ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/parallel/ForceMatrixDecomposition.cpp
(Generate patch)

Comparing:
branches/development/src/parallel/ForceDecomposition.cpp (file contents), Revision 1538 by chuckv, Tue Jan 11 18:58:12 2011 UTC vs.
branches/development/src/parallel/ForceMatrixDecomposition.cpp (file contents), Revision 1821 by gezelter, Mon Jan 7 20:05:43 2013 UTC

# Line 1 | Line 1
1 < /**
2 < * @file ForceDecomposition.cpp
3 < * @author Charles Vardeman <cvardema.at.nd.edu>
4 < * @date 08/18/2010
5 < * @time 11:56am
6 < * @version 1.0
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
8 * @section LICENSE
9 * Copyright (c) 2010 The University of Notre Dame. All Rights Reserved.
10 *
4   * The University of Notre Dame grants you ("Licensee") a
5   * non-exclusive, royalty free, license to use, modify and
6   * redistribute this software in source and binary code form, provided
# Line 43 | Line 36
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38   * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42 + #include "parallel/ForceMatrixDecomposition.hpp"
43 + #include "math/SquareMatrix3.hpp"
44 + #include "nonbonded/NonBondedInteraction.hpp"
45 + #include "brains/SnapshotManager.hpp"
46 + #include "brains/PairList.hpp"
47  
48 + using namespace std;
49 + namespace OpenMD {
50  
51 +  ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) {
52  
53 < /*  -*- c++ -*-  */
54 < #include "config.h"
55 < #include <stdlib.h>
53 >    // In a parallel computation, row and colum scans must visit all
54 >    // surrounding cells (not just the 14 upper triangular blocks that
55 >    // are used when the processor can see all pairs)
56   #ifdef IS_MPI
57 < #include <mpi.h>
58 < #endif
57 >    cellOffsets_.clear();
58 >    cellOffsets_.push_back( Vector3i(-1,-1,-1) );
59 >    cellOffsets_.push_back( Vector3i( 0,-1,-1) );
60 >    cellOffsets_.push_back( Vector3i( 1,-1,-1) );                          
61 >    cellOffsets_.push_back( Vector3i(-1, 0,-1) );
62 >    cellOffsets_.push_back( Vector3i( 0, 0,-1) );
63 >    cellOffsets_.push_back( Vector3i( 1, 0,-1) );
64 >    cellOffsets_.push_back( Vector3i(-1, 1,-1) );
65 >    cellOffsets_.push_back( Vector3i( 0, 1,-1) );      
66 >    cellOffsets_.push_back( Vector3i( 1, 1,-1) );
67 >    cellOffsets_.push_back( Vector3i(-1,-1, 0) );
68 >    cellOffsets_.push_back( Vector3i( 0,-1, 0) );
69 >    cellOffsets_.push_back( Vector3i( 1,-1, 0) );
70 >    cellOffsets_.push_back( Vector3i(-1, 0, 0) );      
71 >    cellOffsets_.push_back( Vector3i( 0, 0, 0) );
72 >    cellOffsets_.push_back( Vector3i( 1, 0, 0) );
73 >    cellOffsets_.push_back( Vector3i(-1, 1, 0) );
74 >    cellOffsets_.push_back( Vector3i( 0, 1, 0) );
75 >    cellOffsets_.push_back( Vector3i( 1, 1, 0) );
76 >    cellOffsets_.push_back( Vector3i(-1,-1, 1) );
77 >    cellOffsets_.push_back( Vector3i( 0,-1, 1) );
78 >    cellOffsets_.push_back( Vector3i( 1,-1, 1) );
79 >    cellOffsets_.push_back( Vector3i(-1, 0, 1) );
80 >    cellOffsets_.push_back( Vector3i( 0, 0, 1) );
81 >    cellOffsets_.push_back( Vector3i( 1, 0, 1) );
82 >    cellOffsets_.push_back( Vector3i(-1, 1, 1) );
83 >    cellOffsets_.push_back( Vector3i( 0, 1, 1) );
84 >    cellOffsets_.push_back( Vector3i( 1, 1, 1) );
85 > #endif    
86 >  }
87  
58 #include <iostream>
59 #include <vector>
60 #include <algorithm>
61 #include <cmath>
62 #include "parallel/ForceDecomposition.hpp"
88  
89 +  /**
90 +   * distributeInitialData is essentially a copy of the older fortran
91 +   * SimulationSetup
92 +   */
93 +  void ForceMatrixDecomposition::distributeInitialData() {
94 +    snap_ = sman_->getCurrentSnapshot();
95 +    storageLayout_ = sman_->getStorageLayout();
96 +    ff_ = info_->getForceField();
97 +    nLocal_ = snap_->getNumberOfAtoms();
98 +  
99 +    nGroups_ = info_->getNLocalCutoffGroups();
100 +    // gather the information for atomtype IDs (atids):
101 +    idents = info_->getIdentArray();
102 +    AtomLocalToGlobal = info_->getGlobalAtomIndices();
103 +    cgLocalToGlobal = info_->getGlobalGroupIndices();
104 +    vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
105  
106 < using namespace std;
66 < using namespace OpenMD;
106 >    massFactors = info_->getMassFactors();
107  
108 < //__static
108 >    PairList* excludes = info_->getExcludedInteractions();
109 >    PairList* oneTwo = info_->getOneTwoInteractions();
110 >    PairList* oneThree = info_->getOneThreeInteractions();
111 >    PairList* oneFour = info_->getOneFourInteractions();
112 >    
113 >    if (needVelocities_)
114 >      snap_->cgData.setStorageLayout(DataStorage::dslPosition |
115 >                                     DataStorage::dslVelocity);
116 >    else
117 >      snap_->cgData.setStorageLayout(DataStorage::dslPosition);
118 >    
119   #ifdef IS_MPI
120 < static vector<MPI:Comm> communictors;
121 < #endif
120 >
121 >    MPI::Intracomm row = rowComm.getComm();
122 >    MPI::Intracomm col = colComm.getComm();
123  
124 < //____ MPITypeTraits
125 < template<typename T>
126 < struct MPITypeTraits;
124 >    AtomPlanIntRow = new Plan<int>(row, nLocal_);
125 >    AtomPlanRealRow = new Plan<RealType>(row, nLocal_);
126 >    AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_);
127 >    AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_);
128 >    AtomPlanPotRow = new Plan<potVec>(row, nLocal_);
129  
130 < #ifdef IS_MPI
131 < template<>
132 < struct MPITypeTraits<RealType> {
133 <  static const MPI::Datatype datatype;
134 < };
82 < const MPI_Datatype MPITypeTraits<RealType>::datatype = MY_MPI_REAL;
130 >    AtomPlanIntColumn = new Plan<int>(col, nLocal_);
131 >    AtomPlanRealColumn = new Plan<RealType>(col, nLocal_);
132 >    AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_);
133 >    AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_);
134 >    AtomPlanPotColumn = new Plan<potVec>(col, nLocal_);
135  
136 < template<>
137 < struct MPITypeTraits<int> {
138 <  static const MPI::Datatype datatype;
139 < };
88 < const MPI::Datatype MPITypeTraits<int>::datatype = MPI_INT;
89 < #endif
136 >    cgPlanIntRow = new Plan<int>(row, nGroups_);
137 >    cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_);
138 >    cgPlanIntColumn = new Plan<int>(col, nGroups_);
139 >    cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_);
140  
141 < /**
142 < * Constructor for ForceDecomposition Parallel Decomposition Method
143 < * Will try to construct a symmetric grid of processors. Ideally, the
144 < * number of processors will be a square ex: 4, 9, 16, 25.
95 < *
96 < */
141 >    nAtomsInRow_ = AtomPlanIntRow->getSize();
142 >    nAtomsInCol_ = AtomPlanIntColumn->getSize();
143 >    nGroupsInRow_ = cgPlanIntRow->getSize();
144 >    nGroupsInCol_ = cgPlanIntColumn->getSize();
145  
146 < ForceDecomposition::ForceDecomposition() {
146 >    // Modify the data storage objects with the correct layouts and sizes:
147 >    atomRowData.resize(nAtomsInRow_);
148 >    atomRowData.setStorageLayout(storageLayout_);
149 >    atomColData.resize(nAtomsInCol_);
150 >    atomColData.setStorageLayout(storageLayout_);
151 >    cgRowData.resize(nGroupsInRow_);
152 >    cgRowData.setStorageLayout(DataStorage::dslPosition);
153 >    cgColData.resize(nGroupsInCol_);
154 >    if (needVelocities_)
155 >      // we only need column velocities if we need them.
156 >      cgColData.setStorageLayout(DataStorage::dslPosition |
157 >                                 DataStorage::dslVelocity);
158 >    else    
159 >      cgColData.setStorageLayout(DataStorage::dslPosition);
160 >      
161 >    identsRow.resize(nAtomsInRow_);
162 >    identsCol.resize(nAtomsInCol_);
163 >    
164 >    AtomPlanIntRow->gather(idents, identsRow);
165 >    AtomPlanIntColumn->gather(idents, identsCol);
166 >    
167 >    // allocate memory for the parallel objects
168 >    atypesRow.resize(nAtomsInRow_);
169 >    atypesCol.resize(nAtomsInCol_);
170  
171 < #ifdef IS_MPI
172 <  int nProcs = MPI::COMM_WORLD.Get_size();
173 <  int worldRank = MPI::COMM_WORLD.Get_rank();
171 >    for (int i = 0; i < nAtomsInRow_; i++)
172 >      atypesRow[i] = ff_->getAtomType(identsRow[i]);
173 >    for (int i = 0; i < nAtomsInCol_; i++)
174 >      atypesCol[i] = ff_->getAtomType(identsCol[i]);        
175 >
176 >    pot_row.resize(nAtomsInRow_);
177 >    pot_col.resize(nAtomsInCol_);
178 >
179 >    expot_row.resize(nAtomsInRow_);
180 >    expot_col.resize(nAtomsInCol_);
181 >
182 >    AtomRowToGlobal.resize(nAtomsInRow_);
183 >    AtomColToGlobal.resize(nAtomsInCol_);
184 >    AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
185 >    AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
186 >
187 >    cgRowToGlobal.resize(nGroupsInRow_);
188 >    cgColToGlobal.resize(nGroupsInCol_);
189 >    cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
190 >    cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
191 >
192 >    massFactorsRow.resize(nAtomsInRow_);
193 >    massFactorsCol.resize(nAtomsInCol_);
194 >    AtomPlanRealRow->gather(massFactors, massFactorsRow);
195 >    AtomPlanRealColumn->gather(massFactors, massFactorsCol);
196 >
197 >    groupListRow_.clear();
198 >    groupListRow_.resize(nGroupsInRow_);
199 >    for (int i = 0; i < nGroupsInRow_; i++) {
200 >      int gid = cgRowToGlobal[i];
201 >      for (int j = 0; j < nAtomsInRow_; j++) {
202 >        int aid = AtomRowToGlobal[j];
203 >        if (globalGroupMembership[aid] == gid)
204 >          groupListRow_[i].push_back(j);
205 >      }      
206 >    }
207 >
208 >    groupListCol_.clear();
209 >    groupListCol_.resize(nGroupsInCol_);
210 >    for (int i = 0; i < nGroupsInCol_; i++) {
211 >      int gid = cgColToGlobal[i];
212 >      for (int j = 0; j < nAtomsInCol_; j++) {
213 >        int aid = AtomColToGlobal[j];
214 >        if (globalGroupMembership[aid] == gid)
215 >          groupListCol_[i].push_back(j);
216 >      }      
217 >    }
218 >
219 >    excludesForAtom.clear();
220 >    excludesForAtom.resize(nAtomsInRow_);
221 >    toposForAtom.clear();
222 >    toposForAtom.resize(nAtomsInRow_);
223 >    topoDist.clear();
224 >    topoDist.resize(nAtomsInRow_);
225 >    for (int i = 0; i < nAtomsInRow_; i++) {
226 >      int iglob = AtomRowToGlobal[i];
227 >
228 >      for (int j = 0; j < nAtomsInCol_; j++) {
229 >        int jglob = AtomColToGlobal[j];
230 >
231 >        if (excludes->hasPair(iglob, jglob))
232 >          excludesForAtom[i].push_back(j);      
233 >        
234 >        if (oneTwo->hasPair(iglob, jglob)) {
235 >          toposForAtom[i].push_back(j);
236 >          topoDist[i].push_back(1);
237 >        } else {
238 >          if (oneThree->hasPair(iglob, jglob)) {
239 >            toposForAtom[i].push_back(j);
240 >            topoDist[i].push_back(2);
241 >          } else {
242 >            if (oneFour->hasPair(iglob, jglob)) {
243 >              toposForAtom[i].push_back(j);
244 >              topoDist[i].push_back(3);
245 >            }
246 >          }
247 >        }
248 >      }      
249 >    }
250 >
251 > #else
252 >    excludesForAtom.clear();
253 >    excludesForAtom.resize(nLocal_);
254 >    toposForAtom.clear();
255 >    toposForAtom.resize(nLocal_);
256 >    topoDist.clear();
257 >    topoDist.resize(nLocal_);
258 >
259 >    for (int i = 0; i < nLocal_; i++) {
260 >      int iglob = AtomLocalToGlobal[i];
261 >
262 >      for (int j = 0; j < nLocal_; j++) {
263 >        int jglob = AtomLocalToGlobal[j];
264 >
265 >        if (excludes->hasPair(iglob, jglob))
266 >          excludesForAtom[i].push_back(j);              
267 >        
268 >        if (oneTwo->hasPair(iglob, jglob)) {
269 >          toposForAtom[i].push_back(j);
270 >          topoDist[i].push_back(1);
271 >        } else {
272 >          if (oneThree->hasPair(iglob, jglob)) {
273 >            toposForAtom[i].push_back(j);
274 >            topoDist[i].push_back(2);
275 >          } else {
276 >            if (oneFour->hasPair(iglob, jglob)) {
277 >              toposForAtom[i].push_back(j);
278 >              topoDist[i].push_back(3);
279 >            }
280 >          }
281 >        }
282 >      }      
283 >    }
284   #endif
285  
286 <  // First time through, construct column stride.
287 <  if (communicators.size() == 0)
288 <  {
289 <    int nColumnsMax = (int) round(sqrt((float) nProcs));
290 <    for (int i = 0; i < nProcs; ++i)
291 <    {
292 <      if (nProcs%i==0) nColumns=i;
286 >    // allocate memory for the parallel objects
287 >    atypesLocal.resize(nLocal_);
288 >
289 >    for (int i = 0; i < nLocal_; i++)
290 >      atypesLocal[i] = ff_->getAtomType(idents[i]);
291 >
292 >    groupList_.clear();
293 >    groupList_.resize(nGroups_);
294 >    for (int i = 0; i < nGroups_; i++) {
295 >      int gid = cgLocalToGlobal[i];
296 >      for (int j = 0; j < nLocal_; j++) {
297 >        int aid = AtomLocalToGlobal[j];
298 >        if (globalGroupMembership[aid] == gid) {
299 >          groupList_[i].push_back(j);
300 >        }
301 >      }      
302      }
303  
304 <    int nRows = nProcs/nColumns;    
305 <    myRank_ = (int) worldRank%nColumns;
304 >
305 >    createGtypeCutoffMap();
306 >
307    }
308 <  else
309 <  {
310 <    myRank_ = myRank/nColumns;
311 <  }
312 <  MPI::Comm newComm = MPI:COMM_WORLD.Split(myRank_,0);
313 <  
314 <  isColumn_ = false;
315 <  
316 < }
308 >  
309 >  void ForceMatrixDecomposition::createGtypeCutoffMap() {
310 >    
311 >    RealType tol = 1e-6;
312 >    largestRcut_ = 0.0;
313 >    int atid;
314 >    set<AtomType*> atypes = info_->getSimulatedAtomTypes();
315 >    
316 >    map<int, RealType> atypeCutoff;
317 >      
318 >    for (set<AtomType*>::iterator at = atypes.begin();
319 >         at != atypes.end(); ++at){
320 >      atid = (*at)->getIdent();
321 >      if (userChoseCutoff_)
322 >        atypeCutoff[atid] = userCutoff_;
323 >      else
324 >        atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
325 >    }
326 >    
327 >    vector<RealType> gTypeCutoffs;
328 >    // first we do a single loop over the cutoff groups to find the
329 >    // largest cutoff for any atypes present in this group.
330 > #ifdef IS_MPI
331 >    vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
332 >    groupRowToGtype.resize(nGroupsInRow_);
333 >    for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) {
334 >      vector<int> atomListRow = getAtomsInGroupRow(cg1);
335 >      for (vector<int>::iterator ia = atomListRow.begin();
336 >           ia != atomListRow.end(); ++ia) {            
337 >        int atom1 = (*ia);
338 >        atid = identsRow[atom1];
339 >        if (atypeCutoff[atid] > groupCutoffRow[cg1]) {
340 >          groupCutoffRow[cg1] = atypeCutoff[atid];
341 >        }
342 >      }
343  
344 < ForceDecomposition::gather(sendbuf, receivebuf){
345 <  communicators(myIndex_).Allgatherv();
346 < }
344 >      bool gTypeFound = false;
345 >      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
346 >        if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) {
347 >          groupRowToGtype[cg1] = gt;
348 >          gTypeFound = true;
349 >        }
350 >      }
351 >      if (!gTypeFound) {
352 >        gTypeCutoffs.push_back( groupCutoffRow[cg1] );
353 >        groupRowToGtype[cg1] = gTypeCutoffs.size() - 1;
354 >      }
355 >      
356 >    }
357 >    vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
358 >    groupColToGtype.resize(nGroupsInCol_);
359 >    for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) {
360 >      vector<int> atomListCol = getAtomsInGroupColumn(cg2);
361 >      for (vector<int>::iterator jb = atomListCol.begin();
362 >           jb != atomListCol.end(); ++jb) {            
363 >        int atom2 = (*jb);
364 >        atid = identsCol[atom2];
365 >        if (atypeCutoff[atid] > groupCutoffCol[cg2]) {
366 >          groupCutoffCol[cg2] = atypeCutoff[atid];
367 >        }
368 >      }
369 >      bool gTypeFound = false;
370 >      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
371 >        if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) {
372 >          groupColToGtype[cg2] = gt;
373 >          gTypeFound = true;
374 >        }
375 >      }
376 >      if (!gTypeFound) {
377 >        gTypeCutoffs.push_back( groupCutoffCol[cg2] );
378 >        groupColToGtype[cg2] = gTypeCutoffs.size() - 1;
379 >      }
380 >    }
381 > #else
382 >
383 >    vector<RealType> groupCutoff(nGroups_, 0.0);
384 >    groupToGtype.resize(nGroups_);
385 >    for (int cg1 = 0; cg1 < nGroups_; cg1++) {
386 >      groupCutoff[cg1] = 0.0;
387 >      vector<int> atomList = getAtomsInGroupRow(cg1);
388 >      for (vector<int>::iterator ia = atomList.begin();
389 >           ia != atomList.end(); ++ia) {            
390 >        int atom1 = (*ia);
391 >        atid = idents[atom1];
392 >        if (atypeCutoff[atid] > groupCutoff[cg1])
393 >          groupCutoff[cg1] = atypeCutoff[atid];
394 >      }
395 >      
396 >      bool gTypeFound = false;
397 >      for (unsigned int gt = 0; gt < gTypeCutoffs.size(); gt++) {
398 >        if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
399 >          groupToGtype[cg1] = gt;
400 >          gTypeFound = true;
401 >        }
402 >      }
403 >      if (!gTypeFound) {      
404 >        gTypeCutoffs.push_back( groupCutoff[cg1] );
405 >        groupToGtype[cg1] = gTypeCutoffs.size() - 1;
406 >      }      
407 >    }
408 > #endif
409  
410 +    // Now we find the maximum group cutoff value present in the simulation
411  
412 +    RealType groupMax = *max_element(gTypeCutoffs.begin(),
413 +                                     gTypeCutoffs.end());
414  
415 < ForceDecomposition::scatter(sbuffer, rbuffer){
416 <  communicators(myIndex_).Reduce_scatter(sbuffer, recevbuf. recvcounts, MPI::DOUBLE, MPI::SUM);
417 < }
415 > #ifdef IS_MPI
416 >    MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE,
417 >                              MPI::MAX);
418 > #endif
419 >    
420 >    RealType tradRcut = groupMax;
421  
422 +    for (unsigned int i = 0; i < gTypeCutoffs.size();  i++) {
423 +      for (unsigned int j = 0; j < gTypeCutoffs.size();  j++) {      
424 +        RealType thisRcut;
425 +        switch(cutoffPolicy_) {
426 +        case TRADITIONAL:
427 +          thisRcut = tradRcut;
428 +          break;
429 +        case MIX:
430 +          thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
431 +          break;
432 +        case MAX:
433 +          thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
434 +          break;
435 +        default:
436 +          sprintf(painCave.errMsg,
437 +                  "ForceMatrixDecomposition::createGtypeCutoffMap "
438 +                  "hit an unknown cutoff policy!\n");
439 +          painCave.severity = OPENMD_ERROR;
440 +          painCave.isFatal = 1;
441 +          simError();
442 +          break;
443 +        }
444  
445 +        pair<int,int> key = make_pair(i,j);
446 +        gTypeCutoffMap[key].first = thisRcut;
447 +        if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
448 +        gTypeCutoffMap[key].second = thisRcut*thisRcut;
449 +        gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
450 +        // sanity check
451 +        
452 +        if (userChoseCutoff_) {
453 +          if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) {
454 +            sprintf(painCave.errMsg,
455 +                    "ForceMatrixDecomposition::createGtypeCutoffMap "
456 +                    "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_);
457 +            painCave.severity = OPENMD_ERROR;
458 +            painCave.isFatal = 1;
459 +            simError();            
460 +          }
461 +        }
462 +      }
463 +    }
464 +  }
465 +
466 +  groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
467 +    int i, j;  
468 + #ifdef IS_MPI
469 +    i = groupRowToGtype[cg1];
470 +    j = groupColToGtype[cg2];
471 + #else
472 +    i = groupToGtype[cg1];
473 +    j = groupToGtype[cg2];
474 + #endif    
475 +    return gTypeCutoffMap[make_pair(i,j)];
476 +  }
477 +
478 +  int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
479 +    for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) {
480 +      if (toposForAtom[atom1][j] == atom2)
481 +        return topoDist[atom1][j];
482 +    }
483 +    return 0;
484 +  }
485 +
486 +  void ForceMatrixDecomposition::zeroWorkArrays() {
487 +    pairwisePot = 0.0;
488 +    embeddingPot = 0.0;
489 +    excludedPot = 0.0;
490 +    excludedSelfPot = 0.0;
491 +
492 + #ifdef IS_MPI
493 +    if (storageLayout_ & DataStorage::dslForce) {
494 +      fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
495 +      fill(atomColData.force.begin(), atomColData.force.end(), V3Zero);
496 +    }
497 +
498 +    if (storageLayout_ & DataStorage::dslTorque) {
499 +      fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero);
500 +      fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero);
501 +    }
502 +    
503 +    fill(pot_row.begin(), pot_row.end(),
504 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
505 +
506 +    fill(pot_col.begin(), pot_col.end(),
507 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
508 +
509 +    fill(expot_row.begin(), expot_row.end(),
510 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
511 +
512 +    fill(expot_col.begin(), expot_col.end(),
513 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
514 +
515 +    if (storageLayout_ & DataStorage::dslParticlePot) {    
516 +      fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(),
517 +           0.0);
518 +      fill(atomColData.particlePot.begin(), atomColData.particlePot.end(),
519 +           0.0);
520 +    }
521 +
522 +    if (storageLayout_ & DataStorage::dslDensity) {      
523 +      fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0);
524 +      fill(atomColData.density.begin(), atomColData.density.end(), 0.0);
525 +    }
526 +
527 +    if (storageLayout_ & DataStorage::dslFunctional) {  
528 +      fill(atomRowData.functional.begin(), atomRowData.functional.end(),
529 +           0.0);
530 +      fill(atomColData.functional.begin(), atomColData.functional.end(),
531 +           0.0);
532 +    }
533 +
534 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
535 +      fill(atomRowData.functionalDerivative.begin(),
536 +           atomRowData.functionalDerivative.end(), 0.0);
537 +      fill(atomColData.functionalDerivative.begin(),
538 +           atomColData.functionalDerivative.end(), 0.0);
539 +    }
540 +
541 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
542 +      fill(atomRowData.skippedCharge.begin(),
543 +           atomRowData.skippedCharge.end(), 0.0);
544 +      fill(atomColData.skippedCharge.begin(),
545 +           atomColData.skippedCharge.end(), 0.0);
546 +    }
547 +
548 +    if (storageLayout_ & DataStorage::dslFlucQForce) {      
549 +      fill(atomRowData.flucQFrc.begin(),
550 +           atomRowData.flucQFrc.end(), 0.0);
551 +      fill(atomColData.flucQFrc.begin(),
552 +           atomColData.flucQFrc.end(), 0.0);
553 +    }
554 +
555 +    if (storageLayout_ & DataStorage::dslElectricField) {    
556 +      fill(atomRowData.electricField.begin(),
557 +           atomRowData.electricField.end(), V3Zero);
558 +      fill(atomColData.electricField.begin(),
559 +           atomColData.electricField.end(), V3Zero);
560 +    }
561 +
562 + #endif
563 +    // even in parallel, we need to zero out the local arrays:
564 +
565 +    if (storageLayout_ & DataStorage::dslParticlePot) {      
566 +      fill(snap_->atomData.particlePot.begin(),
567 +           snap_->atomData.particlePot.end(), 0.0);
568 +    }
569 +    
570 +    if (storageLayout_ & DataStorage::dslDensity) {      
571 +      fill(snap_->atomData.density.begin(),
572 +           snap_->atomData.density.end(), 0.0);
573 +    }
574 +
575 +    if (storageLayout_ & DataStorage::dslFunctional) {
576 +      fill(snap_->atomData.functional.begin(),
577 +           snap_->atomData.functional.end(), 0.0);
578 +    }
579 +
580 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
581 +      fill(snap_->atomData.functionalDerivative.begin(),
582 +           snap_->atomData.functionalDerivative.end(), 0.0);
583 +    }
584 +
585 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
586 +      fill(snap_->atomData.skippedCharge.begin(),
587 +           snap_->atomData.skippedCharge.end(), 0.0);
588 +    }
589 +
590 +    if (storageLayout_ & DataStorage::dslElectricField) {      
591 +      fill(snap_->atomData.electricField.begin(),
592 +           snap_->atomData.electricField.end(), V3Zero);
593 +    }
594 +  }
595 +
596 +
597 +  void ForceMatrixDecomposition::distributeData()  {
598 +    snap_ = sman_->getCurrentSnapshot();
599 +    storageLayout_ = sman_->getStorageLayout();
600 + #ifdef IS_MPI
601 +    
602 +    // gather up the atomic positions
603 +    AtomPlanVectorRow->gather(snap_->atomData.position,
604 +                              atomRowData.position);
605 +    AtomPlanVectorColumn->gather(snap_->atomData.position,
606 +                                 atomColData.position);
607 +    
608 +    // gather up the cutoff group positions
609 +
610 +    cgPlanVectorRow->gather(snap_->cgData.position,
611 +                            cgRowData.position);
612 +
613 +    cgPlanVectorColumn->gather(snap_->cgData.position,
614 +                               cgColData.position);
615 +
616 +
617 +
618 +    if (needVelocities_) {
619 +      // gather up the atomic velocities
620 +      AtomPlanVectorColumn->gather(snap_->atomData.velocity,
621 +                                   atomColData.velocity);
622 +      
623 +      cgPlanVectorColumn->gather(snap_->cgData.velocity,
624 +                                 cgColData.velocity);
625 +    }
626 +
627 +    
628 +    // if needed, gather the atomic rotation matrices
629 +    if (storageLayout_ & DataStorage::dslAmat) {
630 +      AtomPlanMatrixRow->gather(snap_->atomData.aMat,
631 +                                atomRowData.aMat);
632 +      AtomPlanMatrixColumn->gather(snap_->atomData.aMat,
633 +                                   atomColData.aMat);
634 +    }
635 +
636 +    // if needed, gather the atomic eletrostatic information
637 +    if (storageLayout_ & DataStorage::dslDipole) {
638 +      AtomPlanVectorRow->gather(snap_->atomData.dipole,
639 +                                atomRowData.dipole);
640 +      AtomPlanVectorColumn->gather(snap_->atomData.dipole,
641 +                                   atomColData.dipole);
642 +    }
643 +
644 +    if (storageLayout_ & DataStorage::dslQuadrupole) {
645 +      AtomPlanMatrixRow->gather(snap_->atomData.quadrupole,
646 +                                atomRowData.quadrupole);
647 +      AtomPlanMatrixColumn->gather(snap_->atomData.quadrupole,
648 +                                   atomColData.quadrupole);
649 +    }
650 +        
651 +    // if needed, gather the atomic fluctuating charge values
652 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {
653 +      AtomPlanRealRow->gather(snap_->atomData.flucQPos,
654 +                              atomRowData.flucQPos);
655 +      AtomPlanRealColumn->gather(snap_->atomData.flucQPos,
656 +                                 atomColData.flucQPos);
657 +    }
658 +
659 + #endif      
660 +  }
661 +  
662 +  /* collects information obtained during the pre-pair loop onto local
663 +   * data structures.
664 +   */
665 +  void ForceMatrixDecomposition::collectIntermediateData() {
666 +    snap_ = sman_->getCurrentSnapshot();
667 +    storageLayout_ = sman_->getStorageLayout();
668 + #ifdef IS_MPI
669 +    
670 +    if (storageLayout_ & DataStorage::dslDensity) {
671 +      
672 +      AtomPlanRealRow->scatter(atomRowData.density,
673 +                               snap_->atomData.density);
674 +      
675 +      int n = snap_->atomData.density.size();
676 +      vector<RealType> rho_tmp(n, 0.0);
677 +      AtomPlanRealColumn->scatter(atomColData.density, rho_tmp);
678 +      for (int i = 0; i < n; i++)
679 +        snap_->atomData.density[i] += rho_tmp[i];
680 +    }
681 +
682 +    if (storageLayout_ & DataStorage::dslElectricField) {
683 +      
684 +      AtomPlanVectorRow->scatter(atomRowData.electricField,
685 +                                 snap_->atomData.electricField);
686 +      
687 +      int n = snap_->atomData.electricField.size();
688 +      vector<Vector3d> field_tmp(n, V3Zero);
689 +      AtomPlanVectorColumn->scatter(atomColData.electricField,
690 +                                    field_tmp);
691 +      for (int i = 0; i < n; i++)
692 +        snap_->atomData.electricField[i] += field_tmp[i];
693 +    }
694 + #endif
695 +  }
696 +
697 +  /*
698 +   * redistributes information obtained during the pre-pair loop out to
699 +   * row and column-indexed data structures
700 +   */
701 +  void ForceMatrixDecomposition::distributeIntermediateData() {
702 +    snap_ = sman_->getCurrentSnapshot();
703 +    storageLayout_ = sman_->getStorageLayout();
704 + #ifdef IS_MPI
705 +    if (storageLayout_ & DataStorage::dslFunctional) {
706 +      AtomPlanRealRow->gather(snap_->atomData.functional,
707 +                              atomRowData.functional);
708 +      AtomPlanRealColumn->gather(snap_->atomData.functional,
709 +                                 atomColData.functional);
710 +    }
711 +    
712 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
713 +      AtomPlanRealRow->gather(snap_->atomData.functionalDerivative,
714 +                              atomRowData.functionalDerivative);
715 +      AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative,
716 +                                 atomColData.functionalDerivative);
717 +    }
718 + #endif
719 +  }
720 +  
721 +  
722 +  void ForceMatrixDecomposition::collectData() {
723 +    snap_ = sman_->getCurrentSnapshot();
724 +    storageLayout_ = sman_->getStorageLayout();
725 + #ifdef IS_MPI    
726 +    int n = snap_->atomData.force.size();
727 +    vector<Vector3d> frc_tmp(n, V3Zero);
728 +    
729 +    AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp);
730 +    for (int i = 0; i < n; i++) {
731 +      snap_->atomData.force[i] += frc_tmp[i];
732 +      frc_tmp[i] = 0.0;
733 +    }
734 +    
735 +    AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp);
736 +    for (int i = 0; i < n; i++) {
737 +      snap_->atomData.force[i] += frc_tmp[i];
738 +    }
739 +        
740 +    if (storageLayout_ & DataStorage::dslTorque) {
741 +
742 +      int nt = snap_->atomData.torque.size();
743 +      vector<Vector3d> trq_tmp(nt, V3Zero);
744 +
745 +      AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp);
746 +      for (int i = 0; i < nt; i++) {
747 +        snap_->atomData.torque[i] += trq_tmp[i];
748 +        trq_tmp[i] = 0.0;
749 +      }
750 +      
751 +      AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp);
752 +      for (int i = 0; i < nt; i++)
753 +        snap_->atomData.torque[i] += trq_tmp[i];
754 +    }
755 +
756 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
757 +
758 +      int ns = snap_->atomData.skippedCharge.size();
759 +      vector<RealType> skch_tmp(ns, 0.0);
760 +
761 +      AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
762 +      for (int i = 0; i < ns; i++) {
763 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
764 +        skch_tmp[i] = 0.0;
765 +      }
766 +      
767 +      AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
768 +      for (int i = 0; i < ns; i++)
769 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
770 +            
771 +    }
772 +    
773 +    if (storageLayout_ & DataStorage::dslFlucQForce) {
774 +
775 +      int nq = snap_->atomData.flucQFrc.size();
776 +      vector<RealType> fqfrc_tmp(nq, 0.0);
777 +
778 +      AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp);
779 +      for (int i = 0; i < nq; i++) {
780 +        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
781 +        fqfrc_tmp[i] = 0.0;
782 +      }
783 +      
784 +      AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp);
785 +      for (int i = 0; i < nq; i++)
786 +        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
787 +            
788 +    }
789 +
790 +    nLocal_ = snap_->getNumberOfAtoms();
791 +
792 +    vector<potVec> pot_temp(nLocal_,
793 +                            Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
794 +    vector<potVec> expot_temp(nLocal_,
795 +                              Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
796 +
797 +    // scatter/gather pot_row into the members of my column
798 +          
799 +    AtomPlanPotRow->scatter(pot_row, pot_temp);
800 +    AtomPlanPotRow->scatter(expot_row, expot_temp);
801 +
802 +    for (int ii = 0;  ii < pot_temp.size(); ii++ )
803 +      pairwisePot += pot_temp[ii];
804 +
805 +    for (int ii = 0;  ii < expot_temp.size(); ii++ )
806 +      excludedPot += expot_temp[ii];
807 +        
808 +    if (storageLayout_ & DataStorage::dslParticlePot) {
809 +      // This is the pairwise contribution to the particle pot.  The
810 +      // embedding contribution is added in each of the low level
811 +      // non-bonded routines.  In single processor, this is done in
812 +      // unpackInteractionData, not in collectData.
813 +      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
814 +        for (int i = 0; i < nLocal_; i++) {
815 +          // factor of two is because the total potential terms are divided
816 +          // by 2 in parallel due to row/ column scatter      
817 +          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
818 +        }
819 +      }
820 +    }
821 +
822 +    fill(pot_temp.begin(), pot_temp.end(),
823 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
824 +    fill(expot_temp.begin(), expot_temp.end(),
825 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
826 +      
827 +    AtomPlanPotColumn->scatter(pot_col, pot_temp);    
828 +    AtomPlanPotColumn->scatter(expot_col, expot_temp);    
829 +    
830 +    for (int ii = 0;  ii < pot_temp.size(); ii++ )
831 +      pairwisePot += pot_temp[ii];    
832 +
833 +    for (int ii = 0;  ii < expot_temp.size(); ii++ )
834 +      excludedPot += expot_temp[ii];    
835 +
836 +    if (storageLayout_ & DataStorage::dslParticlePot) {
837 +      // This is the pairwise contribution to the particle pot.  The
838 +      // embedding contribution is added in each of the low level
839 +      // non-bonded routines.  In single processor, this is done in
840 +      // unpackInteractionData, not in collectData.
841 +      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
842 +        for (int i = 0; i < nLocal_; i++) {
843 +          // factor of two is because the total potential terms are divided
844 +          // by 2 in parallel due to row/ column scatter      
845 +          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
846 +        }
847 +      }
848 +    }
849 +    
850 +    if (storageLayout_ & DataStorage::dslParticlePot) {
851 +      int npp = snap_->atomData.particlePot.size();
852 +      vector<RealType> ppot_temp(npp, 0.0);
853 +
854 +      // This is the direct or embedding contribution to the particle
855 +      // pot.
856 +      
857 +      AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp);
858 +      for (int i = 0; i < npp; i++) {
859 +        snap_->atomData.particlePot[i] += ppot_temp[i];
860 +      }
861 +
862 +      fill(ppot_temp.begin(), ppot_temp.end(), 0.0);
863 +      
864 +      AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp);
865 +      for (int i = 0; i < npp; i++) {
866 +        snap_->atomData.particlePot[i] += ppot_temp[i];
867 +      }
868 +    }
869 +
870 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
871 +      RealType ploc1 = pairwisePot[ii];
872 +      RealType ploc2 = 0.0;
873 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
874 +      pairwisePot[ii] = ploc2;
875 +    }
876 +
877 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
878 +      RealType ploc1 = excludedPot[ii];
879 +      RealType ploc2 = 0.0;
880 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
881 +      excludedPot[ii] = ploc2;
882 +    }
883 +
884 +    // Here be dragons.
885 +    MPI::Intracomm col = colComm.getComm();
886 +
887 +    col.Allreduce(MPI::IN_PLACE,
888 +                  &snap_->frameData.conductiveHeatFlux[0], 3,
889 +                  MPI::REALTYPE, MPI::SUM);
890 +
891 +
892 + #endif
893 +
894 +  }
895 +
896 +  /**
897 +   * Collects information obtained during the post-pair (and embedding
898 +   * functional) loops onto local data structures.
899 +   */
900 +  void ForceMatrixDecomposition::collectSelfData() {
901 +    snap_ = sman_->getCurrentSnapshot();
902 +    storageLayout_ = sman_->getStorageLayout();
903 +
904 + #ifdef IS_MPI
905 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
906 +      RealType ploc1 = embeddingPot[ii];
907 +      RealType ploc2 = 0.0;
908 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
909 +      embeddingPot[ii] = ploc2;
910 +    }    
911 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
912 +      RealType ploc1 = excludedSelfPot[ii];
913 +      RealType ploc2 = 0.0;
914 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
915 +      excludedSelfPot[ii] = ploc2;
916 +    }    
917 + #endif
918 +    
919 +  }
920 +
921 +
922 +
923 +  int ForceMatrixDecomposition::getNAtomsInRow() {  
924 + #ifdef IS_MPI
925 +    return nAtomsInRow_;
926 + #else
927 +    return nLocal_;
928 + #endif
929 +  }
930 +
931 +  /**
932 +   * returns the list of atoms belonging to this group.  
933 +   */
934 +  vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
935 + #ifdef IS_MPI
936 +    return groupListRow_[cg1];
937 + #else
938 +    return groupList_[cg1];
939 + #endif
940 +  }
941 +
942 +  vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
943 + #ifdef IS_MPI
944 +    return groupListCol_[cg2];
945 + #else
946 +    return groupList_[cg2];
947 + #endif
948 +  }
949 +  
950 +  Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){
951 +    Vector3d d;
952 +    
953 + #ifdef IS_MPI
954 +    d = cgColData.position[cg2] - cgRowData.position[cg1];
955 + #else
956 +    d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
957 + #endif
958 +    
959 +    snap_->wrapVector(d);
960 +    return d;    
961 +  }
962 +
963 +  Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){
964 + #ifdef IS_MPI
965 +    return cgColData.velocity[cg2];
966 + #else
967 +    return snap_->cgData.velocity[cg2];
968 + #endif
969 +  }
970 +
971 +  Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){
972 + #ifdef IS_MPI
973 +    return atomColData.velocity[atom2];
974 + #else
975 +    return snap_->atomData.velocity[atom2];
976 + #endif
977 +  }
978 +
979 +
980 +  Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
981 +
982 +    Vector3d d;
983 +    
984 + #ifdef IS_MPI
985 +    d = cgRowData.position[cg1] - atomRowData.position[atom1];
986 + #else
987 +    d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
988 + #endif
989 +
990 +    snap_->wrapVector(d);
991 +    return d;    
992 +  }
993 +  
994 +  Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){
995 +    Vector3d d;
996 +    
997 + #ifdef IS_MPI
998 +    d = cgColData.position[cg2] - atomColData.position[atom2];
999 + #else
1000 +    d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
1001 + #endif
1002 +    
1003 +    snap_->wrapVector(d);
1004 +    return d;    
1005 +  }
1006 +
1007 +  RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) {
1008 + #ifdef IS_MPI
1009 +    return massFactorsRow[atom1];
1010 + #else
1011 +    return massFactors[atom1];
1012 + #endif
1013 +  }
1014 +
1015 +  RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
1016 + #ifdef IS_MPI
1017 +    return massFactorsCol[atom2];
1018 + #else
1019 +    return massFactors[atom2];
1020 + #endif
1021 +
1022 +  }
1023 +    
1024 +  Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){
1025 +    Vector3d d;
1026 +    
1027 + #ifdef IS_MPI
1028 +    d = atomColData.position[atom2] - atomRowData.position[atom1];
1029 + #else
1030 +    d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
1031 + #endif
1032 +
1033 +    snap_->wrapVector(d);
1034 +    return d;    
1035 +  }
1036 +
1037 +  vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
1038 +    return excludesForAtom[atom1];
1039 +  }
1040 +
1041 +  /**
1042 +   * We need to exclude some overcounted interactions that result from
1043 +   * the parallel decomposition.
1044 +   */
1045 +  bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) {
1046 +    int unique_id_1, unique_id_2;
1047 +        
1048 + #ifdef IS_MPI
1049 +    // in MPI, we have to look up the unique IDs for each atom
1050 +    unique_id_1 = AtomRowToGlobal[atom1];
1051 +    unique_id_2 = AtomColToGlobal[atom2];
1052 +    // group1 = cgRowToGlobal[cg1];
1053 +    // group2 = cgColToGlobal[cg2];
1054 + #else
1055 +    unique_id_1 = AtomLocalToGlobal[atom1];
1056 +    unique_id_2 = AtomLocalToGlobal[atom2];
1057 +    int group1 = cgLocalToGlobal[cg1];
1058 +    int group2 = cgLocalToGlobal[cg2];
1059 + #endif  
1060 +
1061 +    if (unique_id_1 == unique_id_2) return true;
1062 +
1063 + #ifdef IS_MPI
1064 +    // this prevents us from doing the pair on multiple processors
1065 +    if (unique_id_1 < unique_id_2) {
1066 +      if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
1067 +    } else {
1068 +      if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
1069 +    }
1070 + #endif    
1071 +
1072 + #ifndef IS_MPI
1073 +    if (group1 == group2) {
1074 +      if (unique_id_1 < unique_id_2) return true;
1075 +    }
1076 + #endif
1077 +    
1078 +    return false;
1079 +  }
1080 +
1081 +  /**
1082 +   * We need to handle the interactions for atoms who are involved in
1083 +   * the same rigid body as well as some short range interactions
1084 +   * (bonds, bends, torsions) differently from other interactions.
1085 +   * We'll still visit the pairwise routines, but with a flag that
1086 +   * tells those routines to exclude the pair from direct long range
1087 +   * interactions.  Some indirect interactions (notably reaction
1088 +   * field) must still be handled for these pairs.
1089 +   */
1090 +  bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
1091 +
1092 +    // excludesForAtom was constructed to use row/column indices in the MPI
1093 +    // version, and to use local IDs in the non-MPI version:
1094 +    
1095 +    for (vector<int>::iterator i = excludesForAtom[atom1].begin();
1096 +         i != excludesForAtom[atom1].end(); ++i) {
1097 +      if ( (*i) == atom2 ) return true;
1098 +    }
1099 +
1100 +    return false;
1101 +  }
1102 +
1103 +
1104 +  void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
1105 + #ifdef IS_MPI
1106 +    atomRowData.force[atom1] += fg;
1107 + #else
1108 +    snap_->atomData.force[atom1] += fg;
1109 + #endif
1110 +  }
1111 +
1112 +  void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){
1113 + #ifdef IS_MPI
1114 +    atomColData.force[atom2] += fg;
1115 + #else
1116 +    snap_->atomData.force[atom2] += fg;
1117 + #endif
1118 +  }
1119 +
1120 +    // filling interaction blocks with pointers
1121 +  void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
1122 +                                                     int atom1, int atom2) {
1123 +
1124 +    idat.excluded = excludeAtomPair(atom1, atom2);
1125 +  
1126 + #ifdef IS_MPI
1127 +    idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]);
1128 +    //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
1129 +    //                         ff_->getAtomType(identsCol[atom2]) );
1130 +    
1131 +    if (storageLayout_ & DataStorage::dslAmat) {
1132 +      idat.A1 = &(atomRowData.aMat[atom1]);
1133 +      idat.A2 = &(atomColData.aMat[atom2]);
1134 +    }
1135 +    
1136 +    if (storageLayout_ & DataStorage::dslTorque) {
1137 +      idat.t1 = &(atomRowData.torque[atom1]);
1138 +      idat.t2 = &(atomColData.torque[atom2]);
1139 +    }
1140 +
1141 +    if (storageLayout_ & DataStorage::dslDipole) {
1142 +      idat.dipole1 = &(atomRowData.dipole[atom1]);
1143 +      idat.dipole2 = &(atomColData.dipole[atom2]);
1144 +    }
1145 +
1146 +    if (storageLayout_ & DataStorage::dslQuadrupole) {
1147 +      idat.quadrupole1 = &(atomRowData.quadrupole[atom1]);
1148 +      idat.quadrupole2 = &(atomColData.quadrupole[atom2]);
1149 +    }
1150 +
1151 +    if (storageLayout_ & DataStorage::dslDensity) {
1152 +      idat.rho1 = &(atomRowData.density[atom1]);
1153 +      idat.rho2 = &(atomColData.density[atom2]);
1154 +    }
1155 +
1156 +    if (storageLayout_ & DataStorage::dslFunctional) {
1157 +      idat.frho1 = &(atomRowData.functional[atom1]);
1158 +      idat.frho2 = &(atomColData.functional[atom2]);
1159 +    }
1160 +
1161 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1162 +      idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
1163 +      idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
1164 +    }
1165 +
1166 +    if (storageLayout_ & DataStorage::dslParticlePot) {
1167 +      idat.particlePot1 = &(atomRowData.particlePot[atom1]);
1168 +      idat.particlePot2 = &(atomColData.particlePot[atom2]);
1169 +    }
1170 +
1171 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {              
1172 +      idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
1173 +      idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
1174 +    }
1175 +
1176 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1177 +      idat.flucQ1 = &(atomRowData.flucQPos[atom1]);
1178 +      idat.flucQ2 = &(atomColData.flucQPos[atom2]);
1179 +    }
1180 +
1181 + #else
1182 +    
1183 +    idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]);
1184 +
1185 +    if (storageLayout_ & DataStorage::dslAmat) {
1186 +      idat.A1 = &(snap_->atomData.aMat[atom1]);
1187 +      idat.A2 = &(snap_->atomData.aMat[atom2]);
1188 +    }
1189 +
1190 +    RealType ct = dot(idat.A1->getColumn(2), idat.A2->getColumn(2));
1191 +
1192 +    if (storageLayout_ & DataStorage::dslTorque) {
1193 +      idat.t1 = &(snap_->atomData.torque[atom1]);
1194 +      idat.t2 = &(snap_->atomData.torque[atom2]);
1195 +    }
1196 +
1197 +    if (storageLayout_ & DataStorage::dslDipole) {
1198 +      idat.dipole1 = &(snap_->atomData.dipole[atom1]);
1199 +      idat.dipole2 = &(snap_->atomData.dipole[atom2]);
1200 +    }
1201 +
1202 +    if (storageLayout_ & DataStorage::dslQuadrupole) {
1203 +      idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]);
1204 +      idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]);
1205 +    }
1206 +
1207 +    if (storageLayout_ & DataStorage::dslDensity) {    
1208 +      idat.rho1 = &(snap_->atomData.density[atom1]);
1209 +      idat.rho2 = &(snap_->atomData.density[atom2]);
1210 +    }
1211 +
1212 +    if (storageLayout_ & DataStorage::dslFunctional) {
1213 +      idat.frho1 = &(snap_->atomData.functional[atom1]);
1214 +      idat.frho2 = &(snap_->atomData.functional[atom2]);
1215 +    }
1216 +
1217 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1218 +      idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
1219 +      idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
1220 +    }
1221 +
1222 +    if (storageLayout_ & DataStorage::dslParticlePot) {
1223 +      idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
1224 +      idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
1225 +    }
1226 +
1227 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
1228 +      idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
1229 +      idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1230 +    }
1231 +
1232 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1233 +      idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]);
1234 +      idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]);
1235 +    }
1236 +
1237 + #endif
1238 +  }
1239 +
1240 +  
1241 +  void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {    
1242 + #ifdef IS_MPI
1243 +    pot_row[atom1] += RealType(0.5) *  *(idat.pot);
1244 +    pot_col[atom2] += RealType(0.5) *  *(idat.pot);
1245 +    expot_row[atom1] += RealType(0.5) *  *(idat.excludedPot);
1246 +    expot_col[atom2] += RealType(0.5) *  *(idat.excludedPot);
1247 +
1248 +    atomRowData.force[atom1] += *(idat.f1);
1249 +    atomColData.force[atom2] -= *(idat.f1);
1250 +
1251 +    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1252 +      atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1253 +      atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1254 +    }
1255 +
1256 +    if (storageLayout_ & DataStorage::dslElectricField) {              
1257 +      atomRowData.electricField[atom1] += *(idat.eField1);
1258 +      atomColData.electricField[atom2] += *(idat.eField2);
1259 +    }
1260 +
1261 + #else
1262 +    pairwisePot += *(idat.pot);
1263 +    excludedPot += *(idat.excludedPot);
1264 +
1265 +    snap_->atomData.force[atom1] += *(idat.f1);
1266 +    snap_->atomData.force[atom2] -= *(idat.f1);
1267 +
1268 +    if (idat.doParticlePot) {
1269 +      // This is the pairwise contribution to the particle pot.  The
1270 +      // embedding contribution is added in each of the low level
1271 +      // non-bonded routines.  In parallel, this calculation is done
1272 +      // in collectData, not in unpackInteractionData.
1273 +      snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw);
1274 +      snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw);
1275 +    }
1276 +    
1277 +    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1278 +      snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1279 +      snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1280 +    }
1281 +
1282 +    if (storageLayout_ & DataStorage::dslElectricField) {              
1283 +      snap_->atomData.electricField[atom1] += *(idat.eField1);
1284 +      snap_->atomData.electricField[atom2] += *(idat.eField2);
1285 +    }
1286 +
1287 + #endif
1288 +    
1289 +  }
1290 +
1291 +  /*
1292 +   * buildNeighborList
1293 +   *
1294 +   * first element of pair is row-indexed CutoffGroup
1295 +   * second element of pair is column-indexed CutoffGroup
1296 +   */
1297 +  vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
1298 +      
1299 +    vector<pair<int, int> > neighborList;
1300 +    groupCutoffs cuts;
1301 +    bool doAllPairs = false;
1302 +
1303 + #ifdef IS_MPI
1304 +    cellListRow_.clear();
1305 +    cellListCol_.clear();
1306 + #else
1307 +    cellList_.clear();
1308 + #endif
1309 +
1310 +    RealType rList_ = (largestRcut_ + skinThickness_);
1311 +    RealType rl2 = rList_ * rList_;
1312 +    Snapshot* snap_ = sman_->getCurrentSnapshot();
1313 +    Mat3x3d Hmat = snap_->getHmat();
1314 +    Vector3d Hx = Hmat.getColumn(0);
1315 +    Vector3d Hy = Hmat.getColumn(1);
1316 +    Vector3d Hz = Hmat.getColumn(2);
1317 +
1318 +    nCells_.x() = (int) ( Hx.length() )/ rList_;
1319 +    nCells_.y() = (int) ( Hy.length() )/ rList_;
1320 +    nCells_.z() = (int) ( Hz.length() )/ rList_;
1321 +
1322 +    // handle small boxes where the cell offsets can end up repeating cells
1323 +    
1324 +    if (nCells_.x() < 3) doAllPairs = true;
1325 +    if (nCells_.y() < 3) doAllPairs = true;
1326 +    if (nCells_.z() < 3) doAllPairs = true;
1327 +
1328 +    Mat3x3d invHmat = snap_->getInvHmat();
1329 +    Vector3d rs, scaled, dr;
1330 +    Vector3i whichCell;
1331 +    int cellIndex;
1332 +    int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1333 +
1334 + #ifdef IS_MPI
1335 +    cellListRow_.resize(nCtot);
1336 +    cellListCol_.resize(nCtot);
1337 + #else
1338 +    cellList_.resize(nCtot);
1339 + #endif
1340 +
1341 +    if (!doAllPairs) {
1342 + #ifdef IS_MPI
1343 +
1344 +      for (int i = 0; i < nGroupsInRow_; i++) {
1345 +        rs = cgRowData.position[i];
1346 +        
1347 +        // scaled positions relative to the box vectors
1348 +        scaled = invHmat * rs;
1349 +        
1350 +        // wrap the vector back into the unit box by subtracting integer box
1351 +        // numbers
1352 +        for (int j = 0; j < 3; j++) {
1353 +          scaled[j] -= roundMe(scaled[j]);
1354 +          scaled[j] += 0.5;
1355 +          // Handle the special case when an object is exactly on the
1356 +          // boundary (a scaled coordinate of 1.0 is the same as
1357 +          // scaled coordinate of 0.0)
1358 +          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1359 +        }
1360 +        
1361 +        // find xyz-indices of cell that cutoffGroup is in.
1362 +        whichCell.x() = nCells_.x() * scaled.x();
1363 +        whichCell.y() = nCells_.y() * scaled.y();
1364 +        whichCell.z() = nCells_.z() * scaled.z();
1365 +        
1366 +        // find single index of this cell:
1367 +        cellIndex = Vlinear(whichCell, nCells_);
1368 +        
1369 +        // add this cutoff group to the list of groups in this cell;
1370 +        cellListRow_[cellIndex].push_back(i);
1371 +      }
1372 +      for (int i = 0; i < nGroupsInCol_; i++) {
1373 +        rs = cgColData.position[i];
1374 +        
1375 +        // scaled positions relative to the box vectors
1376 +        scaled = invHmat * rs;
1377 +        
1378 +        // wrap the vector back into the unit box by subtracting integer box
1379 +        // numbers
1380 +        for (int j = 0; j < 3; j++) {
1381 +          scaled[j] -= roundMe(scaled[j]);
1382 +          scaled[j] += 0.5;
1383 +          // Handle the special case when an object is exactly on the
1384 +          // boundary (a scaled coordinate of 1.0 is the same as
1385 +          // scaled coordinate of 0.0)
1386 +          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1387 +        }
1388 +        
1389 +        // find xyz-indices of cell that cutoffGroup is in.
1390 +        whichCell.x() = nCells_.x() * scaled.x();
1391 +        whichCell.y() = nCells_.y() * scaled.y();
1392 +        whichCell.z() = nCells_.z() * scaled.z();
1393 +        
1394 +        // find single index of this cell:
1395 +        cellIndex = Vlinear(whichCell, nCells_);
1396 +        
1397 +        // add this cutoff group to the list of groups in this cell;
1398 +        cellListCol_[cellIndex].push_back(i);
1399 +      }
1400 +    
1401 + #else
1402 +      for (int i = 0; i < nGroups_; i++) {
1403 +        rs = snap_->cgData.position[i];
1404 +        
1405 +        // scaled positions relative to the box vectors
1406 +        scaled = invHmat * rs;
1407 +        
1408 +        // wrap the vector back into the unit box by subtracting integer box
1409 +        // numbers
1410 +        for (int j = 0; j < 3; j++) {
1411 +          scaled[j] -= roundMe(scaled[j]);
1412 +          scaled[j] += 0.5;
1413 +          // Handle the special case when an object is exactly on the
1414 +          // boundary (a scaled coordinate of 1.0 is the same as
1415 +          // scaled coordinate of 0.0)
1416 +          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1417 +        }
1418 +        
1419 +        // find xyz-indices of cell that cutoffGroup is in.
1420 +        whichCell.x() = nCells_.x() * scaled.x();
1421 +        whichCell.y() = nCells_.y() * scaled.y();
1422 +        whichCell.z() = nCells_.z() * scaled.z();
1423 +        
1424 +        // find single index of this cell:
1425 +        cellIndex = Vlinear(whichCell, nCells_);
1426 +        
1427 +        // add this cutoff group to the list of groups in this cell;
1428 +        cellList_[cellIndex].push_back(i);
1429 +      }
1430 +
1431 + #endif
1432 +
1433 +      for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1434 +        for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1435 +          for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1436 +            Vector3i m1v(m1x, m1y, m1z);
1437 +            int m1 = Vlinear(m1v, nCells_);
1438 +            
1439 +            for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1440 +                 os != cellOffsets_.end(); ++os) {
1441 +              
1442 +              Vector3i m2v = m1v + (*os);
1443 +            
1444 +
1445 +              if (m2v.x() >= nCells_.x()) {
1446 +                m2v.x() = 0;          
1447 +              } else if (m2v.x() < 0) {
1448 +                m2v.x() = nCells_.x() - 1;
1449 +              }
1450 +              
1451 +              if (m2v.y() >= nCells_.y()) {
1452 +                m2v.y() = 0;          
1453 +              } else if (m2v.y() < 0) {
1454 +                m2v.y() = nCells_.y() - 1;
1455 +              }
1456 +              
1457 +              if (m2v.z() >= nCells_.z()) {
1458 +                m2v.z() = 0;          
1459 +              } else if (m2v.z() < 0) {
1460 +                m2v.z() = nCells_.z() - 1;
1461 +              }
1462 +
1463 +              int m2 = Vlinear (m2v, nCells_);
1464 +              
1465 + #ifdef IS_MPI
1466 +              for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1467 +                   j1 != cellListRow_[m1].end(); ++j1) {
1468 +                for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1469 +                     j2 != cellListCol_[m2].end(); ++j2) {
1470 +                  
1471 +                  // In parallel, we need to visit *all* pairs of row
1472 +                  // & column indicies and will divide labor in the
1473 +                  // force evaluation later.
1474 +                  dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1475 +                  snap_->wrapVector(dr);
1476 +                  cuts = getGroupCutoffs( (*j1), (*j2) );
1477 +                  if (dr.lengthSquare() < cuts.third) {
1478 +                    neighborList.push_back(make_pair((*j1), (*j2)));
1479 +                  }                  
1480 +                }
1481 +              }
1482 + #else
1483 +              for (vector<int>::iterator j1 = cellList_[m1].begin();
1484 +                   j1 != cellList_[m1].end(); ++j1) {
1485 +                for (vector<int>::iterator j2 = cellList_[m2].begin();
1486 +                     j2 != cellList_[m2].end(); ++j2) {
1487 +    
1488 +                  // Always do this if we're in different cells or if
1489 +                  // we're in the same cell and the global index of
1490 +                  // the j2 cutoff group is greater than or equal to
1491 +                  // the j1 cutoff group.  Note that Rappaport's code
1492 +                  // has a "less than" conditional here, but that
1493 +                  // deals with atom-by-atom computation.  OpenMD
1494 +                  // allows atoms within a single cutoff group to
1495 +                  // interact with each other.
1496 +
1497 +
1498 +
1499 +                  if (m2 != m1 || (*j2) >= (*j1) ) {
1500 +
1501 +                    dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1502 +                    snap_->wrapVector(dr);
1503 +                    cuts = getGroupCutoffs( (*j1), (*j2) );
1504 +                    if (dr.lengthSquare() < cuts.third) {
1505 +                      neighborList.push_back(make_pair((*j1), (*j2)));
1506 +                    }
1507 +                  }
1508 +                }
1509 +              }
1510 + #endif
1511 +            }
1512 +          }
1513 +        }
1514 +      }
1515 +    } else {
1516 +      // branch to do all cutoff group pairs
1517 + #ifdef IS_MPI
1518 +      for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1519 +        for (int j2 = 0; j2 < nGroupsInCol_; j2++) {    
1520 +          dr = cgColData.position[j2] - cgRowData.position[j1];
1521 +          snap_->wrapVector(dr);
1522 +          cuts = getGroupCutoffs( j1, j2 );
1523 +          if (dr.lengthSquare() < cuts.third) {
1524 +            neighborList.push_back(make_pair(j1, j2));
1525 +          }
1526 +        }
1527 +      }      
1528 + #else
1529 +      // include all groups here.
1530 +      for (int j1 = 0; j1 < nGroups_; j1++) {
1531 +        // include self group interactions j2 == j1
1532 +        for (int j2 = j1; j2 < nGroups_; j2++) {
1533 +          dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1534 +          snap_->wrapVector(dr);
1535 +          cuts = getGroupCutoffs( j1, j2 );
1536 +          if (dr.lengthSquare() < cuts.third) {
1537 +            neighborList.push_back(make_pair(j1, j2));
1538 +          }
1539 +        }    
1540 +      }
1541 + #endif
1542 +    }
1543 +      
1544 +    // save the local cutoff group positions for the check that is
1545 +    // done on each loop:
1546 +    saved_CG_positions_.clear();
1547 +    for (int i = 0; i < nGroups_; i++)
1548 +      saved_CG_positions_.push_back(snap_->cgData.position[i]);
1549 +    
1550 +    return neighborList;
1551 +  }
1552 + } //end namespace OpenMD

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines