 1569 | for (int i = 0; i < nGroupsInRow_; i++) { | 
| 200 |  |  | int gid = cgRowToGlobal[i]; | 
| 201 |  |  | for (int j = 0; j < nAtomsInRow_; j++) { | 
| 202 |  |  | int aid = AtomRowToGlobal[j]; | 
| 203 |  |  | if (globalGroupMembership[aid] == gid) | 
| 204 |  |  | groupListRow_[i].push_back(j); | 
| 205 |  |  | } | 
| 206 |  |  | } | 
| 207 |  |  |  | 
| 208 |  |  | groupListCol_.clear(); | 
| 209 | gezelter | 1577 | groupListCol_.resize(nGroupsInCol_); | 
| 210 | gezelter | 1569 | for (int i = 0; i < nGroupsInCol_; i++) { | 
| 211 |  |  | int gid = cgColToGlobal[i]; | 
| 212 |  |  | for (int j = 0; j < nAtomsInCol_; j++) { | 
| 213 |  |  | int aid = AtomColToGlobal[j]; | 
| 214 |  |  | if (globalGroupMembership[aid] == gid) | 
| 215 |  |  | groupListCol_[i].push_back(j); | 
| 216 |  |  | } | 
| 217 |  |  | } | 
| 218 |  |  |  | 
| 219 | gezelter | 1587 | excludesForAtom.clear(); | 
| 220 |  |  | excludesForAtom.resize(nAtomsInRow_); | 
| 221 | gezelter | 1579 | toposForAtom.clear(); | 
| 222 |  |  | toposForAtom.resize(nAtomsInRow_); | 
| 223 |  |  | topoDist.clear(); | 
| 224 |  |  | topoDist.resize(nAtomsInRow_); | 
| 225 | gezelter | 1570 | for (int i = 0; i < nAtomsInRow_; i++) { | 
| 226 | gezelter | 1571 | int iglob = AtomRowToGlobal[i]; | 
| 227 | gezelter | 1579 |  | 
| 228 | gezelter | 1570 | for (int j = 0; j < nAtomsInCol_; j++) { | 
| 229 | gezelter | 1579 | int jglob = AtomColToGlobal[j]; | 
| 230 |  |  |  | 
| 231 | gezelter | 1587 | if (excludes->hasPair(iglob, jglob)) | 
| 232 |  |  | excludesForAtom[i].push_back(j); | 
| 233 | gezelter | 1579 |  | 
| 234 | gezelter | 1587 | if (oneTwo->hasPair(iglob, jglob)) { | 
| 235 | gezelter | 1579 | toposForAtom[i].push_back(j); | 
| 236 |  |  | topoDist[i].push_back(1); | 
| 237 |  |  | } else { | 
| 238 | gezelter | 1587 | if (oneThree->hasPair(iglob, jglob)) { | 
| 239 | gezelter | 1579 | toposForAtom[i].push_back(j); | 
| 240 |  |  | topoDist[i].push_back(2); | 
| 241 |  |  | } else { | 
| 242 | gezelter | 1587 | if (oneFour->hasPair(iglob, jglob)) { | 
| 243 | gezelter | 1579 | toposForAtom[i].push_back(j); | 
| 244 |  |  | topoDist[i].push_back(3); | 
| 245 |  |  | } | 
| 246 |  |  | } | 
| 247 | gezelter | 1570 | } | 
| 248 |  |  | } | 
| 249 |  |  | } | 
| 250 |  |  |  | 
| 251 | gezelter | 1613 | #else | 
| 252 | gezelter | 1587 | excludesForAtom.clear(); | 
| 253 |  |  | excludesForAtom.resize(nLocal_); | 
| 254 | gezelter | 1579 | toposForAtom.clear(); | 
| 255 |  |  | toposForAtom.resize(nLocal_); | 
| 256 |  |  | topoDist.clear(); | 
| 257 |  |  | topoDist.resize(nLocal_); | 
| 258 | gezelter | 1569 |  | 
| 259 | gezelter | 1570 | for (int i = 0; i < nLocal_; i++) { | 
| 260 |  |  | int iglob = AtomLocalToGlobal[i]; | 
| 261 | gezelter | 1579 |  | 
| 262 | gezelter | 1570 | for (int j = 0; j < nLocal_; j++) { | 
| 263 | gezelter | 1579 | int jglob = AtomLocalToGlobal[j]; | 
| 264 |  |  |  | 
| 265 | gezelter | 1616 | if (excludes->hasPair(iglob, jglob)) | 
| 266 | gezelter | 1587 | excludesForAtom[i].push_back(j); | 
| 267 | gezelter | 1579 |  | 
| 268 | gezelter | 1587 | if (oneTwo->hasPair(iglob, jglob)) { | 
| 269 | gezelter | 1579 | toposForAtom[i].push_back(j); | 
| 270 |  |  | topoDist[i].push_back(1); | 
| 271 |  |  | } else { | 
| 272 | gezelter | 1587 | if (oneThree->hasPair(iglob, jglob)) { | 
| 273 | gezelter | 1579 | toposForAtom[i].push_back(j); | 
| 274 |  |  | topoDist[i].push_back(2); | 
| 275 |  |  | } else { | 
| 276 | gezelter | 1587 | if (oneFour->hasPair(iglob, jglob)) { | 
| 277 | gezelter | 1579 | toposForAtom[i].push_back(j); | 
| 278 |  |  | topoDist[i].push_back(3); | 
| 279 |  |  | } | 
| 280 |  |  | } | 
| 281 | gezelter | 1570 | } | 
| 282 |  |  | } | 
| 283 | gezelter | 1579 | } | 
| 284 | gezelter | 1613 | #endif | 
| 285 |  |  |  | 
| 286 |  |  | // allocate memory for the parallel objects | 
| 287 |  |  | atypesLocal.resize(nLocal_); | 
| 288 |  |  |  | 
| 289 |  |  | for (int i = 0; i < nLocal_; i++) | 
| 290 |  |  | atypesLocal[i] = ff_->getAtomType(idents[i]); | 
| 291 |  |  |  | 
| 292 |  |  | groupList_.clear(); | 
| 293 |  |  | groupList_.resize(nGroups_); | 
| 294 |  |  | for (int i = 0; i < nGroups_; i++) { | 
| 295 |  |  | int gid = cgLocalToGlobal[i]; | 
| 296 |  |  | for (int j = 0; j < nLocal_; j++) { | 
| 297 |  |  | int aid = AtomLocalToGlobal[j]; | 
| 298 |  |  | if (globalGroupMembership[aid] == gid) { | 
| 299 |  |  | groupList_[i].push_back(j); | 
| 300 |  |  | } | 
| 301 |  |  | } | 
| 302 |  |  | } | 
| 303 |  |  |  | 
| 304 |  |  |  | 
| 305 | gezelter | 1579 | createGtypeCutoffMap(); | 
| 306 | gezelter | 1587 |  | 
| 307 | gezelter | 1576 | } | 
| 308 |  |  |  | 
| 309 |  |  | void ForceMatrixDecomposition::createGtypeCutoffMap() { | 
| 310 | gezelter | 1586 |  | 
| 311 | gezelter | 1576 | RealType tol = 1e-6; | 
| 312 | gezelter | 1592 | largestRcut_ = 0.0; | 
| 313 | gezelter | 1576 | int atid; | 
| 314 |  |  | set<AtomType*> atypes = info_->getSimulatedAtomTypes(); | 
| 315 | gezelter | 1592 |  | 
| 316 | gezelter | 1587 | map<int, RealType> atypeCutoff; | 
| 317 | gezelter | 1583 |  | 
| 318 | gezelter | 1579 | for (set<AtomType*>::iterator at = atypes.begin(); | 
| 319 |  |  | at != atypes.end(); ++at){ | 
| 320 | gezelter | 1576 | atid = (*at)->getIdent(); | 
| 321 | gezelter | 1587 | if (userChoseCutoff_) | 
| 322 | gezelter | 1583 | atypeCutoff[atid] = userCutoff_; | 
| 323 | gezelter | 1592 | else | 
| 324 | gezelter | 1583 | atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); | 
| 325 | gezelter | 1570 | } | 
| 326 | gezelter | 1592 |  | 
| 327 | gezelter | 1576 | vector<RealType> gTypeCutoffs; | 
| 328 |  |  | // first we do a single loop over the cutoff groups to find the | 
| 329 |  |  | // largest cutoff for any atypes present in this group. | 
| 330 |  |  | #ifdef IS_MPI | 
| 331 |  |  | vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0); | 
| 332 | gezelter | 1579 | groupRowToGtype.resize(nGroupsInRow_); | 
| 333 | gezelter | 1576 | for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) { | 
| 334 |  |  | vector<int> atomListRow = getAtomsInGroupRow(cg1); | 
| 335 |  |  | for (vector<int>::iterator ia = atomListRow.begin(); | 
| 336 |  |  | ia != atomListRow.end(); ++ia) { | 
| 337 |  |  | int atom1 = (*ia); | 
| 338 |  |  | atid = identsRow[atom1]; | 
| 339 |  |  | if (atypeCutoff[atid] > groupCutoffRow[cg1]) { | 
| 340 |  |  | groupCutoffRow[cg1] = atypeCutoff[atid]; | 
| 341 |  |  | } | 
| 342 |  |  | } | 
| 343 |  |  |  | 
| 344 |  |  | bool gTypeFound = false; | 
| 345 |  |  | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { | 
| 346 |  |  | if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) { | 
| 347 |  |  | groupRowToGtype[cg1] = gt; | 
| 348 |  |  | gTypeFound = true; | 
| 349 |  |  | } | 
| 350 |  |  | } | 
| 351 |  |  | if (!gTypeFound) { | 
| 352 |  |  | gTypeCutoffs.push_back( groupCutoffRow[cg1] ); | 
| 353 |  |  | groupRowToGtype[cg1] = gTypeCutoffs.size() - 1; | 
| 354 |  |  | } | 
| 355 |  |  |  | 
| 356 |  |  | } | 
| 357 |  |  | vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0); | 
| 358 | gezelter | 1579 | groupColToGtype.resize(nGroupsInCol_); | 
| 359 | gezelter | 1576 | for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) { | 
| 360 |  |  | vector<int> atomListCol = getAtomsInGroupColumn(cg2); | 
| 361 |  |  | for (vector<int>::iterator jb = atomListCol.begin(); | 
| 362 |  |  | jb != atomListCol.end(); ++jb) { | 
| 363 |  |  | int atom2 = (*jb); | 
| 364 |  |  | atid = identsCol[atom2]; | 
| 365 |  |  | if (atypeCutoff[atid] > groupCutoffCol[cg2]) { | 
| 366 |  |  | groupCutoffCol[cg2] = atypeCutoff[atid]; | 
| 367 |  |  | } | 
| 368 |  |  | } | 
| 369 |  |  | bool gTypeFound = false; | 
| 370 |  |  | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { | 
| 371 |  |  | if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) { | 
| 372 |  |  | groupColToGtype[cg2] = gt; | 
| 373 |  |  | gTypeFound = true; | 
| 374 |  |  | } | 
| 375 |  |  | } | 
| 376 |  |  | if (!gTypeFound) { | 
| 377 |  |  | gTypeCutoffs.push_back( groupCutoffCol[cg2] ); | 
| 378 |  |  | groupColToGtype[cg2] = gTypeCutoffs.size() - 1; | 
| 379 |  |  | } | 
| 380 |  |  | } | 
| 381 |  |  | #else | 
| 382 | gezelter | 1579 |  | 
| 383 | gezelter | 1576 | vector<RealType> groupCutoff(nGroups_, 0.0); | 
| 384 | gezelter | 1579 | groupToGtype.resize(nGroups_); | 
| 385 | gezelter | 1576 | for (int cg1 = 0; cg1 < nGroups_; cg1++) { | 
| 386 |  |  | groupCutoff[cg1] = 0.0; | 
| 387 |  |  | vector<int> atomList = getAtomsInGroupRow(cg1); | 
| 388 |  |  | for (vector<int>::iterator ia = atomList.begin(); | 
| 389 |  |  | ia != atomList.end(); ++ia) { | 
| 390 |  |  | int atom1 = (*ia); | 
| 391 | gezelter | 1583 | atid = idents[atom1]; | 
| 392 | gezelter | 1592 | if (atypeCutoff[atid] > groupCutoff[cg1]) | 
| 393 | gezelter | 1576 | groupCutoff[cg1] = atypeCutoff[atid]; | 
| 394 |  |  | } | 
| 395 | gezelter | 1592 |  | 
| 396 | gezelter | 1576 | bool gTypeFound = false; | 
| 397 | gezelter | 1767 | for (unsigned int gt = 0; gt < gTypeCutoffs.size(); gt++) { | 
| 398 | gezelter | 1576 | if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { | 
| 399 |  |  | groupToGtype[cg1] = gt; | 
| 400 |  |  | gTypeFound = true; | 
| 401 |  |  | } | 
| 402 |  |  | } | 
| 403 | gezelter | 1592 | if (!gTypeFound) { | 
| 404 | gezelter | 1576 | gTypeCutoffs.push_back( groupCutoff[cg1] ); | 
| 405 |  |  | groupToGtype[cg1] = gTypeCutoffs.size() - 1; | 
| 406 |  |  | } | 
| 407 |  |  | } | 
| 408 |  |  | #endif | 
| 409 |  |  |  | 
| 410 |  |  | // Now we find the maximum group cutoff value present in the simulation | 
| 411 |  |  |  | 
| 412 | gezelter | 1590 | RealType groupMax = *max_element(gTypeCutoffs.begin(), | 
| 413 |  |  | gTypeCutoffs.end()); | 
| 414 | gezelter | 1576 |  | 
| 415 |  |  | #ifdef IS_MPI | 
| 416 | gezelter | 1590 | MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, | 
| 417 |  |  | MPI::MAX); | 
| 418 | gezelter | 1576 | #endif | 
| 419 |  |  |  | 
| 420 |  |  | RealType tradRcut = groupMax; | 
| 421 |  |  |  | 
| 422 | gezelter | 1767 | for (unsigned int i = 0; i < gTypeCutoffs.size();  i++) { | 
| 423 |  |  | for (unsigned int j = 0; j < gTypeCutoffs.size();  j++) { | 
| 424 | gezelter | 1576 | RealType thisRcut; | 
| 425 |  |  | switch(cutoffPolicy_) { | 
| 426 |  |  | case TRADITIONAL: | 
| 427 |  |  | thisRcut = tradRcut; | 
| 428 | gezelter | 1579 | break; | 
| 429 | gezelter | 1576 | case MIX: | 
| 430 |  |  | thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]); | 
| 431 | gezelter | 1579 | break; | 
| 432 | gezelter | 1576 | case MAX: | 
| 433 |  |  | thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]); | 
| 434 | gezelter | 1579 | break; | 
| 435 | gezelter | 1576 | default: | 
| 436 |  |  | sprintf(painCave.errMsg, | 
| 437 |  |  | "ForceMatrixDecomposition::createGtypeCutoffMap " | 
| 438 |  |  | "hit an unknown cutoff policy!\n"); | 
| 439 |  |  | painCave.severity = OPENMD_ERROR; | 
| 440 |  |  | painCave.isFatal = 1; | 
| 441 | gezelter | 1579 | simError(); | 
| 442 |  |  | break; | 
| 443 | gezelter | 1576 | } | 
| 444 |  |  |  | 
| 445 |  |  | pair<int,int> key = make_pair(i,j); | 
| 446 |  |  | gTypeCutoffMap[key].first = thisRcut; | 
| 447 |  |  | if (thisRcut > largestRcut_) largestRcut_ = thisRcut; | 
| 448 |  |  | gTypeCutoffMap[key].second = thisRcut*thisRcut; | 
| 449 |  |  | gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); | 
| 450 |  |  | // sanity check | 
| 451 |  |  |  | 
| 452 |  |  | if (userChoseCutoff_) { | 
| 453 |  |  | if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) { | 
| 454 |  |  | sprintf(painCave.errMsg, | 
| 455 |  |  | "ForceMatrixDecomposition::createGtypeCutoffMap " | 
| 456 | gezelter | 1583 | "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_); | 
| 457 | gezelter | 1576 | painCave.severity = OPENMD_ERROR; | 
| 458 |  |  | painCave.isFatal = 1; | 
| 459 |  |  | simError(); | 
| 460 |  |  | } | 
| 461 |  |  | } | 
| 462 |  |  | } | 
| 463 |  |  | } | 
| 464 | gezelter | 1539 | } | 
| 465 | gezelter | 1576 |  | 
| 466 |  |  | groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { | 
| 467 | gezelter | 1579 | int i, j; | 
| 468 | gezelter | 1576 | #ifdef IS_MPI | 
| 469 |  |  | i = groupRowToGtype[cg1]; | 
| 470 |  |  | j = groupColToGtype[cg2]; | 
| 471 |  |  | #else | 
| 472 |  |  | i = groupToGtype[cg1]; | 
| 473 |  |  | j = groupToGtype[cg2]; | 
| 474 | gezelter | 1579 | #endif | 
| 475 | gezelter | 1576 | return gTypeCutoffMap[make_pair(i,j)]; | 
| 476 |  |  | } | 
| 477 |  |  |  | 
| 478 | gezelter | 1579 | int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { | 
| 479 | gezelter | 1767 | for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) { | 
| 480 | gezelter | 1579 | if (toposForAtom[atom1][j] == atom2) | 
| 481 |  |  | return topoDist[atom1][j]; | 
| 482 |  |  | } | 
| 483 |  |  | return 0; | 
| 484 |  |  | } | 
| 485 | gezelter | 1576 |  | 
| 486 | gezelter | 1575 | void ForceMatrixDecomposition::zeroWorkArrays() { | 
| 487 | gezelter | 1583 | pairwisePot = 0.0; | 
| 488 |  |  | embeddingPot = 0.0; | 
| 489 | gezelter | 1760 | excludedPot = 0.0; | 
| 490 | gezelter | 1761 | excludedSelfPot = 0.0; | 
| 491 | gezelter | 1575 |  | 
| 492 |  |  | #ifdef IS_MPI | 
| 493 |  |  | if (storageLayout_ & DataStorage::dslForce) { | 
| 494 |  |  | fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero); | 
| 495 |  |  | fill(atomColData.force.begin(), atomColData.force.end(), V3Zero); | 
| 496 |  |  | } | 
| 497 |  |  |  | 
| 498 |  |  | if (storageLayout_ & DataStorage::dslTorque) { | 
| 499 |  |  | fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero); | 
| 500 |  |  | fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero); | 
| 501 |  |  | } | 
| 502 |  |  |  | 
| 503 |  |  | fill(pot_row.begin(), pot_row.end(), | 
| 504 |  |  | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 505 |  |  |  | 
| 506 |  |  | fill(pot_col.begin(), pot_col.end(), | 
| 507 | gezelter | 1583 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 508 | gezelter | 1575 |  | 
| 509 | gezelter | 1760 | fill(expot_row.begin(), expot_row.end(), | 
| 510 |  |  | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 511 |  |  |  | 
| 512 |  |  | fill(expot_col.begin(), expot_col.end(), | 
| 513 |  |  | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 514 |  |  |  | 
| 515 | gezelter | 1575 | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 516 | gezelter | 1590 | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), | 
| 517 |  |  | 0.0); | 
| 518 |  |  | fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), | 
| 519 |  |  | 0.0); | 
| 520 | gezelter | 1575 | } | 
| 521 |  |  |  | 
| 522 |  |  | if (storageLayout_ & DataStorage::dslDensity) { | 
| 523 |  |  | fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0); | 
| 524 |  |  | fill(atomColData.density.begin(), atomColData.density.end(), 0.0); | 
| 525 |  |  | } | 
| 526 |  |  |  | 
| 527 |  |  | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 528 | gezelter | 1590 | fill(atomRowData.functional.begin(), atomRowData.functional.end(), | 
| 529 |  |  | 0.0); | 
| 530 |  |  | fill(atomColData.functional.begin(), atomColData.functional.end(), | 
| 531 |  |  | 0.0); | 
| 532 | gezelter | 1575 | } | 
| 533 |  |  |  | 
| 534 |  |  | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 535 |  |  | fill(atomRowData.functionalDerivative.begin(), | 
| 536 |  |  | atomRowData.functionalDerivative.end(), 0.0); | 
| 537 |  |  | fill(atomColData.functionalDerivative.begin(), | 
| 538 |  |  | atomColData.functionalDerivative.end(), 0.0); | 
| 539 |  |  | } | 
| 540 |  |  |  | 
| 541 | gezelter | 1586 | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 542 | gezelter | 1587 | fill(atomRowData.skippedCharge.begin(), | 
| 543 |  |  | atomRowData.skippedCharge.end(), 0.0); | 
| 544 |  |  | fill(atomColData.skippedCharge.begin(), | 
| 545 |  |  | atomColData.skippedCharge.end(), 0.0); | 
| 546 | gezelter | 1586 | } | 
| 547 |  |  |  | 
| 548 | gezelter | 1721 | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 549 |  |  | fill(atomRowData.flucQFrc.begin(), | 
| 550 |  |  | atomRowData.flucQFrc.end(), 0.0); | 
| 551 |  |  | fill(atomColData.flucQFrc.begin(), | 
| 552 |  |  | atomColData.flucQFrc.end(), 0.0); | 
| 553 |  |  | } | 
| 554 |  |  |  | 
| 555 | gezelter | 1713 | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 556 |  |  | fill(atomRowData.electricField.begin(), | 
| 557 |  |  | atomRowData.electricField.end(), V3Zero); | 
| 558 |  |  | fill(atomColData.electricField.begin(), | 
| 559 |  |  | atomColData.electricField.end(), V3Zero); | 
| 560 |  |  | } | 
| 561 | gezelter | 1721 |  | 
| 562 | gezelter | 1590 | #endif | 
| 563 |  |  | // even in parallel, we need to zero out the local arrays: | 
| 564 |  |  |  | 
| 565 | gezelter | 1575 | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 566 |  |  | fill(snap_->atomData.particlePot.begin(), | 
| 567 |  |  | snap_->atomData.particlePot.end(), 0.0); | 
| 568 |  |  | } | 
| 569 |  |  |  | 
| 570 |  |  | if (storageLayout_ & DataStorage::dslDensity) { | 
| 571 |  |  | fill(snap_->atomData.density.begin(), | 
| 572 |  |  | snap_->atomData.density.end(), 0.0); | 
| 573 |  |  | } | 
| 574 | gezelter | 1706 |  | 
| 575 | gezelter | 1575 | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 576 |  |  | fill(snap_->atomData.functional.begin(), | 
| 577 |  |  | snap_->atomData.functional.end(), 0.0); | 
| 578 |  |  | } | 
| 579 | gezelter | 1706 |  | 
| 580 | gezelter | 1575 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 581 |  |  | fill(snap_->atomData.functionalDerivative.begin(), | 
| 582 |  |  | snap_->atomData.functionalDerivative.end(), 0.0); | 
| 583 |  |  | } | 
| 584 | gezelter | 1706 |  | 
| 585 | gezelter | 1586 | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 586 |  |  | fill(snap_->atomData.skippedCharge.begin(), | 
| 587 |  |  | snap_->atomData.skippedCharge.end(), 0.0); | 
| 588 |  |  | } | 
| 589 | gezelter | 1713 |  | 
| 590 |  |  | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 591 |  |  | fill(snap_->atomData.electricField.begin(), | 
| 592 |  |  | snap_->atomData.electricField.end(), V3Zero); | 
| 593 |  |  | } | 
| 594 | gezelter | 1575 | } | 
| 595 |  |  |  | 
| 596 |  |  |  | 
| 597 | gezelter | 1549 | void ForceMatrixDecomposition::distributeData()  { | 
| 598 | gezelter | 1551 | snap_ = sman_->getCurrentSnapshot(); | 
| 599 |  |  | storageLayout_ = sman_->getStorageLayout(); | 
| 600 | chuckv | 1538 | #ifdef IS_MPI | 
| 601 | gezelter | 1540 |  | 
| 602 | gezelter | 1539 | // gather up the atomic positions | 
| 603 | gezelter | 1593 | AtomPlanVectorRow->gather(snap_->atomData.position, | 
| 604 | gezelter | 1551 | atomRowData.position); | 
| 605 | gezelter | 1593 | AtomPlanVectorColumn->gather(snap_->atomData.position, | 
| 606 | gezelter | 1551 | atomColData.position); | 
| 607 | gezelter | 1539 |  | 
| 608 |  |  | // gather up the cutoff group positions | 
| 609 | gezelter | 1593 |  | 
| 610 |  |  | cgPlanVectorRow->gather(snap_->cgData.position, | 
| 611 | gezelter | 1551 | cgRowData.position); | 
| 612 | gezelter | 1593 |  | 
| 613 |  |  | cgPlanVectorColumn->gather(snap_->cgData.position, | 
| 614 | gezelter | 1551 | cgColData.position); | 
| 615 | gezelter | 1593 |  | 
| 616 | gezelter | 1723 |  | 
| 617 |  |  |  | 
| 618 |  |  | if (needVelocities_) { | 
| 619 |  |  | // gather up the atomic velocities | 
| 620 |  |  | AtomPlanVectorColumn->gather(snap_->atomData.velocity, | 
| 621 |  |  | atomColData.velocity); | 
| 622 |  |  |  | 
| 623 |  |  | cgPlanVectorColumn->gather(snap_->cgData.velocity, | 
| 624 |  |  | cgColData.velocity); | 
| 625 |  |  | } | 
| 626 |  |  |  | 
| 627 | gezelter | 1539 |  | 
| 628 |  |  | // if needed, gather the atomic rotation matrices | 
| 629 | gezelter | 1551 | if (storageLayout_ & DataStorage::dslAmat) { | 
| 630 | gezelter | 1593 | AtomPlanMatrixRow->gather(snap_->atomData.aMat, | 
| 631 | gezelter | 1551 | atomRowData.aMat); | 
| 632 | gezelter | 1593 | AtomPlanMatrixColumn->gather(snap_->atomData.aMat, | 
| 633 | gezelter | 1551 | atomColData.aMat); | 
| 634 | gezelter | 1539 | } | 
| 635 | gezelter | 1787 |  | 
| 636 |  |  | // if needed, gather the atomic eletrostatic information | 
| 637 |  |  | if (storageLayout_ & DataStorage::dslDipole) { | 
| 638 |  |  | AtomPlanVectorRow->gather(snap_->atomData.dipole, | 
| 639 |  |  | atomRowData.dipole); | 
| 640 |  |  | AtomPlanVectorColumn->gather(snap_->atomData.dipole, | 
| 641 |  |  | atomColData.dipole); | 
| 642 | gezelter | 1539 | } | 
| 643 | gezelter | 1590 |  | 
| 644 | gezelter | 1787 | if (storageLayout_ & DataStorage::dslQuadrupole) { | 
| 645 |  |  | AtomPlanMatrixRow->gather(snap_->atomData.quadrupole, | 
| 646 |  |  | atomRowData.quadrupole); | 
| 647 |  |  | AtomPlanMatrixColumn->gather(snap_->atomData.quadrupole, | 
| 648 |  |  | atomColData.quadrupole); | 
| 649 |  |  | } | 
| 650 |  |  |  | 
| 651 | gezelter | 1713 | // if needed, gather the atomic fluctuating charge values | 
| 652 |  |  | if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 653 |  |  | AtomPlanRealRow->gather(snap_->atomData.flucQPos, | 
| 654 |  |  | atomRowData.flucQPos); | 
| 655 |  |  | AtomPlanRealColumn->gather(snap_->atomData.flucQPos, | 
| 656 |  |  | atomColData.flucQPos); | 
| 657 |  |  | } | 
| 658 |  |  |  | 
| 659 | gezelter | 1539 | #endif | 
| 660 |  |  | } | 
| 661 |  |  |  | 
| 662 | gezelter | 1575 | /* collects information obtained during the pre-pair loop onto local | 
| 663 |  |  | * data structures. | 
| 664 |  |  | */ | 
| 665 | gezelter | 1549 | void ForceMatrixDecomposition::collectIntermediateData() { | 
| 666 | gezelter | 1551 | snap_ = sman_->getCurrentSnapshot(); | 
| 667 |  |  | storageLayout_ = sman_->getStorageLayout(); | 
| 668 | gezelter | 1539 | #ifdef IS_MPI | 
| 669 |  |  |  | 
| 670 | gezelter | 1551 | if (storageLayout_ & DataStorage::dslDensity) { | 
| 671 |  |  |  | 
| 672 | gezelter | 1593 | AtomPlanRealRow->scatter(atomRowData.density, | 
| 673 | gezelter | 1551 | snap_->atomData.density); | 
| 674 |  |  |  | 
| 675 |  |  | int n = snap_->atomData.density.size(); | 
| 676 | gezelter | 1575 | vector<RealType> rho_tmp(n, 0.0); | 
| 677 | gezelter | 1593 | AtomPlanRealColumn->scatter(atomColData.density, rho_tmp); | 
| 678 | gezelter | 1539 | for (int i = 0; i < n; i++) | 
| 679 | gezelter | 1551 | snap_->atomData.density[i] += rho_tmp[i]; | 
| 680 | gezelter | 1539 | } | 
| 681 | gezelter | 1713 |  | 
| 682 | gezelter | 1849 | // this isn't necessary if we don't have polarizable atoms, but | 
| 683 |  |  | // we'll leave it here for now. | 
| 684 | gezelter | 1713 | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 685 |  |  |  | 
| 686 |  |  | AtomPlanVectorRow->scatter(atomRowData.electricField, | 
| 687 |  |  | snap_->atomData.electricField); | 
| 688 |  |  |  | 
| 689 |  |  | int n = snap_->atomData.electricField.size(); | 
| 690 |  |  | vector<Vector3d> field_tmp(n, V3Zero); | 
| 691 | gezelter | 1803 | AtomPlanVectorColumn->scatter(atomColData.electricField, | 
| 692 |  |  | field_tmp); | 
| 693 | gezelter | 1713 | for (int i = 0; i < n; i++) | 
| 694 |  |  | snap_->atomData.electricField[i] += field_tmp[i]; | 
| 695 |  |  | } | 
| 696 | chuckv | 1538 | #endif | 
| 697 | gezelter | 1539 | } | 
| 698 | gezelter | 1575 |  | 
| 699 |  |  | /* | 
| 700 |  |  | * redistributes information obtained during the pre-pair loop out to | 
| 701 |  |  | * row and column-indexed data structures | 
| 702 |  |  | */ | 
| 703 | gezelter | 1549 | void ForceMatrixDecomposition::distributeIntermediateData() { | 
| 704 | gezelter | 1551 | snap_ = sman_->getCurrentSnapshot(); | 
| 705 |  |  | storageLayout_ = sman_->getStorageLayout(); | 
| 706 | chuckv | 1538 | #ifdef IS_MPI | 
| 707 | gezelter | 1551 | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 708 | gezelter | 1593 | AtomPlanRealRow->gather(snap_->atomData.functional, | 
| 709 | gezelter | 1551 | atomRowData.functional); | 
| 710 | gezelter | 1593 | AtomPlanRealColumn->gather(snap_->atomData.functional, | 
| 711 | gezelter | 1551 | atomColData.functional); | 
| 712 | gezelter | 1539 | } | 
| 713 |  |  |  | 
| 714 | gezelter | 1551 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 715 | gezelter | 1593 | AtomPlanRealRow->gather(snap_->atomData.functionalDerivative, | 
| 716 | gezelter | 1551 | atomRowData.functionalDerivative); | 
| 717 | gezelter | 1593 | AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative, | 
| 718 | gezelter | 1551 | atomColData.functionalDerivative); | 
| 719 | gezelter | 1539 | } | 
| 720 | chuckv | 1538 | #endif | 
| 721 |  |  | } | 
| 722 | gezelter | 1539 |  | 
| 723 |  |  |  | 
| 724 | gezelter | 1549 | void ForceMatrixDecomposition::collectData() { | 
| 725 | gezelter | 1551 | snap_ = sman_->getCurrentSnapshot(); | 
| 726 |  |  | storageLayout_ = sman_->getStorageLayout(); | 
| 727 |  |  | #ifdef IS_MPI | 
| 728 |  |  | int n = snap_->atomData.force.size(); | 
| 729 | gezelter | 1544 | vector<Vector3d> frc_tmp(n, V3Zero); | 
| 730 | gezelter | 1541 |  | 
| 731 | gezelter | 1593 | AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp); | 
| 732 | gezelter | 1541 | for (int i = 0; i < n; i++) { | 
| 733 | gezelter | 1551 | snap_->atomData.force[i] += frc_tmp[i]; | 
| 734 | gezelter | 1541 | frc_tmp[i] = 0.0; | 
| 735 |  |  | } | 
| 736 | gezelter | 1540 |  | 
| 737 | gezelter | 1593 | AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp); | 
| 738 |  |  | for (int i = 0; i < n; i++) { | 
| 739 | gezelter | 1551 | snap_->atomData.force[i] += frc_tmp[i]; | 
| 740 | gezelter | 1593 | } | 
| 741 | gezelter | 1590 |  | 
| 742 | gezelter | 1551 | if (storageLayout_ & DataStorage::dslTorque) { | 
| 743 | gezelter | 1541 |  | 
| 744 | gezelter | 1587 | int nt = snap_->atomData.torque.size(); | 
| 745 | gezelter | 1544 | vector<Vector3d> trq_tmp(nt, V3Zero); | 
| 746 | gezelter | 1541 |  | 
| 747 | gezelter | 1593 | AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp); | 
| 748 | gezelter | 1587 | for (int i = 0; i < nt; i++) { | 
| 749 | gezelter | 1551 | snap_->atomData.torque[i] += trq_tmp[i]; | 
| 750 | gezelter | 1541 | trq_tmp[i] = 0.0; | 
| 751 |  |  | } | 
| 752 | gezelter | 1540 |  | 
| 753 | gezelter | 1593 | AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp); | 
| 754 | gezelter | 1587 | for (int i = 0; i < nt; i++) | 
| 755 | gezelter | 1551 | snap_->atomData.torque[i] += trq_tmp[i]; | 
| 756 | gezelter | 1540 | } | 
| 757 | gezelter | 1587 |  | 
| 758 |  |  | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 759 |  |  |  | 
| 760 |  |  | int ns = snap_->atomData.skippedCharge.size(); | 
| 761 |  |  | vector<RealType> skch_tmp(ns, 0.0); | 
| 762 |  |  |  | 
| 763 | gezelter | 1593 | AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp); | 
| 764 | gezelter | 1587 | for (int i = 0; i < ns; i++) { | 
| 765 | gezelter | 1590 | snap_->atomData.skippedCharge[i] += skch_tmp[i]; | 
| 766 | gezelter | 1587 | skch_tmp[i] = 0.0; | 
| 767 |  |  | } | 
| 768 |  |  |  | 
| 769 | gezelter | 1593 | AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); | 
| 770 | gezelter | 1613 | for (int i = 0; i < ns; i++) | 
| 771 | gezelter | 1587 | snap_->atomData.skippedCharge[i] += skch_tmp[i]; | 
| 772 | gezelter | 1613 |  | 
| 773 | gezelter | 1587 | } | 
| 774 | gezelter | 1540 |  | 
| 775 | gezelter | 1713 | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 776 |  |  |  | 
| 777 |  |  | int nq = snap_->atomData.flucQFrc.size(); | 
| 778 |  |  | vector<RealType> fqfrc_tmp(nq, 0.0); | 
| 779 |  |  |  | 
| 780 |  |  | AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp); | 
| 781 |  |  | for (int i = 0; i < nq; i++) { | 
| 782 |  |  | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; | 
| 783 |  |  | fqfrc_tmp[i] = 0.0; | 
| 784 |  |  | } | 
| 785 |  |  |  | 
| 786 |  |  | AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp); | 
| 787 |  |  | for (int i = 0; i < nq; i++) | 
| 788 |  |  | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; | 
| 789 |  |  |  | 
| 790 |  |  | } | 
| 791 |  |  |  | 
| 792 | gezelter | 1849 | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 793 |  |  |  | 
| 794 |  |  | int nef = snap_->atomData.electricField.size(); | 
| 795 |  |  | vector<Vector3d> efield_tmp(nef, V3Zero); | 
| 796 |  |  |  | 
| 797 |  |  | AtomPlanVectorRow->scatter(atomRowData.electricField, efield_tmp); | 
| 798 |  |  | for (int i = 0; i < nef; i++) { | 
| 799 |  |  | snap_->atomData.electricField[i] += efield_tmp[i]; | 
| 800 |  |  | efield_tmp[i] = 0.0; | 
| 801 |  |  | } | 
| 802 |  |  |  | 
| 803 |  |  | AtomPlanVectorColumn->scatter(atomColData.electricField, efield_tmp); | 
| 804 |  |  | for (int i = 0; i < nef; i++) | 
| 805 |  |  | snap_->atomData.electricField[i] += efield_tmp[i]; | 
| 806 |  |  | } | 
| 807 |  |  |  | 
| 808 |  |  |  | 
| 809 | gezelter | 1567 | nLocal_ = snap_->getNumberOfAtoms(); | 
| 810 | gezelter | 1544 |  | 
| 811 | gezelter | 1575 | vector<potVec> pot_temp(nLocal_, | 
| 812 |  |  | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 813 | gezelter | 1760 | vector<potVec> expot_temp(nLocal_, | 
| 814 |  |  | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 815 | gezelter | 1575 |  | 
| 816 |  |  | // scatter/gather pot_row into the members of my column | 
| 817 |  |  |  | 
| 818 | gezelter | 1593 | AtomPlanPotRow->scatter(pot_row, pot_temp); | 
| 819 | gezelter | 1760 | AtomPlanPotRow->scatter(expot_row, expot_temp); | 
| 820 | gezelter | 1575 |  | 
| 821 | gezelter | 1760 | for (int ii = 0;  ii < pot_temp.size(); ii++ ) | 
| 822 | gezelter | 1583 | pairwisePot += pot_temp[ii]; | 
| 823 | gezelter | 1760 |  | 
| 824 |  |  | for (int ii = 0;  ii < expot_temp.size(); ii++ ) | 
| 825 |  |  | excludedPot += expot_temp[ii]; | 
| 826 | gezelter | 1723 |  | 
| 827 |  |  | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 828 |  |  | // This is the pairwise contribution to the particle pot.  The | 
| 829 |  |  | // embedding contribution is added in each of the low level | 
| 830 |  |  | // non-bonded routines.  In single processor, this is done in | 
| 831 |  |  | // unpackInteractionData, not in collectData. | 
| 832 |  |  | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 833 |  |  | for (int i = 0; i < nLocal_; i++) { | 
| 834 |  |  | // factor of two is because the total potential terms are divided | 
| 835 |  |  | // by 2 in parallel due to row/ column scatter | 
| 836 |  |  | snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); | 
| 837 |  |  | } | 
| 838 |  |  | } | 
| 839 |  |  | } | 
| 840 |  |  |  | 
| 841 | gezelter | 1575 | fill(pot_temp.begin(), pot_temp.end(), | 
| 842 |  |  | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 843 | gezelter | 1760 | fill(expot_temp.begin(), expot_temp.end(), | 
| 844 |  |  | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 845 | gezelter | 1575 |  | 
| 846 | gezelter | 1593 | AtomPlanPotColumn->scatter(pot_col, pot_temp); | 
| 847 | gezelter | 1760 | AtomPlanPotColumn->scatter(expot_col, expot_temp); | 
| 848 | gezelter | 1575 |  | 
| 849 |  |  | for (int ii = 0;  ii < pot_temp.size(); ii++ ) | 
| 850 | gezelter | 1583 | pairwisePot += pot_temp[ii]; | 
| 851 | gezelter | 1723 |  | 
| 852 | gezelter | 1760 | for (int ii = 0;  ii < expot_temp.size(); ii++ ) | 
| 853 |  |  | excludedPot += expot_temp[ii]; | 
| 854 |  |  |  | 
| 855 | gezelter | 1723 | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 856 |  |  | // This is the pairwise contribution to the particle pot.  The | 
| 857 |  |  | // embedding contribution is added in each of the low level | 
| 858 |  |  | // non-bonded routines.  In single processor, this is done in | 
| 859 |  |  | // unpackInteractionData, not in collectData. | 
| 860 |  |  | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 861 |  |  | for (int i = 0; i < nLocal_; i++) { | 
| 862 |  |  | // factor of two is because the total potential terms are divided | 
| 863 |  |  | // by 2 in parallel due to row/ column scatter | 
| 864 |  |  | snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); | 
| 865 |  |  | } | 
| 866 |  |  | } | 
| 867 |  |  | } | 
| 868 | gezelter | 1601 |  | 
| 869 | gezelter | 1723 | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 870 |  |  | int npp = snap_->atomData.particlePot.size(); | 
| 871 |  |  | vector<RealType> ppot_temp(npp, 0.0); | 
| 872 |  |  |  | 
| 873 |  |  | // This is the direct or embedding contribution to the particle | 
| 874 |  |  | // pot. | 
| 875 |  |  |  | 
| 876 |  |  | AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp); | 
| 877 |  |  | for (int i = 0; i < npp; i++) { | 
| 878 |  |  | snap_->atomData.particlePot[i] += ppot_temp[i]; | 
| 879 |  |  | } | 
| 880 |  |  |  | 
| 881 |  |  | fill(ppot_temp.begin(), ppot_temp.end(), 0.0); | 
| 882 |  |  |  | 
| 883 |  |  | AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp); | 
| 884 |  |  | for (int i = 0; i < npp; i++) { | 
| 885 |  |  | snap_->atomData.particlePot[i] += ppot_temp[i]; | 
| 886 |  |  | } | 
| 887 |  |  | } | 
| 888 |  |  |  | 
| 889 | gezelter | 1601 | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 890 |  |  | RealType ploc1 = pairwisePot[ii]; | 
| 891 |  |  | RealType ploc2 = 0.0; | 
| 892 |  |  | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); | 
| 893 |  |  | pairwisePot[ii] = ploc2; | 
| 894 |  |  | } | 
| 895 |  |  |  | 
| 896 | gezelter | 1760 | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 897 |  |  | RealType ploc1 = excludedPot[ii]; | 
| 898 |  |  | RealType ploc2 = 0.0; | 
| 899 |  |  | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); | 
| 900 |  |  | excludedPot[ii] = ploc2; | 
| 901 |  |  | } | 
| 902 |  |  |  | 
| 903 | gezelter | 1723 | // Here be dragons. | 
| 904 |  |  | MPI::Intracomm col = colComm.getComm(); | 
| 905 | gezelter | 1613 |  | 
| 906 | gezelter | 1723 | col.Allreduce(MPI::IN_PLACE, | 
| 907 |  |  | &snap_->frameData.conductiveHeatFlux[0], 3, | 
| 908 |  |  | MPI::REALTYPE, MPI::SUM); | 
| 909 |  |  |  | 
| 910 |  |  |  | 
| 911 | gezelter | 1539 | #endif | 
| 912 | gezelter | 1583 |  | 
| 913 | chuckv | 1538 | } | 
| 914 | gezelter | 1551 |  | 
| 915 | gezelter | 1756 | /** | 
| 916 |  |  | * Collects information obtained during the post-pair (and embedding | 
| 917 |  |  | * functional) loops onto local data structures. | 
| 918 |  |  | */ | 
| 919 |  |  | void ForceMatrixDecomposition::collectSelfData() { | 
| 920 |  |  | snap_ = sman_->getCurrentSnapshot(); | 
| 921 |  |  | storageLayout_ = sman_->getStorageLayout(); | 
| 922 |  |  |  | 
| 923 |  |  | #ifdef IS_MPI | 
| 924 |  |  | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 925 |  |  | RealType ploc1 = embeddingPot[ii]; | 
| 926 |  |  | RealType ploc2 = 0.0; | 
| 927 |  |  | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); | 
| 928 |  |  | embeddingPot[ii] = ploc2; | 
| 929 |  |  | } | 
| 930 | gezelter | 1761 | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 931 |  |  | RealType ploc1 = excludedSelfPot[ii]; | 
| 932 |  |  | RealType ploc2 = 0.0; | 
| 933 |  |  | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); | 
| 934 |  |  | excludedSelfPot[ii] = ploc2; | 
| 935 |  |  | } | 
| 936 | gezelter | 1756 | #endif | 
| 937 |  |  |  | 
| 938 |  |  | } | 
| 939 |  |  |  | 
| 940 |  |  |  | 
| 941 |  |  |  | 
| 942 | gezelter | 1570 | int ForceMatrixDecomposition::getNAtomsInRow() { | 
| 943 |  |  | #ifdef IS_MPI | 
| 944 |  |  | return nAtomsInRow_; | 
| 945 |  |  | #else | 
| 946 |  |  | return nLocal_; | 
| 947 |  |  | #endif | 
| 948 |  |  | } | 
| 949 |  |  |  | 
| 950 | gezelter | 1569 | /** | 
| 951 |  |  | * returns the list of atoms belonging to this group. | 
| 952 |  |  | */ | 
| 953 |  |  | vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ | 
| 954 |  |  | #ifdef IS_MPI | 
| 955 |  |  | return groupListRow_[cg1]; | 
| 956 |  |  | #else | 
| 957 |  |  | return groupList_[cg1]; | 
| 958 |  |  | #endif | 
| 959 |  |  | } | 
| 960 |  |  |  | 
| 961 |  |  | vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ | 
| 962 |  |  | #ifdef IS_MPI | 
| 963 |  |  | return groupListCol_[cg2]; | 
| 964 |  |  | #else | 
| 965 |  |  | return groupList_[cg2]; | 
| 966 |  |  | #endif | 
| 967 |  |  | } | 
| 968 | chuckv | 1538 |  | 
| 969 | gezelter | 1551 | Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){ | 
| 970 |  |  | Vector3d d; | 
| 971 |  |  |  | 
| 972 |  |  | #ifdef IS_MPI | 
| 973 |  |  | d = cgColData.position[cg2] - cgRowData.position[cg1]; | 
| 974 |  |  | #else | 
| 975 |  |  | d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; | 
| 976 |  |  | #endif | 
| 977 |  |  |  | 
| 978 |  |  | snap_->wrapVector(d); | 
| 979 |  |  | return d; | 
| 980 |  |  | } | 
| 981 |  |  |  | 
| 982 | gezelter | 1723 | Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ | 
| 983 |  |  | #ifdef IS_MPI | 
| 984 |  |  | return cgColData.velocity[cg2]; | 
| 985 |  |  | #else | 
| 986 |  |  | return snap_->cgData.velocity[cg2]; | 
| 987 |  |  | #endif | 
| 988 |  |  | } | 
| 989 | gezelter | 1551 |  | 
| 990 | gezelter | 1723 | Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ | 
| 991 |  |  | #ifdef IS_MPI | 
| 992 |  |  | return atomColData.velocity[atom2]; | 
| 993 |  |  | #else | 
| 994 |  |  | return snap_->atomData.velocity[atom2]; | 
| 995 |  |  | #endif | 
| 996 |  |  | } | 
| 997 |  |  |  | 
| 998 |  |  |  | 
| 999 | gezelter | 1551 | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ | 
| 1000 |  |  |  | 
| 1001 |  |  | Vector3d d; | 
| 1002 |  |  |  | 
| 1003 |  |  | #ifdef IS_MPI | 
| 1004 |  |  | d = cgRowData.position[cg1] - atomRowData.position[atom1]; | 
| 1005 |  |  | #else | 
| 1006 |  |  | d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1]; | 
| 1007 |  |  | #endif | 
| 1008 |  |  |  | 
| 1009 |  |  | snap_->wrapVector(d); | 
| 1010 |  |  | return d; | 
| 1011 |  |  | } | 
| 1012 |  |  |  | 
| 1013 |  |  | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){ | 
| 1014 |  |  | Vector3d d; | 
| 1015 |  |  |  | 
| 1016 |  |  | #ifdef IS_MPI | 
| 1017 |  |  | d = cgColData.position[cg2] - atomColData.position[atom2]; | 
| 1018 |  |  | #else | 
| 1019 |  |  | d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2]; | 
| 1020 |  |  | #endif | 
| 1021 |  |  |  | 
| 1022 |  |  | snap_->wrapVector(d); | 
| 1023 |  |  | return d; | 
| 1024 |  |  | } | 
| 1025 | gezelter | 1569 |  | 
| 1026 |  |  | RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) { | 
| 1027 |  |  | #ifdef IS_MPI | 
| 1028 |  |  | return massFactorsRow[atom1]; | 
| 1029 |  |  | #else | 
| 1030 | gezelter | 1581 | return massFactors[atom1]; | 
| 1031 | gezelter | 1569 | #endif | 
| 1032 |  |  | } | 
| 1033 |  |  |  | 
| 1034 |  |  | RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) { | 
| 1035 |  |  | #ifdef IS_MPI | 
| 1036 |  |  | return massFactorsCol[atom2]; | 
| 1037 |  |  | #else | 
| 1038 | gezelter | 1581 | return massFactors[atom2]; | 
| 1039 | gezelter | 1569 | #endif | 
| 1040 |  |  |  | 
| 1041 |  |  | } | 
| 1042 | gezelter | 1551 |  | 
| 1043 |  |  | Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){ | 
| 1044 |  |  | Vector3d d; | 
| 1045 |  |  |  | 
| 1046 |  |  | #ifdef IS_MPI | 
| 1047 |  |  | d = atomColData.position[atom2] - atomRowData.position[atom1]; | 
| 1048 |  |  | #else | 
| 1049 |  |  | d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1]; | 
| 1050 |  |  | #endif | 
| 1051 |  |  |  | 
| 1052 |  |  | snap_->wrapVector(d); | 
| 1053 |  |  | return d; | 
| 1054 |  |  | } | 
| 1055 |  |  |  | 
| 1056 | gezelter | 1587 | vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { | 
| 1057 |  |  | return excludesForAtom[atom1]; | 
| 1058 | gezelter | 1570 | } | 
| 1059 |  |  |  | 
| 1060 |  |  | /** | 
| 1061 | gezelter | 1587 | * We need to exclude some overcounted interactions that result from | 
| 1062 | gezelter | 1575 | * the parallel decomposition. | 
| 1063 | gezelter | 1570 | */ | 
| 1064 | gezelter | 1756 | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) { | 
| 1065 | gezelter | 1798 | int unique_id_1, unique_id_2; | 
| 1066 | gezelter | 1616 |  | 
| 1067 | gezelter | 1570 | #ifdef IS_MPI | 
| 1068 |  |  | // in MPI, we have to look up the unique IDs for each atom | 
| 1069 |  |  | unique_id_1 = AtomRowToGlobal[atom1]; | 
| 1070 |  |  | unique_id_2 = AtomColToGlobal[atom2]; | 
| 1071 | gezelter | 1798 | // group1 = cgRowToGlobal[cg1]; | 
| 1072 |  |  | // group2 = cgColToGlobal[cg2]; | 
| 1073 | gezelter | 1616 | #else | 
| 1074 |  |  | unique_id_1 = AtomLocalToGlobal[atom1]; | 
| 1075 |  |  | unique_id_2 = AtomLocalToGlobal[atom2]; | 
| 1076 | gezelter | 1798 | int group1 = cgLocalToGlobal[cg1]; | 
| 1077 |  |  | int group2 = cgLocalToGlobal[cg2]; | 
| 1078 | gezelter | 1616 | #endif | 
| 1079 | gezelter | 1570 |  | 
| 1080 |  |  | if (unique_id_1 == unique_id_2) return true; | 
| 1081 | gezelter | 1616 |  | 
| 1082 |  |  | #ifdef IS_MPI | 
| 1083 | gezelter | 1570 | // this prevents us from doing the pair on multiple processors | 
| 1084 |  |  | if (unique_id_1 < unique_id_2) { | 
| 1085 |  |  | if ((unique_id_1 + unique_id_2) % 2 == 0) return true; | 
| 1086 |  |  | } else { | 
| 1087 | gezelter | 1616 | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; | 
| 1088 | gezelter | 1570 | } | 
| 1089 | gezelter | 1756 | #endif | 
| 1090 |  |  |  | 
| 1091 |  |  | #ifndef IS_MPI | 
| 1092 |  |  | if (group1 == group2) { | 
| 1093 |  |  | if (unique_id_1 < unique_id_2) return true; | 
| 1094 |  |  | } | 
| 1095 | gezelter | 1587 | #endif | 
| 1096 | gezelter | 1616 |  | 
| 1097 | gezelter | 1587 | return false; | 
| 1098 |  |  | } | 
| 1099 |  |  |  | 
| 1100 |  |  | /** | 
| 1101 |  |  | * We need to handle the interactions for atoms who are involved in | 
| 1102 |  |  | * the same rigid body as well as some short range interactions | 
| 1103 |  |  | * (bonds, bends, torsions) differently from other interactions. | 
| 1104 |  |  | * We'll still visit the pairwise routines, but with a flag that | 
| 1105 |  |  | * tells those routines to exclude the pair from direct long range | 
| 1106 |  |  | * interactions.  Some indirect interactions (notably reaction | 
| 1107 |  |  | * field) must still be handled for these pairs. | 
| 1108 |  |  | */ | 
| 1109 |  |  | bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { | 
| 1110 | gezelter | 1613 |  | 
| 1111 |  |  | // excludesForAtom was constructed to use row/column indices in the MPI | 
| 1112 |  |  | // version, and to use local IDs in the non-MPI version: | 
| 1113 | gezelter | 1570 |  | 
| 1114 | gezelter | 1587 | for (vector<int>::iterator i = excludesForAtom[atom1].begin(); | 
| 1115 |  |  | i != excludesForAtom[atom1].end(); ++i) { | 
| 1116 | gezelter | 1616 | if ( (*i) == atom2 ) return true; | 
| 1117 | gezelter | 1583 | } | 
| 1118 | gezelter | 1579 |  | 
| 1119 | gezelter | 1583 | return false; | 
| 1120 | gezelter | 1570 | } | 
| 1121 |  |  |  | 
| 1122 |  |  |  | 
| 1123 | gezelter | 1551 | void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){ | 
| 1124 |  |  | #ifdef IS_MPI | 
| 1125 |  |  | atomRowData.force[atom1] += fg; | 
| 1126 |  |  | #else | 
| 1127 |  |  | snap_->atomData.force[atom1] += fg; | 
| 1128 |  |  | #endif | 
| 1129 |  |  | } | 
| 1130 |  |  |  | 
| 1131 |  |  | void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){ | 
| 1132 |  |  | #ifdef IS_MPI | 
| 1133 |  |  | atomColData.force[atom2] += fg; | 
| 1134 |  |  | #else | 
| 1135 |  |  | snap_->atomData.force[atom2] += fg; | 
| 1136 |  |  | #endif | 
| 1137 |  |  | } | 
| 1138 |  |  |  | 
| 1139 |  |  | // filling interaction blocks with pointers | 
| 1140 | gezelter | 1582 | void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, | 
| 1141 | gezelter | 1587 | int atom1, int atom2) { | 
| 1142 |  |  |  | 
| 1143 |  |  | idat.excluded = excludeAtomPair(atom1, atom2); | 
| 1144 |  |  |  | 
| 1145 | gezelter | 1551 | #ifdef IS_MPI | 
| 1146 | gezelter | 1591 | idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); | 
| 1147 |  |  | //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), | 
| 1148 |  |  | //                         ff_->getAtomType(identsCol[atom2]) ); | 
| 1149 | gezelter | 1571 |  | 
| 1150 | gezelter | 1551 | if (storageLayout_ & DataStorage::dslAmat) { | 
| 1151 | gezelter | 1554 | idat.A1 = &(atomRowData.aMat[atom1]); | 
| 1152 |  |  | idat.A2 = &(atomColData.aMat[atom2]); | 
| 1153 | gezelter | 1551 | } | 
| 1154 | gezelter | 1567 |  | 
| 1155 | gezelter | 1551 | if (storageLayout_ & DataStorage::dslTorque) { | 
| 1156 | gezelter | 1554 | idat.t1 = &(atomRowData.torque[atom1]); | 
| 1157 |  |  | idat.t2 = &(atomColData.torque[atom2]); | 
| 1158 | gezelter | 1551 | } | 
| 1159 |  |  |  | 
| 1160 | gezelter | 1787 | if (storageLayout_ & DataStorage::dslDipole) { | 
| 1161 |  |  | idat.dipole1 = &(atomRowData.dipole[atom1]); | 
| 1162 |  |  | idat.dipole2 = &(atomColData.dipole[atom2]); | 
| 1163 |  |  | } | 
| 1164 |  |  |  | 
| 1165 |  |  | if (storageLayout_ & DataStorage::dslQuadrupole) { | 
| 1166 |  |  | idat.quadrupole1 = &(atomRowData.quadrupole[atom1]); | 
| 1167 |  |  | idat.quadrupole2 = &(atomColData.quadrupole[atom2]); | 
| 1168 |  |  | } | 
| 1169 |  |  |  | 
| 1170 | gezelter | 1551 | if (storageLayout_ & DataStorage::dslDensity) { | 
| 1171 | gezelter | 1554 | idat.rho1 = &(atomRowData.density[atom1]); | 
| 1172 |  |  | idat.rho2 = &(atomColData.density[atom2]); | 
| 1173 | gezelter | 1551 | } | 
| 1174 |  |  |  | 
| 1175 | gezelter | 1575 | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 1176 |  |  | idat.frho1 = &(atomRowData.functional[atom1]); | 
| 1177 |  |  | idat.frho2 = &(atomColData.functional[atom2]); | 
| 1178 |  |  | } | 
| 1179 |  |  |  | 
| 1180 | gezelter | 1551 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 1181 | gezelter | 1554 | idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]); | 
| 1182 |  |  | idat.dfrho2 = &(atomColData.functionalDerivative[atom2]); | 
| 1183 | gezelter | 1551 | } | 
| 1184 | gezelter | 1570 |  | 
| 1185 | gezelter | 1575 | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 1186 |  |  | idat.particlePot1 = &(atomRowData.particlePot[atom1]); | 
| 1187 |  |  | idat.particlePot2 = &(atomColData.particlePot[atom2]); | 
| 1188 |  |  | } | 
| 1189 |  |  |  | 
| 1190 | gezelter | 1587 | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 1191 |  |  | idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); | 
| 1192 |  |  | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); | 
| 1193 |  |  | } | 
| 1194 |  |  |  | 
| 1195 | gezelter | 1721 | if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 1196 |  |  | idat.flucQ1 = &(atomRowData.flucQPos[atom1]); | 
| 1197 |  |  | idat.flucQ2 = &(atomColData.flucQPos[atom2]); | 
| 1198 |  |  | } | 
| 1199 |  |  |  | 
| 1200 | gezelter | 1562 | #else | 
| 1201 | gezelter | 1688 |  | 
| 1202 | gezelter | 1591 | idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); | 
| 1203 | gezelter | 1571 |  | 
| 1204 | gezelter | 1562 | if (storageLayout_ & DataStorage::dslAmat) { | 
| 1205 |  |  | idat.A1 = &(snap_->atomData.aMat[atom1]); | 
| 1206 |  |  | idat.A2 = &(snap_->atomData.aMat[atom2]); | 
| 1207 |  |  | } | 
| 1208 |  |  |  | 
| 1209 | gezelter | 1821 | RealType ct = dot(idat.A1->getColumn(2), idat.A2->getColumn(2)); | 
| 1210 |  |  |  | 
| 1211 | gezelter | 1562 | if (storageLayout_ & DataStorage::dslTorque) { | 
| 1212 |  |  | idat.t1 = &(snap_->atomData.torque[atom1]); | 
| 1213 |  |  | idat.t2 = &(snap_->atomData.torque[atom2]); | 
| 1214 |  |  | } | 
| 1215 |  |  |  | 
| 1216 | gezelter | 1787 | if (storageLayout_ & DataStorage::dslDipole) { | 
| 1217 |  |  | idat.dipole1 = &(snap_->atomData.dipole[atom1]); | 
| 1218 |  |  | idat.dipole2 = &(snap_->atomData.dipole[atom2]); | 
| 1219 |  |  | } | 
| 1220 |  |  |  | 
| 1221 |  |  | if (storageLayout_ & DataStorage::dslQuadrupole) { | 
| 1222 |  |  | idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]); | 
| 1223 |  |  | idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]); | 
| 1224 |  |  | } | 
| 1225 |  |  |  | 
| 1226 | gezelter | 1583 | if (storageLayout_ & DataStorage::dslDensity) { | 
| 1227 | gezelter | 1562 | idat.rho1 = &(snap_->atomData.density[atom1]); | 
| 1228 |  |  | idat.rho2 = &(snap_->atomData.density[atom2]); | 
| 1229 |  |  | } | 
| 1230 |  |  |  | 
| 1231 | gezelter | 1575 | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 1232 |  |  | idat.frho1 = &(snap_->atomData.functional[atom1]); | 
| 1233 |  |  | idat.frho2 = &(snap_->atomData.functional[atom2]); | 
| 1234 |  |  | } | 
| 1235 |  |  |  | 
| 1236 | gezelter | 1562 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 1237 |  |  | idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]); | 
| 1238 |  |  | idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]); | 
| 1239 |  |  | } | 
| 1240 | gezelter | 1575 |  | 
| 1241 |  |  | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 1242 |  |  | idat.particlePot1 = &(snap_->atomData.particlePot[atom1]); | 
| 1243 |  |  | idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); | 
| 1244 |  |  | } | 
| 1245 |  |  |  | 
| 1246 | gezelter | 1587 | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 1247 |  |  | idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); | 
| 1248 |  |  | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); | 
| 1249 |  |  | } | 
| 1250 | gezelter | 1721 |  | 
| 1251 |  |  | if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 1252 |  |  | idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]); | 
| 1253 |  |  | idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]); | 
| 1254 |  |  | } | 
| 1255 |  |  |  | 
| 1256 | gezelter | 1551 | #endif | 
| 1257 |  |  | } | 
| 1258 | gezelter | 1567 |  | 
| 1259 | gezelter | 1575 |  | 
| 1260 | gezelter | 1582 | void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { | 
| 1261 | gezelter | 1575 | #ifdef IS_MPI | 
| 1262 | gezelter | 1668 | pot_row[atom1] += RealType(0.5) *  *(idat.pot); | 
| 1263 |  |  | pot_col[atom2] += RealType(0.5) *  *(idat.pot); | 
| 1264 | gezelter | 1760 | expot_row[atom1] += RealType(0.5) *  *(idat.excludedPot); | 
| 1265 |  |  | expot_col[atom2] += RealType(0.5) *  *(idat.excludedPot); | 
| 1266 | gezelter | 1575 |  | 
| 1267 |  |  | atomRowData.force[atom1] += *(idat.f1); | 
| 1268 |  |  | atomColData.force[atom2] -= *(idat.f1); | 
| 1269 | gezelter | 1713 |  | 
| 1270 | gezelter | 1721 | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 1271 | jmichalk | 1736 | atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1); | 
| 1272 |  |  | atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2); | 
| 1273 | gezelter | 1721 | } | 
| 1274 |  |  |  | 
| 1275 |  |  | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 1276 |  |  | atomRowData.electricField[atom1] += *(idat.eField1); | 
| 1277 |  |  | atomColData.electricField[atom2] += *(idat.eField2); | 
| 1278 |  |  | } | 
| 1279 |  |  |  | 
| 1280 | gezelter | 1575 | #else | 
| 1281 | gezelter | 1583 | pairwisePot += *(idat.pot); | 
| 1282 | gezelter | 1760 | excludedPot += *(idat.excludedPot); | 
| 1283 | gezelter | 1583 |  | 
| 1284 | gezelter | 1575 | snap_->atomData.force[atom1] += *(idat.f1); | 
| 1285 |  |  | snap_->atomData.force[atom2] -= *(idat.f1); | 
| 1286 | gezelter | 1713 |  | 
| 1287 |  |  | if (idat.doParticlePot) { | 
| 1288 | gezelter | 1723 | // This is the pairwise contribution to the particle pot.  The | 
| 1289 |  |  | // embedding contribution is added in each of the low level | 
| 1290 |  |  | // non-bonded routines.  In parallel, this calculation is done | 
| 1291 |  |  | // in collectData, not in unpackInteractionData. | 
| 1292 | gezelter | 1713 | snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw); | 
| 1293 | gezelter | 1723 | snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw); | 
| 1294 | gezelter | 1713 | } | 
| 1295 | gezelter | 1721 |  | 
| 1296 |  |  | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 1297 | jmichalk | 1736 | snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1); | 
| 1298 | gezelter | 1721 | snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2); | 
| 1299 |  |  | } | 
| 1300 |  |  |  | 
| 1301 |  |  | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 1302 |  |  | snap_->atomData.electricField[atom1] += *(idat.eField1); | 
| 1303 |  |  | snap_->atomData.electricField[atom2] += *(idat.eField2); | 
| 1304 |  |  | } | 
| 1305 |  |  |  | 
| 1306 | gezelter | 1575 | #endif | 
| 1307 | gezelter | 1586 |  | 
| 1308 | gezelter | 1575 | } | 
| 1309 |  |  |  | 
| 1310 | gezelter | 1562 | /* | 
| 1311 |  |  | * buildNeighborList | 
| 1312 |  |  | * | 
| 1313 |  |  | * first element of pair is row-indexed CutoffGroup | 
| 1314 |  |  | * second element of pair is column-indexed CutoffGroup | 
| 1315 |  |  | */ | 
| 1316 | gezelter | 1567 | vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() { | 
| 1317 |  |  |  | 
| 1318 |  |  | vector<pair<int, int> > neighborList; | 
| 1319 | gezelter | 1576 | groupCutoffs cuts; | 
| 1320 | gezelter | 1587 | bool doAllPairs = false; | 
| 1321 |  |  |  | 
| 1322 | gezelter | 1567 | #ifdef IS_MPI | 
| 1323 | gezelter | 1568 | cellListRow_.clear(); | 
| 1324 |  |  | cellListCol_.clear(); | 
| 1325 | gezelter | 1567 | #else | 
| 1326 | gezelter | 1568 | cellList_.clear(); | 
| 1327 | gezelter | 1567 | #endif | 
| 1328 | gezelter | 1562 |  | 
| 1329 | gezelter | 1576 | RealType rList_ = (largestRcut_ + skinThickness_); | 
| 1330 | gezelter | 1567 | Snapshot* snap_ = sman_->getCurrentSnapshot(); | 
| 1331 | gezelter | 1562 | Mat3x3d Hmat = snap_->getHmat(); | 
| 1332 |  |  | Vector3d Hx = Hmat.getColumn(0); | 
| 1333 |  |  | Vector3d Hy = Hmat.getColumn(1); | 
| 1334 |  |  | Vector3d Hz = Hmat.getColumn(2); | 
| 1335 |  |  |  | 
| 1336 | gezelter | 1568 | nCells_.x() = (int) ( Hx.length() )/ rList_; | 
| 1337 |  |  | nCells_.y() = (int) ( Hy.length() )/ rList_; | 
| 1338 |  |  | nCells_.z() = (int) ( Hz.length() )/ rList_; | 
| 1339 | gezelter | 1562 |  | 
| 1340 | gezelter | 1587 | // handle small boxes where the cell offsets can end up repeating cells | 
| 1341 |  |  |  | 
| 1342 |  |  | if (nCells_.x() < 3) doAllPairs = true; | 
| 1343 |  |  | if (nCells_.y() < 3) doAllPairs = true; | 
| 1344 |  |  | if (nCells_.z() < 3) doAllPairs = true; | 
| 1345 |  |  |  | 
| 1346 | gezelter | 1567 | Mat3x3d invHmat = snap_->getInvHmat(); | 
| 1347 |  |  | Vector3d rs, scaled, dr; | 
| 1348 |  |  | Vector3i whichCell; | 
| 1349 |  |  | int cellIndex; | 
| 1350 | gezelter | 1579 | int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); | 
| 1351 | gezelter | 1567 |  | 
| 1352 |  |  | #ifdef IS_MPI | 
| 1353 | gezelter | 1579 | cellListRow_.resize(nCtot); | 
| 1354 |  |  | cellListCol_.resize(nCtot); | 
| 1355 |  |  | #else | 
| 1356 |  |  | cellList_.resize(nCtot); | 
| 1357 |  |  | #endif | 
| 1358 | gezelter | 1582 |  | 
| 1359 | gezelter | 1587 | if (!doAllPairs) { | 
| 1360 | gezelter | 1579 | #ifdef IS_MPI | 
| 1361 | gezelter | 1581 |  | 
| 1362 | gezelter | 1587 | for (int i = 0; i < nGroupsInRow_; i++) { | 
| 1363 |  |  | rs = cgRowData.position[i]; | 
| 1364 |  |  |  | 
| 1365 |  |  | // scaled positions relative to the box vectors | 
| 1366 |  |  | scaled = invHmat * rs; | 
| 1367 |  |  |  | 
| 1368 |  |  | // wrap the vector back into the unit box by subtracting integer box | 
| 1369 |  |  | // numbers | 
| 1370 |  |  | for (int j = 0; j < 3; j++) { | 
| 1371 |  |  | scaled[j] -= roundMe(scaled[j]); | 
| 1372 |  |  | scaled[j] += 0.5; | 
| 1373 | gezelter | 1772 | // Handle the special case when an object is exactly on the | 
| 1374 |  |  | // boundary (a scaled coordinate of 1.0 is the same as | 
| 1375 |  |  | // scaled coordinate of 0.0) | 
| 1376 |  |  | if (scaled[j] >= 1.0) scaled[j] -= 1.0; | 
| 1377 | gezelter | 1587 | } | 
| 1378 |  |  |  | 
| 1379 |  |  | // find xyz-indices of cell that cutoffGroup is in. | 
| 1380 |  |  | whichCell.x() = nCells_.x() * scaled.x(); | 
| 1381 |  |  | whichCell.y() = nCells_.y() * scaled.y(); | 
| 1382 |  |  | whichCell.z() = nCells_.z() * scaled.z(); | 
| 1383 |  |  |  | 
| 1384 |  |  | // find single index of this cell: | 
| 1385 |  |  | cellIndex = Vlinear(whichCell, nCells_); | 
| 1386 |  |  |  | 
| 1387 |  |  | // add this cutoff group to the list of groups in this cell; | 
| 1388 |  |  | cellListRow_[cellIndex].push_back(i); | 
| 1389 | gezelter | 1581 | } | 
| 1390 | gezelter | 1587 | for (int i = 0; i < nGroupsInCol_; i++) { | 
| 1391 |  |  | rs = cgColData.position[i]; | 
| 1392 |  |  |  | 
| 1393 |  |  | // scaled positions relative to the box vectors | 
| 1394 |  |  | scaled = invHmat * rs; | 
| 1395 |  |  |  | 
| 1396 |  |  | // wrap the vector back into the unit box by subtracting integer box | 
| 1397 |  |  | // numbers | 
| 1398 |  |  | for (int j = 0; j < 3; j++) { | 
| 1399 |  |  | scaled[j] -= roundMe(scaled[j]); | 
| 1400 |  |  | scaled[j] += 0.5; | 
| 1401 | gezelter | 1772 | // Handle the special case when an object is exactly on the | 
| 1402 |  |  | // boundary (a scaled coordinate of 1.0 is the same as | 
| 1403 |  |  | // scaled coordinate of 0.0) | 
| 1404 |  |  | if (scaled[j] >= 1.0) scaled[j] -= 1.0; | 
| 1405 | gezelter | 1587 | } | 
| 1406 |  |  |  | 
| 1407 |  |  | // find xyz-indices of cell that cutoffGroup is in. | 
| 1408 |  |  | whichCell.x() = nCells_.x() * scaled.x(); | 
| 1409 |  |  | whichCell.y() = nCells_.y() * scaled.y(); | 
| 1410 |  |  | whichCell.z() = nCells_.z() * scaled.z(); | 
| 1411 |  |  |  | 
| 1412 |  |  | // find single index of this cell: | 
| 1413 |  |  | cellIndex = Vlinear(whichCell, nCells_); | 
| 1414 |  |  |  | 
| 1415 |  |  | // add this cutoff group to the list of groups in this cell; | 
| 1416 |  |  | cellListCol_[cellIndex].push_back(i); | 
| 1417 | gezelter | 1581 | } | 
| 1418 | gezelter | 1612 |  | 
| 1419 | gezelter | 1567 | #else | 
| 1420 | gezelter | 1587 | for (int i = 0; i < nGroups_; i++) { | 
| 1421 |  |  | rs = snap_->cgData.position[i]; | 
| 1422 |  |  |  | 
| 1423 |  |  | // scaled positions relative to the box vectors | 
| 1424 |  |  | scaled = invHmat * rs; | 
| 1425 |  |  |  | 
| 1426 |  |  | // wrap the vector back into the unit box by subtracting integer box | 
| 1427 |  |  | // numbers | 
| 1428 |  |  | for (int j = 0; j < 3; j++) { | 
| 1429 |  |  | scaled[j] -= roundMe(scaled[j]); | 
| 1430 |  |  | scaled[j] += 0.5; | 
| 1431 | gezelter | 1771 | // Handle the special case when an object is exactly on the | 
| 1432 |  |  | // boundary (a scaled coordinate of 1.0 is the same as | 
| 1433 |  |  | // scaled coordinate of 0.0) | 
| 1434 |  |  | if (scaled[j] >= 1.0) scaled[j] -= 1.0; | 
| 1435 | gezelter | 1587 | } | 
| 1436 |  |  |  | 
| 1437 |  |  | // find xyz-indices of cell that cutoffGroup is in. | 
| 1438 |  |  | whichCell.x() = nCells_.x() * scaled.x(); | 
| 1439 |  |  | whichCell.y() = nCells_.y() * scaled.y(); | 
| 1440 |  |  | whichCell.z() = nCells_.z() * scaled.z(); | 
| 1441 |  |  |  | 
| 1442 |  |  | // find single index of this cell: | 
| 1443 | gezelter | 1593 | cellIndex = Vlinear(whichCell, nCells_); | 
| 1444 | gezelter | 1587 |  | 
| 1445 |  |  | // add this cutoff group to the list of groups in this cell; | 
| 1446 |  |  | cellList_[cellIndex].push_back(i); | 
| 1447 | gezelter | 1581 | } | 
| 1448 | gezelter | 1612 |  | 
| 1449 | gezelter | 1567 | #endif | 
| 1450 |  |  |  | 
| 1451 | gezelter | 1587 | for (int m1z = 0; m1z < nCells_.z(); m1z++) { | 
| 1452 |  |  | for (int m1y = 0; m1y < nCells_.y(); m1y++) { | 
| 1453 |  |  | for (int m1x = 0; m1x < nCells_.x(); m1x++) { | 
| 1454 |  |  | Vector3i m1v(m1x, m1y, m1z); | 
| 1455 |  |  | int m1 = Vlinear(m1v, nCells_); | 
| 1456 | gezelter | 1568 |  | 
| 1457 | gezelter | 1587 | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); | 
| 1458 |  |  | os != cellOffsets_.end(); ++os) { | 
| 1459 |  |  |  | 
| 1460 |  |  | Vector3i m2v = m1v + (*os); | 
| 1461 | gezelter | 1612 |  | 
| 1462 |  |  |  | 
| 1463 | gezelter | 1587 | if (m2v.x() >= nCells_.x()) { | 
| 1464 |  |  | m2v.x() = 0; | 
| 1465 |  |  | } else if (m2v.x() < 0) { | 
| 1466 |  |  | m2v.x() = nCells_.x() - 1; | 
| 1467 |  |  | } | 
| 1468 |  |  |  | 
| 1469 |  |  | if (m2v.y() >= nCells_.y()) { | 
| 1470 |  |  | m2v.y() = 0; | 
| 1471 |  |  | } else if (m2v.y() < 0) { | 
| 1472 |  |  | m2v.y() = nCells_.y() - 1; | 
| 1473 |  |  | } | 
| 1474 |  |  |  | 
| 1475 |  |  | if (m2v.z() >= nCells_.z()) { | 
| 1476 |  |  | m2v.z() = 0; | 
| 1477 |  |  | } else if (m2v.z() < 0) { | 
| 1478 |  |  | m2v.z() = nCells_.z() - 1; | 
| 1479 |  |  | } | 
| 1480 | gezelter | 1612 |  | 
| 1481 | gezelter | 1587 | int m2 = Vlinear (m2v, nCells_); | 
| 1482 |  |  |  | 
| 1483 | gezelter | 1567 | #ifdef IS_MPI | 
| 1484 | gezelter | 1587 | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); | 
| 1485 |  |  | j1 != cellListRow_[m1].end(); ++j1) { | 
| 1486 |  |  | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); | 
| 1487 |  |  | j2 != cellListCol_[m2].end(); ++j2) { | 
| 1488 |  |  |  | 
| 1489 | gezelter | 1612 | // In parallel, we need to visit *all* pairs of row | 
| 1490 |  |  | // & column indicies and will divide labor in the | 
| 1491 |  |  | // force evaluation later. | 
| 1492 | gezelter | 1593 | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; | 
| 1493 |  |  | snap_->wrapVector(dr); | 
| 1494 |  |  | cuts = getGroupCutoffs( (*j1), (*j2) ); | 
| 1495 |  |  | if (dr.lengthSquare() < cuts.third) { | 
| 1496 |  |  | neighborList.push_back(make_pair((*j1), (*j2))); | 
| 1497 |  |  | } | 
| 1498 | gezelter | 1562 | } | 
| 1499 |  |  | } | 
| 1500 | gezelter | 1567 | #else | 
| 1501 | gezelter | 1587 | for (vector<int>::iterator j1 = cellList_[m1].begin(); | 
| 1502 |  |  | j1 != cellList_[m1].end(); ++j1) { | 
| 1503 |  |  | for (vector<int>::iterator j2 = cellList_[m2].begin(); | 
| 1504 |  |  | j2 != cellList_[m2].end(); ++j2) { | 
| 1505 | gezelter | 1616 |  | 
| 1506 | gezelter | 1587 | // Always do this if we're in different cells or if | 
| 1507 | gezelter | 1616 | // we're in the same cell and the global index of | 
| 1508 |  |  | // the j2 cutoff group is greater than or equal to | 
| 1509 |  |  | // the j1 cutoff group.  Note that Rappaport's code | 
| 1510 |  |  | // has a "less than" conditional here, but that | 
| 1511 |  |  | // deals with atom-by-atom computation.  OpenMD | 
| 1512 |  |  | // allows atoms within a single cutoff group to | 
| 1513 |  |  | // interact with each other. | 
| 1514 |  |  |  | 
| 1515 |  |  |  | 
| 1516 |  |  |  | 
| 1517 |  |  | if (m2 != m1 || (*j2) >= (*j1) ) { | 
| 1518 |  |  |  | 
| 1519 | gezelter | 1587 | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; | 
| 1520 |  |  | snap_->wrapVector(dr); | 
| 1521 |  |  | cuts = getGroupCutoffs( (*j1), (*j2) ); | 
| 1522 |  |  | if (dr.lengthSquare() < cuts.third) { | 
| 1523 |  |  | neighborList.push_back(make_pair((*j1), (*j2))); | 
| 1524 |  |  | } | 
| 1525 | gezelter | 1567 | } | 
| 1526 |  |  | } | 
| 1527 |  |  | } | 
| 1528 | gezelter | 1587 | #endif | 
| 1529 | gezelter | 1567 | } | 
| 1530 | gezelter | 1562 | } | 
| 1531 |  |  | } | 
| 1532 |  |  | } | 
| 1533 | gezelter | 1587 | } else { | 
| 1534 |  |  | // branch to do all cutoff group pairs | 
| 1535 |  |  | #ifdef IS_MPI | 
| 1536 |  |  | for (int j1 = 0; j1 < nGroupsInRow_; j1++) { | 
| 1537 | gezelter | 1616 | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { | 
| 1538 | gezelter | 1587 | dr = cgColData.position[j2] - cgRowData.position[j1]; | 
| 1539 |  |  | snap_->wrapVector(dr); | 
| 1540 |  |  | cuts = getGroupCutoffs( j1, j2 ); | 
| 1541 |  |  | if (dr.lengthSquare() < cuts.third) { | 
| 1542 |  |  | neighborList.push_back(make_pair(j1, j2)); | 
| 1543 |  |  | } | 
| 1544 |  |  | } | 
| 1545 | gezelter | 1616 | } | 
| 1546 | gezelter | 1587 | #else | 
| 1547 | gezelter | 1616 | // include all groups here. | 
| 1548 |  |  | for (int j1 = 0; j1 < nGroups_; j1++) { | 
| 1549 |  |  | // include self group interactions j2 == j1 | 
| 1550 |  |  | for (int j2 = j1; j2 < nGroups_; j2++) { | 
| 1551 | gezelter | 1587 | dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; | 
| 1552 |  |  | snap_->wrapVector(dr); | 
| 1553 |  |  | cuts = getGroupCutoffs( j1, j2 ); | 
| 1554 |  |  | if (dr.lengthSquare() < cuts.third) { | 
| 1555 |  |  | neighborList.push_back(make_pair(j1, j2)); | 
| 1556 |  |  | } | 
| 1557 | gezelter | 1616 | } | 
| 1558 |  |  | } | 
| 1559 | gezelter | 1587 | #endif | 
| 1560 | gezelter | 1562 | } | 
| 1561 | gezelter | 1587 |  | 
| 1562 | gezelter | 1568 | // save the local cutoff group positions for the check that is | 
| 1563 |  |  | // done on each loop: | 
| 1564 |  |  | saved_CG_positions_.clear(); | 
| 1565 |  |  | for (int i = 0; i < nGroups_; i++) | 
| 1566 |  |  | saved_CG_positions_.push_back(snap_->cgData.position[i]); | 
| 1567 | gezelter | 1587 |  | 
| 1568 | gezelter | 1567 | return neighborList; | 
| 1569 | gezelter | 1562 | } | 
| 1570 | gezelter | 1539 | } //end namespace OpenMD |