ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/parallel/ForceMatrixDecomposition.cpp
(Generate patch)

Comparing branches/development/src/parallel/ForceMatrixDecomposition.cpp (file contents):
Revision 1568 by gezelter, Wed May 25 16:20:37 2011 UTC vs.
Revision 1803 by gezelter, Wed Oct 3 14:20:07 2012 UTC

# Line 36 | Line 36
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38   * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42   #include "parallel/ForceMatrixDecomposition.hpp"
43   #include "math/SquareMatrix3.hpp"
44   #include "nonbonded/NonBondedInteraction.hpp"
45   #include "brains/SnapshotManager.hpp"
46 + #include "brains/PairList.hpp"
47  
48   using namespace std;
49   namespace OpenMD {
50  
51 +  ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) {
52 +
53 +    // In a parallel computation, row and colum scans must visit all
54 +    // surrounding cells (not just the 14 upper triangular blocks that
55 +    // are used when the processor can see all pairs)
56 + #ifdef IS_MPI
57 +    cellOffsets_.clear();
58 +    cellOffsets_.push_back( Vector3i(-1,-1,-1) );
59 +    cellOffsets_.push_back( Vector3i( 0,-1,-1) );
60 +    cellOffsets_.push_back( Vector3i( 1,-1,-1) );                          
61 +    cellOffsets_.push_back( Vector3i(-1, 0,-1) );
62 +    cellOffsets_.push_back( Vector3i( 0, 0,-1) );
63 +    cellOffsets_.push_back( Vector3i( 1, 0,-1) );
64 +    cellOffsets_.push_back( Vector3i(-1, 1,-1) );
65 +    cellOffsets_.push_back( Vector3i( 0, 1,-1) );      
66 +    cellOffsets_.push_back( Vector3i( 1, 1,-1) );
67 +    cellOffsets_.push_back( Vector3i(-1,-1, 0) );
68 +    cellOffsets_.push_back( Vector3i( 0,-1, 0) );
69 +    cellOffsets_.push_back( Vector3i( 1,-1, 0) );
70 +    cellOffsets_.push_back( Vector3i(-1, 0, 0) );      
71 +    cellOffsets_.push_back( Vector3i( 0, 0, 0) );
72 +    cellOffsets_.push_back( Vector3i( 1, 0, 0) );
73 +    cellOffsets_.push_back( Vector3i(-1, 1, 0) );
74 +    cellOffsets_.push_back( Vector3i( 0, 1, 0) );
75 +    cellOffsets_.push_back( Vector3i( 1, 1, 0) );
76 +    cellOffsets_.push_back( Vector3i(-1,-1, 1) );
77 +    cellOffsets_.push_back( Vector3i( 0,-1, 1) );
78 +    cellOffsets_.push_back( Vector3i( 1,-1, 1) );
79 +    cellOffsets_.push_back( Vector3i(-1, 0, 1) );
80 +    cellOffsets_.push_back( Vector3i( 0, 0, 1) );
81 +    cellOffsets_.push_back( Vector3i( 1, 0, 1) );
82 +    cellOffsets_.push_back( Vector3i(-1, 1, 1) );
83 +    cellOffsets_.push_back( Vector3i( 0, 1, 1) );
84 +    cellOffsets_.push_back( Vector3i( 1, 1, 1) );
85 + #endif    
86 +  }
87 +
88 +
89    /**
90     * distributeInitialData is essentially a copy of the older fortran
91     * SimulationSetup
92     */
53  
93    void ForceMatrixDecomposition::distributeInitialData() {
94      snap_ = sman_->getCurrentSnapshot();
95      storageLayout_ = sman_->getStorageLayout();
96 +    ff_ = info_->getForceField();
97      nLocal_ = snap_->getNumberOfAtoms();
98 <    nGroups_ = snap_->getNumberOfCutoffGroups();
98 >  
99 >    nGroups_ = info_->getNLocalCutoffGroups();
100 >    // gather the information for atomtype IDs (atids):
101 >    idents = info_->getIdentArray();
102 >    AtomLocalToGlobal = info_->getGlobalAtomIndices();
103 >    cgLocalToGlobal = info_->getGlobalGroupIndices();
104 >    vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
105  
106 +    massFactors = info_->getMassFactors();
107 +
108 +    PairList* excludes = info_->getExcludedInteractions();
109 +    PairList* oneTwo = info_->getOneTwoInteractions();
110 +    PairList* oneThree = info_->getOneThreeInteractions();
111 +    PairList* oneFour = info_->getOneFourInteractions();
112 +    
113 +    if (needVelocities_)
114 +      snap_->cgData.setStorageLayout(DataStorage::dslPosition |
115 +                                     DataStorage::dslVelocity);
116 +    else
117 +      snap_->cgData.setStorageLayout(DataStorage::dslPosition);
118 +    
119   #ifdef IS_MPI
120  
121 <    AtomCommIntRow = new Communicator<Row,int>(nLocal_);
122 <    AtomCommRealRow = new Communicator<Row,RealType>(nLocal_);
64 <    AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_);
65 <    AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_);
121 >    MPI::Intracomm row = rowComm.getComm();
122 >    MPI::Intracomm col = colComm.getComm();
123  
124 <    AtomCommIntColumn = new Communicator<Column,int>(nLocal_);
125 <    AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_);
126 <    AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_);
127 <    AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_);
124 >    AtomPlanIntRow = new Plan<int>(row, nLocal_);
125 >    AtomPlanRealRow = new Plan<RealType>(row, nLocal_);
126 >    AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_);
127 >    AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_);
128 >    AtomPlanPotRow = new Plan<potVec>(row, nLocal_);
129  
130 <    cgCommIntRow = new Communicator<Row,int>(nGroups_);
131 <    cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_);
132 <    cgCommIntColumn = new Communicator<Column,int>(nGroups_);
133 <    cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_);
130 >    AtomPlanIntColumn = new Plan<int>(col, nLocal_);
131 >    AtomPlanRealColumn = new Plan<RealType>(col, nLocal_);
132 >    AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_);
133 >    AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_);
134 >    AtomPlanPotColumn = new Plan<potVec>(col, nLocal_);
135  
136 <    nAtomsInRow_ = AtomCommIntRow->getSize();
137 <    nAtomsInCol_ = AtomCommIntColumn->getSize();
138 <    nGroupsInRow_ = cgCommIntRow->getSize();
139 <    nGroupsInCol_ = cgCommIntColumn->getSize();
136 >    cgPlanIntRow = new Plan<int>(row, nGroups_);
137 >    cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_);
138 >    cgPlanIntColumn = new Plan<int>(col, nGroups_);
139 >    cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_);
140  
141 +    nAtomsInRow_ = AtomPlanIntRow->getSize();
142 +    nAtomsInCol_ = AtomPlanIntColumn->getSize();
143 +    nGroupsInRow_ = cgPlanIntRow->getSize();
144 +    nGroupsInCol_ = cgPlanIntColumn->getSize();
145 +
146      // Modify the data storage objects with the correct layouts and sizes:
147      atomRowData.resize(nAtomsInRow_);
148      atomRowData.setStorageLayout(storageLayout_);
# Line 87 | Line 151 | namespace OpenMD {
151      cgRowData.resize(nGroupsInRow_);
152      cgRowData.setStorageLayout(DataStorage::dslPosition);
153      cgColData.resize(nGroupsInCol_);
154 <    cgColData.setStorageLayout(DataStorage::dslPosition);
154 >    if (needVelocities_)
155 >      // we only need column velocities if we need them.
156 >      cgColData.setStorageLayout(DataStorage::dslPosition |
157 >                                 DataStorage::dslVelocity);
158 >    else    
159 >      cgColData.setStorageLayout(DataStorage::dslPosition);
160 >      
161 >    identsRow.resize(nAtomsInRow_);
162 >    identsCol.resize(nAtomsInCol_);
163      
164 <    vector<vector<RealType> > pot_row(N_INTERACTION_FAMILIES,
165 <                                      vector<RealType> (nAtomsInRow_, 0.0));
166 <    vector<vector<RealType> > pot_col(N_INTERACTION_FAMILIES,
167 <                                      vector<RealType> (nAtomsInCol_, 0.0));
164 >    AtomPlanIntRow->gather(idents, identsRow);
165 >    AtomPlanIntColumn->gather(idents, identsCol);
166 >    
167 >    // allocate memory for the parallel objects
168 >    atypesRow.resize(nAtomsInRow_);
169 >    atypesCol.resize(nAtomsInCol_);
170  
171 +    for (int i = 0; i < nAtomsInRow_; i++)
172 +      atypesRow[i] = ff_->getAtomType(identsRow[i]);
173 +    for (int i = 0; i < nAtomsInCol_; i++)
174 +      atypesCol[i] = ff_->getAtomType(identsCol[i]);        
175  
176 <    vector<RealType> pot_local(N_INTERACTION_FAMILIES, 0.0);
177 <    
100 <    // gather the information for atomtype IDs (atids):
101 <    vector<int> identsLocal = info_->getIdentArray();
102 <    identsRow.reserve(nAtomsInRow_);
103 <    identsCol.reserve(nAtomsInCol_);
104 <    
105 <    AtomCommIntRow->gather(identsLocal, identsRow);
106 <    AtomCommIntColumn->gather(identsLocal, identsCol);
107 <    
108 <    AtomLocalToGlobal = info_->getGlobalAtomIndices();
109 <    AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
110 <    AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
111 <    
112 <    cgLocalToGlobal = info_->getGlobalGroupIndices();
113 <    cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
114 <    cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
176 >    pot_row.resize(nAtomsInRow_);
177 >    pot_col.resize(nAtomsInCol_);
178  
179 <    // still need:
180 <    // topoDist
181 <    // exclude
179 >    expot_row.resize(nAtomsInRow_);
180 >    expot_col.resize(nAtomsInCol_);
181 >
182 >    AtomRowToGlobal.resize(nAtomsInRow_);
183 >    AtomColToGlobal.resize(nAtomsInCol_);
184 >    AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
185 >    AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
186 >
187 >    cgRowToGlobal.resize(nGroupsInRow_);
188 >    cgColToGlobal.resize(nGroupsInCol_);
189 >    cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
190 >    cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
191 >
192 >    massFactorsRow.resize(nAtomsInRow_);
193 >    massFactorsCol.resize(nAtomsInCol_);
194 >    AtomPlanRealRow->gather(massFactors, massFactorsRow);
195 >    AtomPlanRealColumn->gather(massFactors, massFactorsCol);
196 >
197 >    groupListRow_.clear();
198 >    groupListRow_.resize(nGroupsInRow_);
199 >    for (int i = 0; i < nGroupsInRow_; i++) {
200 >      int gid = cgRowToGlobal[i];
201 >      for (int j = 0; j < nAtomsInRow_; j++) {
202 >        int aid = AtomRowToGlobal[j];
203 >        if (globalGroupMembership[aid] == gid)
204 >          groupListRow_[i].push_back(j);
205 >      }      
206 >    }
207 >
208 >    groupListCol_.clear();
209 >    groupListCol_.resize(nGroupsInCol_);
210 >    for (int i = 0; i < nGroupsInCol_; i++) {
211 >      int gid = cgColToGlobal[i];
212 >      for (int j = 0; j < nAtomsInCol_; j++) {
213 >        int aid = AtomColToGlobal[j];
214 >        if (globalGroupMembership[aid] == gid)
215 >          groupListCol_[i].push_back(j);
216 >      }      
217 >    }
218 >
219 >    excludesForAtom.clear();
220 >    excludesForAtom.resize(nAtomsInRow_);
221 >    toposForAtom.clear();
222 >    toposForAtom.resize(nAtomsInRow_);
223 >    topoDist.clear();
224 >    topoDist.resize(nAtomsInRow_);
225 >    for (int i = 0; i < nAtomsInRow_; i++) {
226 >      int iglob = AtomRowToGlobal[i];
227 >
228 >      for (int j = 0; j < nAtomsInCol_; j++) {
229 >        int jglob = AtomColToGlobal[j];
230 >
231 >        if (excludes->hasPair(iglob, jglob))
232 >          excludesForAtom[i].push_back(j);      
233 >        
234 >        if (oneTwo->hasPair(iglob, jglob)) {
235 >          toposForAtom[i].push_back(j);
236 >          topoDist[i].push_back(1);
237 >        } else {
238 >          if (oneThree->hasPair(iglob, jglob)) {
239 >            toposForAtom[i].push_back(j);
240 >            topoDist[i].push_back(2);
241 >          } else {
242 >            if (oneFour->hasPair(iglob, jglob)) {
243 >              toposForAtom[i].push_back(j);
244 >              topoDist[i].push_back(3);
245 >            }
246 >          }
247 >        }
248 >      }      
249 >    }
250 >
251 > #else
252 >    excludesForAtom.clear();
253 >    excludesForAtom.resize(nLocal_);
254 >    toposForAtom.clear();
255 >    toposForAtom.resize(nLocal_);
256 >    topoDist.clear();
257 >    topoDist.resize(nLocal_);
258 >
259 >    for (int i = 0; i < nLocal_; i++) {
260 >      int iglob = AtomLocalToGlobal[i];
261 >
262 >      for (int j = 0; j < nLocal_; j++) {
263 >        int jglob = AtomLocalToGlobal[j];
264 >
265 >        if (excludes->hasPair(iglob, jglob))
266 >          excludesForAtom[i].push_back(j);              
267 >        
268 >        if (oneTwo->hasPair(iglob, jglob)) {
269 >          toposForAtom[i].push_back(j);
270 >          topoDist[i].push_back(1);
271 >        } else {
272 >          if (oneThree->hasPair(iglob, jglob)) {
273 >            toposForAtom[i].push_back(j);
274 >            topoDist[i].push_back(2);
275 >          } else {
276 >            if (oneFour->hasPair(iglob, jglob)) {
277 >              toposForAtom[i].push_back(j);
278 >              topoDist[i].push_back(3);
279 >            }
280 >          }
281 >        }
282 >      }      
283 >    }
284   #endif
285 +
286 +    // allocate memory for the parallel objects
287 +    atypesLocal.resize(nLocal_);
288 +
289 +    for (int i = 0; i < nLocal_; i++)
290 +      atypesLocal[i] = ff_->getAtomType(idents[i]);
291 +
292 +    groupList_.clear();
293 +    groupList_.resize(nGroups_);
294 +    for (int i = 0; i < nGroups_; i++) {
295 +      int gid = cgLocalToGlobal[i];
296 +      for (int j = 0; j < nLocal_; j++) {
297 +        int aid = AtomLocalToGlobal[j];
298 +        if (globalGroupMembership[aid] == gid) {
299 +          groupList_[i].push_back(j);
300 +        }
301 +      }      
302 +    }
303 +
304 +
305 +    createGtypeCutoffMap();
306 +
307 +  }
308 +  
309 +  void ForceMatrixDecomposition::createGtypeCutoffMap() {
310 +    
311 +    RealType tol = 1e-6;
312 +    largestRcut_ = 0.0;
313 +    int atid;
314 +    set<AtomType*> atypes = info_->getSimulatedAtomTypes();
315 +    
316 +    map<int, RealType> atypeCutoff;
317 +      
318 +    for (set<AtomType*>::iterator at = atypes.begin();
319 +         at != atypes.end(); ++at){
320 +      atid = (*at)->getIdent();
321 +      if (userChoseCutoff_)
322 +        atypeCutoff[atid] = userCutoff_;
323 +      else
324 +        atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
325 +    }
326 +    
327 +    vector<RealType> gTypeCutoffs;
328 +    // first we do a single loop over the cutoff groups to find the
329 +    // largest cutoff for any atypes present in this group.
330 + #ifdef IS_MPI
331 +    vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
332 +    groupRowToGtype.resize(nGroupsInRow_);
333 +    for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) {
334 +      vector<int> atomListRow = getAtomsInGroupRow(cg1);
335 +      for (vector<int>::iterator ia = atomListRow.begin();
336 +           ia != atomListRow.end(); ++ia) {            
337 +        int atom1 = (*ia);
338 +        atid = identsRow[atom1];
339 +        if (atypeCutoff[atid] > groupCutoffRow[cg1]) {
340 +          groupCutoffRow[cg1] = atypeCutoff[atid];
341 +        }
342 +      }
343 +
344 +      bool gTypeFound = false;
345 +      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
346 +        if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) {
347 +          groupRowToGtype[cg1] = gt;
348 +          gTypeFound = true;
349 +        }
350 +      }
351 +      if (!gTypeFound) {
352 +        gTypeCutoffs.push_back( groupCutoffRow[cg1] );
353 +        groupRowToGtype[cg1] = gTypeCutoffs.size() - 1;
354 +      }
355 +      
356 +    }
357 +    vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
358 +    groupColToGtype.resize(nGroupsInCol_);
359 +    for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) {
360 +      vector<int> atomListCol = getAtomsInGroupColumn(cg2);
361 +      for (vector<int>::iterator jb = atomListCol.begin();
362 +           jb != atomListCol.end(); ++jb) {            
363 +        int atom2 = (*jb);
364 +        atid = identsCol[atom2];
365 +        if (atypeCutoff[atid] > groupCutoffCol[cg2]) {
366 +          groupCutoffCol[cg2] = atypeCutoff[atid];
367 +        }
368 +      }
369 +      bool gTypeFound = false;
370 +      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
371 +        if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) {
372 +          groupColToGtype[cg2] = gt;
373 +          gTypeFound = true;
374 +        }
375 +      }
376 +      if (!gTypeFound) {
377 +        gTypeCutoffs.push_back( groupCutoffCol[cg2] );
378 +        groupColToGtype[cg2] = gTypeCutoffs.size() - 1;
379 +      }
380 +    }
381 + #else
382 +
383 +    vector<RealType> groupCutoff(nGroups_, 0.0);
384 +    groupToGtype.resize(nGroups_);
385 +    for (int cg1 = 0; cg1 < nGroups_; cg1++) {
386 +      groupCutoff[cg1] = 0.0;
387 +      vector<int> atomList = getAtomsInGroupRow(cg1);
388 +      for (vector<int>::iterator ia = atomList.begin();
389 +           ia != atomList.end(); ++ia) {            
390 +        int atom1 = (*ia);
391 +        atid = idents[atom1];
392 +        if (atypeCutoff[atid] > groupCutoff[cg1])
393 +          groupCutoff[cg1] = atypeCutoff[atid];
394 +      }
395 +      
396 +      bool gTypeFound = false;
397 +      for (unsigned int gt = 0; gt < gTypeCutoffs.size(); gt++) {
398 +        if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
399 +          groupToGtype[cg1] = gt;
400 +          gTypeFound = true;
401 +        }
402 +      }
403 +      if (!gTypeFound) {      
404 +        gTypeCutoffs.push_back( groupCutoff[cg1] );
405 +        groupToGtype[cg1] = gTypeCutoffs.size() - 1;
406 +      }      
407 +    }
408 + #endif
409 +
410 +    // Now we find the maximum group cutoff value present in the simulation
411 +
412 +    RealType groupMax = *max_element(gTypeCutoffs.begin(),
413 +                                     gTypeCutoffs.end());
414 +
415 + #ifdef IS_MPI
416 +    MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE,
417 +                              MPI::MAX);
418 + #endif
419 +    
420 +    RealType tradRcut = groupMax;
421 +
422 +    for (unsigned int i = 0; i < gTypeCutoffs.size();  i++) {
423 +      for (unsigned int j = 0; j < gTypeCutoffs.size();  j++) {      
424 +        RealType thisRcut;
425 +        switch(cutoffPolicy_) {
426 +        case TRADITIONAL:
427 +          thisRcut = tradRcut;
428 +          break;
429 +        case MIX:
430 +          thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
431 +          break;
432 +        case MAX:
433 +          thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
434 +          break;
435 +        default:
436 +          sprintf(painCave.errMsg,
437 +                  "ForceMatrixDecomposition::createGtypeCutoffMap "
438 +                  "hit an unknown cutoff policy!\n");
439 +          painCave.severity = OPENMD_ERROR;
440 +          painCave.isFatal = 1;
441 +          simError();
442 +          break;
443 +        }
444 +
445 +        pair<int,int> key = make_pair(i,j);
446 +        gTypeCutoffMap[key].first = thisRcut;
447 +        if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
448 +        gTypeCutoffMap[key].second = thisRcut*thisRcut;
449 +        gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
450 +        // sanity check
451 +        
452 +        if (userChoseCutoff_) {
453 +          if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) {
454 +            sprintf(painCave.errMsg,
455 +                    "ForceMatrixDecomposition::createGtypeCutoffMap "
456 +                    "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_);
457 +            painCave.severity = OPENMD_ERROR;
458 +            painCave.isFatal = 1;
459 +            simError();            
460 +          }
461 +        }
462 +      }
463 +    }
464    }
465 +
466 +  groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
467 +    int i, j;  
468 + #ifdef IS_MPI
469 +    i = groupRowToGtype[cg1];
470 +    j = groupColToGtype[cg2];
471 + #else
472 +    i = groupToGtype[cg1];
473 +    j = groupToGtype[cg2];
474 + #endif    
475 +    return gTypeCutoffMap[make_pair(i,j)];
476 +  }
477 +
478 +  int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
479 +    for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) {
480 +      if (toposForAtom[atom1][j] == atom2)
481 +        return topoDist[atom1][j];
482 +    }
483 +    return 0;
484 +  }
485 +
486 +  void ForceMatrixDecomposition::zeroWorkArrays() {
487 +    pairwisePot = 0.0;
488 +    embeddingPot = 0.0;
489 +    excludedPot = 0.0;
490 +    excludedSelfPot = 0.0;
491 +
492 + #ifdef IS_MPI
493 +    if (storageLayout_ & DataStorage::dslForce) {
494 +      fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
495 +      fill(atomColData.force.begin(), atomColData.force.end(), V3Zero);
496 +    }
497 +
498 +    if (storageLayout_ & DataStorage::dslTorque) {
499 +      fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero);
500 +      fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero);
501 +    }
502      
503 +    fill(pot_row.begin(), pot_row.end(),
504 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
505  
506 +    fill(pot_col.begin(), pot_col.end(),
507 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
508  
509 +    fill(expot_row.begin(), expot_row.end(),
510 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
511 +
512 +    fill(expot_col.begin(), expot_col.end(),
513 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
514 +
515 +    if (storageLayout_ & DataStorage::dslParticlePot) {    
516 +      fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(),
517 +           0.0);
518 +      fill(atomColData.particlePot.begin(), atomColData.particlePot.end(),
519 +           0.0);
520 +    }
521 +
522 +    if (storageLayout_ & DataStorage::dslDensity) {      
523 +      fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0);
524 +      fill(atomColData.density.begin(), atomColData.density.end(), 0.0);
525 +    }
526 +
527 +    if (storageLayout_ & DataStorage::dslFunctional) {  
528 +      fill(atomRowData.functional.begin(), atomRowData.functional.end(),
529 +           0.0);
530 +      fill(atomColData.functional.begin(), atomColData.functional.end(),
531 +           0.0);
532 +    }
533 +
534 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
535 +      fill(atomRowData.functionalDerivative.begin(),
536 +           atomRowData.functionalDerivative.end(), 0.0);
537 +      fill(atomColData.functionalDerivative.begin(),
538 +           atomColData.functionalDerivative.end(), 0.0);
539 +    }
540 +
541 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
542 +      fill(atomRowData.skippedCharge.begin(),
543 +           atomRowData.skippedCharge.end(), 0.0);
544 +      fill(atomColData.skippedCharge.begin(),
545 +           atomColData.skippedCharge.end(), 0.0);
546 +    }
547 +
548 +    if (storageLayout_ & DataStorage::dslFlucQForce) {      
549 +      fill(atomRowData.flucQFrc.begin(),
550 +           atomRowData.flucQFrc.end(), 0.0);
551 +      fill(atomColData.flucQFrc.begin(),
552 +           atomColData.flucQFrc.end(), 0.0);
553 +    }
554 +
555 +    if (storageLayout_ & DataStorage::dslElectricField) {    
556 +      fill(atomRowData.electricField.begin(),
557 +           atomRowData.electricField.end(), V3Zero);
558 +      fill(atomColData.electricField.begin(),
559 +           atomColData.electricField.end(), V3Zero);
560 +    }
561 +
562 + #endif
563 +    // even in parallel, we need to zero out the local arrays:
564 +
565 +    if (storageLayout_ & DataStorage::dslParticlePot) {      
566 +      fill(snap_->atomData.particlePot.begin(),
567 +           snap_->atomData.particlePot.end(), 0.0);
568 +    }
569 +    
570 +    if (storageLayout_ & DataStorage::dslDensity) {      
571 +      fill(snap_->atomData.density.begin(),
572 +           snap_->atomData.density.end(), 0.0);
573 +    }
574 +
575 +    if (storageLayout_ & DataStorage::dslFunctional) {
576 +      fill(snap_->atomData.functional.begin(),
577 +           snap_->atomData.functional.end(), 0.0);
578 +    }
579 +
580 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
581 +      fill(snap_->atomData.functionalDerivative.begin(),
582 +           snap_->atomData.functionalDerivative.end(), 0.0);
583 +    }
584 +
585 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
586 +      fill(snap_->atomData.skippedCharge.begin(),
587 +           snap_->atomData.skippedCharge.end(), 0.0);
588 +    }
589 +
590 +    if (storageLayout_ & DataStorage::dslElectricField) {      
591 +      fill(snap_->atomData.electricField.begin(),
592 +           snap_->atomData.electricField.end(), V3Zero);
593 +    }
594 +  }
595 +
596 +
597    void ForceMatrixDecomposition::distributeData()  {
598      snap_ = sman_->getCurrentSnapshot();
599      storageLayout_ = sman_->getStorageLayout();
600   #ifdef IS_MPI
601      
602      // gather up the atomic positions
603 <    AtomCommVectorRow->gather(snap_->atomData.position,
603 >    AtomPlanVectorRow->gather(snap_->atomData.position,
604                                atomRowData.position);
605 <    AtomCommVectorColumn->gather(snap_->atomData.position,
605 >    AtomPlanVectorColumn->gather(snap_->atomData.position,
606                                   atomColData.position);
607      
608      // gather up the cutoff group positions
609 <    cgCommVectorRow->gather(snap_->cgData.position,
609 >
610 >    cgPlanVectorRow->gather(snap_->cgData.position,
611                              cgRowData.position);
612 <    cgCommVectorColumn->gather(snap_->cgData.position,
612 >
613 >    cgPlanVectorColumn->gather(snap_->cgData.position,
614                                 cgColData.position);
615 +
616 +
617 +
618 +    if (needVelocities_) {
619 +      // gather up the atomic velocities
620 +      AtomPlanVectorColumn->gather(snap_->atomData.velocity,
621 +                                   atomColData.velocity);
622 +      
623 +      cgPlanVectorColumn->gather(snap_->cgData.velocity,
624 +                                 cgColData.velocity);
625 +    }
626 +
627      
628      // if needed, gather the atomic rotation matrices
629      if (storageLayout_ & DataStorage::dslAmat) {
630 <      AtomCommMatrixRow->gather(snap_->atomData.aMat,
630 >      AtomPlanMatrixRow->gather(snap_->atomData.aMat,
631                                  atomRowData.aMat);
632 <      AtomCommMatrixColumn->gather(snap_->atomData.aMat,
632 >      AtomPlanMatrixColumn->gather(snap_->atomData.aMat,
633                                     atomColData.aMat);
634      }
635 <    
636 <    // if needed, gather the atomic eletrostatic frames
637 <    if (storageLayout_ & DataStorage::dslElectroFrame) {
638 <      AtomCommMatrixRow->gather(snap_->atomData.electroFrame,
639 <                                atomRowData.electroFrame);
640 <      AtomCommMatrixColumn->gather(snap_->atomData.electroFrame,
641 <                                   atomColData.electroFrame);
635 >
636 >    // if needed, gather the atomic eletrostatic information
637 >    if (storageLayout_ & DataStorage::dslDipole) {
638 >      AtomPlanVectorRow->gather(snap_->atomData.dipole,
639 >                                atomRowData.dipole);
640 >      AtomPlanVectorColumn->gather(snap_->atomData.dipole,
641 >                                   atomColData.dipole);
642      }
643 +
644 +    if (storageLayout_ & DataStorage::dslQuadrupole) {
645 +      AtomPlanMatrixRow->gather(snap_->atomData.quadrupole,
646 +                                atomRowData.quadrupole);
647 +      AtomPlanMatrixColumn->gather(snap_->atomData.quadrupole,
648 +                                   atomColData.quadrupole);
649 +    }
650 +        
651 +    // if needed, gather the atomic fluctuating charge values
652 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {
653 +      AtomPlanRealRow->gather(snap_->atomData.flucQPos,
654 +                              atomRowData.flucQPos);
655 +      AtomPlanRealColumn->gather(snap_->atomData.flucQPos,
656 +                                 atomColData.flucQPos);
657 +    }
658 +
659   #endif      
660    }
661    
662 +  /* collects information obtained during the pre-pair loop onto local
663 +   * data structures.
664 +   */
665    void ForceMatrixDecomposition::collectIntermediateData() {
666      snap_ = sman_->getCurrentSnapshot();
667      storageLayout_ = sman_->getStorageLayout();
# Line 163 | Line 669 | namespace OpenMD {
669      
670      if (storageLayout_ & DataStorage::dslDensity) {
671        
672 <      AtomCommRealRow->scatter(atomRowData.density,
672 >      AtomPlanRealRow->scatter(atomRowData.density,
673                                 snap_->atomData.density);
674        
675        int n = snap_->atomData.density.size();
676 <      std::vector<RealType> rho_tmp(n, 0.0);
677 <      AtomCommRealColumn->scatter(atomColData.density, rho_tmp);
676 >      vector<RealType> rho_tmp(n, 0.0);
677 >      AtomPlanRealColumn->scatter(atomColData.density, rho_tmp);
678        for (int i = 0; i < n; i++)
679          snap_->atomData.density[i] += rho_tmp[i];
680      }
681 +
682 +    if (storageLayout_ & DataStorage::dslElectricField) {
683 +      
684 +      AtomPlanVectorRow->scatter(atomRowData.electricField,
685 +                                 snap_->atomData.electricField);
686 +      
687 +      int n = snap_->atomData.electricField.size();
688 +      vector<Vector3d> field_tmp(n, V3Zero);
689 +      AtomPlanVectorColumn->scatter(atomColData.electricField,
690 +                                    field_tmp);
691 +      for (int i = 0; i < n; i++)
692 +        snap_->atomData.electricField[i] += field_tmp[i];
693 +    }
694   #endif
695    }
696 <  
696 >
697 >  /*
698 >   * redistributes information obtained during the pre-pair loop out to
699 >   * row and column-indexed data structures
700 >   */
701    void ForceMatrixDecomposition::distributeIntermediateData() {
702      snap_ = sman_->getCurrentSnapshot();
703      storageLayout_ = sman_->getStorageLayout();
704   #ifdef IS_MPI
705      if (storageLayout_ & DataStorage::dslFunctional) {
706 <      AtomCommRealRow->gather(snap_->atomData.functional,
706 >      AtomPlanRealRow->gather(snap_->atomData.functional,
707                                atomRowData.functional);
708 <      AtomCommRealColumn->gather(snap_->atomData.functional,
708 >      AtomPlanRealColumn->gather(snap_->atomData.functional,
709                                   atomColData.functional);
710      }
711      
712      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
713 <      AtomCommRealRow->gather(snap_->atomData.functionalDerivative,
713 >      AtomPlanRealRow->gather(snap_->atomData.functionalDerivative,
714                                atomRowData.functionalDerivative);
715 <      AtomCommRealColumn->gather(snap_->atomData.functionalDerivative,
715 >      AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative,
716                                   atomColData.functionalDerivative);
717      }
718   #endif
# Line 203 | Line 726 | namespace OpenMD {
726      int n = snap_->atomData.force.size();
727      vector<Vector3d> frc_tmp(n, V3Zero);
728      
729 <    AtomCommVectorRow->scatter(atomRowData.force, frc_tmp);
729 >    AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp);
730      for (int i = 0; i < n; i++) {
731        snap_->atomData.force[i] += frc_tmp[i];
732        frc_tmp[i] = 0.0;
733      }
734      
735 <    AtomCommVectorColumn->scatter(atomColData.force, frc_tmp);
736 <    for (int i = 0; i < n; i++)
735 >    AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp);
736 >    for (int i = 0; i < n; i++) {
737        snap_->atomData.force[i] += frc_tmp[i];
738 <    
739 <    
738 >    }
739 >        
740      if (storageLayout_ & DataStorage::dslTorque) {
741  
742 <      int nt = snap_->atomData.force.size();
742 >      int nt = snap_->atomData.torque.size();
743        vector<Vector3d> trq_tmp(nt, V3Zero);
744  
745 <      AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp);
746 <      for (int i = 0; i < n; i++) {
745 >      AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp);
746 >      for (int i = 0; i < nt; i++) {
747          snap_->atomData.torque[i] += trq_tmp[i];
748          trq_tmp[i] = 0.0;
749        }
750        
751 <      AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp);
752 <      for (int i = 0; i < n; i++)
751 >      AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp);
752 >      for (int i = 0; i < nt; i++)
753          snap_->atomData.torque[i] += trq_tmp[i];
754      }
755 +
756 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
757 +
758 +      int ns = snap_->atomData.skippedCharge.size();
759 +      vector<RealType> skch_tmp(ns, 0.0);
760 +
761 +      AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
762 +      for (int i = 0; i < ns; i++) {
763 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
764 +        skch_tmp[i] = 0.0;
765 +      }
766 +      
767 +      AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
768 +      for (int i = 0; i < ns; i++)
769 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
770 +            
771 +    }
772      
773 +    if (storageLayout_ & DataStorage::dslFlucQForce) {
774 +
775 +      int nq = snap_->atomData.flucQFrc.size();
776 +      vector<RealType> fqfrc_tmp(nq, 0.0);
777 +
778 +      AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp);
779 +      for (int i = 0; i < nq; i++) {
780 +        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
781 +        fqfrc_tmp[i] = 0.0;
782 +      }
783 +      
784 +      AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp);
785 +      for (int i = 0; i < nq; i++)
786 +        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
787 +            
788 +    }
789 +
790      nLocal_ = snap_->getNumberOfAtoms();
791  
792 <    vector<vector<RealType> > pot_temp(N_INTERACTION_FAMILIES,
793 <                                       vector<RealType> (nLocal_, 0.0));
794 <    
795 <    for (int i = 0; i < N_INTERACTION_FAMILIES; i++) {
796 <      AtomCommRealRow->scatter(pot_row[i], pot_temp[i]);
797 <      for (int ii = 0;  ii < pot_temp[i].size(); ii++ ) {
798 <        pot_local[i] += pot_temp[i][ii];
792 >    vector<potVec> pot_temp(nLocal_,
793 >                            Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
794 >    vector<potVec> expot_temp(nLocal_,
795 >                              Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
796 >
797 >    // scatter/gather pot_row into the members of my column
798 >          
799 >    AtomPlanPotRow->scatter(pot_row, pot_temp);
800 >    AtomPlanPotRow->scatter(expot_row, expot_temp);
801 >
802 >    for (int ii = 0;  ii < pot_temp.size(); ii++ )
803 >      pairwisePot += pot_temp[ii];
804 >
805 >    for (int ii = 0;  ii < expot_temp.size(); ii++ )
806 >      excludedPot += expot_temp[ii];
807 >        
808 >    if (storageLayout_ & DataStorage::dslParticlePot) {
809 >      // This is the pairwise contribution to the particle pot.  The
810 >      // embedding contribution is added in each of the low level
811 >      // non-bonded routines.  In single processor, this is done in
812 >      // unpackInteractionData, not in collectData.
813 >      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
814 >        for (int i = 0; i < nLocal_; i++) {
815 >          // factor of two is because the total potential terms are divided
816 >          // by 2 in parallel due to row/ column scatter      
817 >          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
818 >        }
819        }
820      }
821 +
822 +    fill(pot_temp.begin(), pot_temp.end(),
823 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
824 +    fill(expot_temp.begin(), expot_temp.end(),
825 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
826 +      
827 +    AtomPlanPotColumn->scatter(pot_col, pot_temp);    
828 +    AtomPlanPotColumn->scatter(expot_col, expot_temp);    
829 +    
830 +    for (int ii = 0;  ii < pot_temp.size(); ii++ )
831 +      pairwisePot += pot_temp[ii];    
832 +
833 +    for (int ii = 0;  ii < expot_temp.size(); ii++ )
834 +      excludedPot += expot_temp[ii];    
835 +
836 +    if (storageLayout_ & DataStorage::dslParticlePot) {
837 +      // This is the pairwise contribution to the particle pot.  The
838 +      // embedding contribution is added in each of the low level
839 +      // non-bonded routines.  In single processor, this is done in
840 +      // unpackInteractionData, not in collectData.
841 +      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
842 +        for (int i = 0; i < nLocal_; i++) {
843 +          // factor of two is because the total potential terms are divided
844 +          // by 2 in parallel due to row/ column scatter      
845 +          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
846 +        }
847 +      }
848 +    }
849 +    
850 +    if (storageLayout_ & DataStorage::dslParticlePot) {
851 +      int npp = snap_->atomData.particlePot.size();
852 +      vector<RealType> ppot_temp(npp, 0.0);
853 +
854 +      // This is the direct or embedding contribution to the particle
855 +      // pot.
856 +      
857 +      AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp);
858 +      for (int i = 0; i < npp; i++) {
859 +        snap_->atomData.particlePot[i] += ppot_temp[i];
860 +      }
861 +
862 +      fill(ppot_temp.begin(), ppot_temp.end(), 0.0);
863 +      
864 +      AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp);
865 +      for (int i = 0; i < npp; i++) {
866 +        snap_->atomData.particlePot[i] += ppot_temp[i];
867 +      }
868 +    }
869 +
870 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
871 +      RealType ploc1 = pairwisePot[ii];
872 +      RealType ploc2 = 0.0;
873 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
874 +      pairwisePot[ii] = ploc2;
875 +    }
876 +
877 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
878 +      RealType ploc1 = excludedPot[ii];
879 +      RealType ploc2 = 0.0;
880 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
881 +      excludedPot[ii] = ploc2;
882 +    }
883 +
884 +    // Here be dragons.
885 +    MPI::Intracomm col = colComm.getComm();
886 +
887 +    col.Allreduce(MPI::IN_PLACE,
888 +                  &snap_->frameData.conductiveHeatFlux[0], 3,
889 +                  MPI::REALTYPE, MPI::SUM);
890 +
891 +
892   #endif
893 +
894    }
895  
896 +  /**
897 +   * Collects information obtained during the post-pair (and embedding
898 +   * functional) loops onto local data structures.
899 +   */
900 +  void ForceMatrixDecomposition::collectSelfData() {
901 +    snap_ = sman_->getCurrentSnapshot();
902 +    storageLayout_ = sman_->getStorageLayout();
903 +
904 + #ifdef IS_MPI
905 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
906 +      RealType ploc1 = embeddingPot[ii];
907 +      RealType ploc2 = 0.0;
908 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
909 +      embeddingPot[ii] = ploc2;
910 +    }    
911 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
912 +      RealType ploc1 = excludedSelfPot[ii];
913 +      RealType ploc2 = 0.0;
914 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
915 +      excludedSelfPot[ii] = ploc2;
916 +    }    
917 + #endif
918 +    
919 +  }
920 +
921 +
922 +
923 +  int ForceMatrixDecomposition::getNAtomsInRow() {  
924 + #ifdef IS_MPI
925 +    return nAtomsInRow_;
926 + #else
927 +    return nLocal_;
928 + #endif
929 +  }
930 +
931 +  /**
932 +   * returns the list of atoms belonging to this group.  
933 +   */
934 +  vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
935 + #ifdef IS_MPI
936 +    return groupListRow_[cg1];
937 + #else
938 +    return groupList_[cg1];
939 + #endif
940 +  }
941 +
942 +  vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
943 + #ifdef IS_MPI
944 +    return groupListCol_[cg2];
945 + #else
946 +    return groupList_[cg2];
947 + #endif
948 +  }
949    
950    Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){
951      Vector3d d;
# Line 258 | Line 960 | namespace OpenMD {
960      return d;    
961    }
962  
963 +  Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){
964 + #ifdef IS_MPI
965 +    return cgColData.velocity[cg2];
966 + #else
967 +    return snap_->cgData.velocity[cg2];
968 + #endif
969 +  }
970  
971 +  Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){
972 + #ifdef IS_MPI
973 +    return atomColData.velocity[atom2];
974 + #else
975 +    return snap_->atomData.velocity[atom2];
976 + #endif
977 +  }
978 +
979 +
980    Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
981  
982      Vector3d d;
# Line 285 | Line 1003 | namespace OpenMD {
1003      snap_->wrapVector(d);
1004      return d;    
1005    }
1006 +
1007 +  RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) {
1008 + #ifdef IS_MPI
1009 +    return massFactorsRow[atom1];
1010 + #else
1011 +    return massFactors[atom1];
1012 + #endif
1013 +  }
1014 +
1015 +  RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
1016 + #ifdef IS_MPI
1017 +    return massFactorsCol[atom2];
1018 + #else
1019 +    return massFactors[atom2];
1020 + #endif
1021 +
1022 +  }
1023      
1024    Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){
1025      Vector3d d;
# Line 297 | Line 1032 | namespace OpenMD {
1032  
1033      snap_->wrapVector(d);
1034      return d;    
1035 +  }
1036 +
1037 +  vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
1038 +    return excludesForAtom[atom1];
1039 +  }
1040 +
1041 +  /**
1042 +   * We need to exclude some overcounted interactions that result from
1043 +   * the parallel decomposition.
1044 +   */
1045 +  bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) {
1046 +    int unique_id_1, unique_id_2;
1047 +        
1048 + #ifdef IS_MPI
1049 +    // in MPI, we have to look up the unique IDs for each atom
1050 +    unique_id_1 = AtomRowToGlobal[atom1];
1051 +    unique_id_2 = AtomColToGlobal[atom2];
1052 +    // group1 = cgRowToGlobal[cg1];
1053 +    // group2 = cgColToGlobal[cg2];
1054 + #else
1055 +    unique_id_1 = AtomLocalToGlobal[atom1];
1056 +    unique_id_2 = AtomLocalToGlobal[atom2];
1057 +    int group1 = cgLocalToGlobal[cg1];
1058 +    int group2 = cgLocalToGlobal[cg2];
1059 + #endif  
1060 +
1061 +    if (unique_id_1 == unique_id_2) return true;
1062 +
1063 + #ifdef IS_MPI
1064 +    // this prevents us from doing the pair on multiple processors
1065 +    if (unique_id_1 < unique_id_2) {
1066 +      if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
1067 +    } else {
1068 +      if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
1069 +    }
1070 + #endif    
1071 +
1072 + #ifndef IS_MPI
1073 +    if (group1 == group2) {
1074 +      if (unique_id_1 < unique_id_2) return true;
1075 +    }
1076 + #endif
1077 +    
1078 +    return false;
1079    }
1080  
1081 +  /**
1082 +   * We need to handle the interactions for atoms who are involved in
1083 +   * the same rigid body as well as some short range interactions
1084 +   * (bonds, bends, torsions) differently from other interactions.
1085 +   * We'll still visit the pairwise routines, but with a flag that
1086 +   * tells those routines to exclude the pair from direct long range
1087 +   * interactions.  Some indirect interactions (notably reaction
1088 +   * field) must still be handled for these pairs.
1089 +   */
1090 +  bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
1091 +
1092 +    // excludesForAtom was constructed to use row/column indices in the MPI
1093 +    // version, and to use local IDs in the non-MPI version:
1094 +    
1095 +    for (vector<int>::iterator i = excludesForAtom[atom1].begin();
1096 +         i != excludesForAtom[atom1].end(); ++i) {
1097 +      if ( (*i) == atom2 ) return true;
1098 +    }
1099 +
1100 +    return false;
1101 +  }
1102 +
1103 +
1104    void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
1105   #ifdef IS_MPI
1106      atomRowData.force[atom1] += fg;
# Line 316 | Line 1118 | namespace OpenMD {
1118    }
1119  
1120      // filling interaction blocks with pointers
1121 <  InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) {    
1122 <    InteractionData idat;
1121 >  void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
1122 >                                                     int atom1, int atom2) {
1123  
1124 +    idat.excluded = excludeAtomPair(atom1, atom2);
1125 +  
1126   #ifdef IS_MPI
1127 +    idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]);
1128 +    //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
1129 +    //                         ff_->getAtomType(identsCol[atom2]) );
1130 +    
1131      if (storageLayout_ & DataStorage::dslAmat) {
1132        idat.A1 = &(atomRowData.aMat[atom1]);
1133        idat.A2 = &(atomColData.aMat[atom2]);
1134      }
1135      
328    if (storageLayout_ & DataStorage::dslElectroFrame) {
329      idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
330      idat.eFrame2 = &(atomColData.electroFrame[atom2]);
331    }
332
1136      if (storageLayout_ & DataStorage::dslTorque) {
1137        idat.t1 = &(atomRowData.torque[atom1]);
1138        idat.t2 = &(atomColData.torque[atom2]);
1139      }
1140  
1141 +    if (storageLayout_ & DataStorage::dslDipole) {
1142 +      idat.dipole1 = &(atomRowData.dipole[atom1]);
1143 +      idat.dipole2 = &(atomColData.dipole[atom2]);
1144 +    }
1145 +
1146 +    if (storageLayout_ & DataStorage::dslQuadrupole) {
1147 +      idat.quadrupole1 = &(atomRowData.quadrupole[atom1]);
1148 +      idat.quadrupole2 = &(atomColData.quadrupole[atom2]);
1149 +    }
1150 +
1151      if (storageLayout_ & DataStorage::dslDensity) {
1152        idat.rho1 = &(atomRowData.density[atom1]);
1153        idat.rho2 = &(atomColData.density[atom2]);
1154      }
1155  
1156 +    if (storageLayout_ & DataStorage::dslFunctional) {
1157 +      idat.frho1 = &(atomRowData.functional[atom1]);
1158 +      idat.frho2 = &(atomColData.functional[atom2]);
1159 +    }
1160 +
1161      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1162        idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
1163        idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
1164      }
1165 +
1166 +    if (storageLayout_ & DataStorage::dslParticlePot) {
1167 +      idat.particlePot1 = &(atomRowData.particlePot[atom1]);
1168 +      idat.particlePot2 = &(atomColData.particlePot[atom2]);
1169 +    }
1170 +
1171 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {              
1172 +      idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
1173 +      idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
1174 +    }
1175 +
1176 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1177 +      idat.flucQ1 = &(atomRowData.flucQPos[atom1]);
1178 +      idat.flucQ2 = &(atomColData.flucQPos[atom2]);
1179 +    }
1180 +
1181   #else
1182 +    
1183 +    idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]);
1184 +
1185      if (storageLayout_ & DataStorage::dslAmat) {
1186        idat.A1 = &(snap_->atomData.aMat[atom1]);
1187        idat.A2 = &(snap_->atomData.aMat[atom2]);
1188      }
1189  
353    if (storageLayout_ & DataStorage::dslElectroFrame) {
354      idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
355      idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
356    }
357
1190      if (storageLayout_ & DataStorage::dslTorque) {
1191        idat.t1 = &(snap_->atomData.torque[atom1]);
1192        idat.t2 = &(snap_->atomData.torque[atom2]);
1193      }
1194  
1195 <    if (storageLayout_ & DataStorage::dslDensity) {
1195 >    if (storageLayout_ & DataStorage::dslDipole) {
1196 >      idat.dipole1 = &(snap_->atomData.dipole[atom1]);
1197 >      idat.dipole2 = &(snap_->atomData.dipole[atom2]);
1198 >    }
1199 >
1200 >    if (storageLayout_ & DataStorage::dslQuadrupole) {
1201 >      idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]);
1202 >      idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]);
1203 >    }
1204 >
1205 >    if (storageLayout_ & DataStorage::dslDensity) {    
1206        idat.rho1 = &(snap_->atomData.density[atom1]);
1207        idat.rho2 = &(snap_->atomData.density[atom2]);
1208      }
1209  
1210 +    if (storageLayout_ & DataStorage::dslFunctional) {
1211 +      idat.frho1 = &(snap_->atomData.functional[atom1]);
1212 +      idat.frho2 = &(snap_->atomData.functional[atom2]);
1213 +    }
1214 +
1215      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1216        idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
1217        idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
1218      }
1219 +
1220 +    if (storageLayout_ & DataStorage::dslParticlePot) {
1221 +      idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
1222 +      idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
1223 +    }
1224 +
1225 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
1226 +      idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
1227 +      idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1228 +    }
1229 +
1230 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1231 +      idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]);
1232 +      idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]);
1233 +    }
1234 +
1235   #endif
373    return idat;
1236    }
1237  
1238 <  InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){
1239 <
378 <    InteractionData idat;
1238 >  
1239 >  void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {    
1240   #ifdef IS_MPI
1241 <    if (storageLayout_ & DataStorage::dslElectroFrame) {
1242 <      idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
1243 <      idat.eFrame2 = &(atomColData.electroFrame[atom2]);
1241 >    pot_row[atom1] += RealType(0.5) *  *(idat.pot);
1242 >    pot_col[atom2] += RealType(0.5) *  *(idat.pot);
1243 >    expot_row[atom1] += RealType(0.5) *  *(idat.excludedPot);
1244 >    expot_col[atom2] += RealType(0.5) *  *(idat.excludedPot);
1245 >
1246 >    atomRowData.force[atom1] += *(idat.f1);
1247 >    atomColData.force[atom2] -= *(idat.f1);
1248 >
1249 >    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1250 >      atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1251 >      atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1252      }
1253 <    if (storageLayout_ & DataStorage::dslTorque) {
1254 <      idat.t1 = &(atomRowData.torque[atom1]);
1255 <      idat.t2 = &(atomColData.torque[atom2]);
1253 >
1254 >    if (storageLayout_ & DataStorage::dslElectricField) {              
1255 >      atomRowData.electricField[atom1] += *(idat.eField1);
1256 >      atomColData.electricField[atom2] += *(idat.eField2);
1257      }
1258 <    if (storageLayout_ & DataStorage::dslForce) {
389 <      idat.t1 = &(atomRowData.force[atom1]);
390 <      idat.t2 = &(atomColData.force[atom2]);
391 <    }
1258 >
1259   #else
1260 <    if (storageLayout_ & DataStorage::dslElectroFrame) {
1261 <      idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
1262 <      idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
1263 <    }
1264 <    if (storageLayout_ & DataStorage::dslTorque) {
1265 <      idat.t1 = &(snap_->atomData.torque[atom1]);
1266 <      idat.t2 = &(snap_->atomData.torque[atom2]);
1260 >    pairwisePot += *(idat.pot);
1261 >    excludedPot += *(idat.excludedPot);
1262 >
1263 >    snap_->atomData.force[atom1] += *(idat.f1);
1264 >    snap_->atomData.force[atom2] -= *(idat.f1);
1265 >
1266 >    if (idat.doParticlePot) {
1267 >      // This is the pairwise contribution to the particle pot.  The
1268 >      // embedding contribution is added in each of the low level
1269 >      // non-bonded routines.  In parallel, this calculation is done
1270 >      // in collectData, not in unpackInteractionData.
1271 >      snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw);
1272 >      snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw);
1273      }
1274 <    if (storageLayout_ & DataStorage::dslForce) {
1275 <      idat.t1 = &(snap_->atomData.force[atom1]);
1276 <      idat.t2 = &(snap_->atomData.force[atom2]);
1274 >    
1275 >    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1276 >      snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1277 >      snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1278      }
1279 +
1280 +    if (storageLayout_ & DataStorage::dslElectricField) {              
1281 +      snap_->atomData.electricField[atom1] += *(idat.eField1);
1282 +      snap_->atomData.electricField[atom2] += *(idat.eField2);
1283 +    }
1284 +
1285   #endif
1286      
1287    }
1288  
409
410
411
1289    /*
1290     * buildNeighborList
1291     *
# Line 418 | Line 1295 | namespace OpenMD {
1295    vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
1296        
1297      vector<pair<int, int> > neighborList;
1298 +    groupCutoffs cuts;
1299 +    bool doAllPairs = false;
1300 +
1301   #ifdef IS_MPI
1302      cellListRow_.clear();
1303      cellListCol_.clear();
# Line 425 | Line 1305 | namespace OpenMD {
1305      cellList_.clear();
1306   #endif
1307  
1308 <    // dangerous to not do error checking.
429 <    RealType rCut_;
430 <
431 <    RealType rList_ = (rCut_ + skinThickness_);
1308 >    RealType rList_ = (largestRcut_ + skinThickness_);
1309      RealType rl2 = rList_ * rList_;
1310      Snapshot* snap_ = sman_->getCurrentSnapshot();
1311      Mat3x3d Hmat = snap_->getHmat();
# Line 440 | Line 1317 | namespace OpenMD {
1317      nCells_.y() = (int) ( Hy.length() )/ rList_;
1318      nCells_.z() = (int) ( Hz.length() )/ rList_;
1319  
1320 +    // handle small boxes where the cell offsets can end up repeating cells
1321 +    
1322 +    if (nCells_.x() < 3) doAllPairs = true;
1323 +    if (nCells_.y() < 3) doAllPairs = true;
1324 +    if (nCells_.z() < 3) doAllPairs = true;
1325 +
1326      Mat3x3d invHmat = snap_->getInvHmat();
1327      Vector3d rs, scaled, dr;
1328      Vector3i whichCell;
1329      int cellIndex;
1330 +    int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1331  
1332   #ifdef IS_MPI
1333 <    for (int i = 0; i < nGroupsInRow_; i++) {
1334 <      rs = cgRowData.position[i];
1335 <      // scaled positions relative to the box vectors
1336 <      scaled = invHmat * rs;
1337 <      // wrap the vector back into the unit box by subtracting integer box
454 <      // numbers
455 <      for (int j = 0; j < 3; j++)
456 <        scaled[j] -= roundMe(scaled[j]);
457 <    
458 <      // find xyz-indices of cell that cutoffGroup is in.
459 <      whichCell.x() = nCells_.x() * scaled.x();
460 <      whichCell.y() = nCells_.y() * scaled.y();
461 <      whichCell.z() = nCells_.z() * scaled.z();
1333 >    cellListRow_.resize(nCtot);
1334 >    cellListCol_.resize(nCtot);
1335 > #else
1336 >    cellList_.resize(nCtot);
1337 > #endif
1338  
1339 <      // find single index of this cell:
1340 <      cellIndex = Vlinear(whichCell, nCells_);
465 <      // add this cutoff group to the list of groups in this cell;
466 <      cellListRow_[cellIndex].push_back(i);
467 <    }
1339 >    if (!doAllPairs) {
1340 > #ifdef IS_MPI
1341  
1342 <    for (int i = 0; i < nGroupsInCol_; i++) {
1343 <      rs = cgColData.position[i];
1344 <      // scaled positions relative to the box vectors
1345 <      scaled = invHmat * rs;
1346 <      // wrap the vector back into the unit box by subtracting integer box
1347 <      // numbers
1348 <      for (int j = 0; j < 3; j++)
1349 <        scaled[j] -= roundMe(scaled[j]);
1350 <
1351 <      // find xyz-indices of cell that cutoffGroup is in.
1352 <      whichCell.x() = nCells_.x() * scaled.x();
1353 <      whichCell.y() = nCells_.y() * scaled.y();
1354 <      whichCell.z() = nCells_.z() * scaled.z();
1355 <
1356 <      // find single index of this cell:
1357 <      cellIndex = Vlinear(whichCell, nCells_);
1358 <      // add this cutoff group to the list of groups in this cell;
1359 <      cellListCol_[cellIndex].push_back(i);
1360 <    }
1342 >      for (int i = 0; i < nGroupsInRow_; i++) {
1343 >        rs = cgRowData.position[i];
1344 >        
1345 >        // scaled positions relative to the box vectors
1346 >        scaled = invHmat * rs;
1347 >        
1348 >        // wrap the vector back into the unit box by subtracting integer box
1349 >        // numbers
1350 >        for (int j = 0; j < 3; j++) {
1351 >          scaled[j] -= roundMe(scaled[j]);
1352 >          scaled[j] += 0.5;
1353 >          // Handle the special case when an object is exactly on the
1354 >          // boundary (a scaled coordinate of 1.0 is the same as
1355 >          // scaled coordinate of 0.0)
1356 >          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1357 >        }
1358 >        
1359 >        // find xyz-indices of cell that cutoffGroup is in.
1360 >        whichCell.x() = nCells_.x() * scaled.x();
1361 >        whichCell.y() = nCells_.y() * scaled.y();
1362 >        whichCell.z() = nCells_.z() * scaled.z();
1363 >        
1364 >        // find single index of this cell:
1365 >        cellIndex = Vlinear(whichCell, nCells_);
1366 >        
1367 >        // add this cutoff group to the list of groups in this cell;
1368 >        cellListRow_[cellIndex].push_back(i);
1369 >      }
1370 >      for (int i = 0; i < nGroupsInCol_; i++) {
1371 >        rs = cgColData.position[i];
1372 >        
1373 >        // scaled positions relative to the box vectors
1374 >        scaled = invHmat * rs;
1375 >        
1376 >        // wrap the vector back into the unit box by subtracting integer box
1377 >        // numbers
1378 >        for (int j = 0; j < 3; j++) {
1379 >          scaled[j] -= roundMe(scaled[j]);
1380 >          scaled[j] += 0.5;
1381 >          // Handle the special case when an object is exactly on the
1382 >          // boundary (a scaled coordinate of 1.0 is the same as
1383 >          // scaled coordinate of 0.0)
1384 >          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1385 >        }
1386 >        
1387 >        // find xyz-indices of cell that cutoffGroup is in.
1388 >        whichCell.x() = nCells_.x() * scaled.x();
1389 >        whichCell.y() = nCells_.y() * scaled.y();
1390 >        whichCell.z() = nCells_.z() * scaled.z();
1391 >        
1392 >        // find single index of this cell:
1393 >        cellIndex = Vlinear(whichCell, nCells_);
1394 >        
1395 >        // add this cutoff group to the list of groups in this cell;
1396 >        cellListCol_[cellIndex].push_back(i);
1397 >      }
1398 >    
1399   #else
1400 <    for (int i = 0; i < nGroups_; i++) {
1401 <      rs = snap_->cgData.position[i];
1402 <      // scaled positions relative to the box vectors
1403 <      scaled = invHmat * rs;
1404 <      // wrap the vector back into the unit box by subtracting integer box
1405 <      // numbers
1406 <      for (int j = 0; j < 3; j++)
1407 <        scaled[j] -= roundMe(scaled[j]);
1400 >      for (int i = 0; i < nGroups_; i++) {
1401 >        rs = snap_->cgData.position[i];
1402 >        
1403 >        // scaled positions relative to the box vectors
1404 >        scaled = invHmat * rs;
1405 >        
1406 >        // wrap the vector back into the unit box by subtracting integer box
1407 >        // numbers
1408 >        for (int j = 0; j < 3; j++) {
1409 >          scaled[j] -= roundMe(scaled[j]);
1410 >          scaled[j] += 0.5;
1411 >          // Handle the special case when an object is exactly on the
1412 >          // boundary (a scaled coordinate of 1.0 is the same as
1413 >          // scaled coordinate of 0.0)
1414 >          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1415 >        }
1416 >        
1417 >        // find xyz-indices of cell that cutoffGroup is in.
1418 >        whichCell.x() = nCells_.x() * scaled.x();
1419 >        whichCell.y() = nCells_.y() * scaled.y();
1420 >        whichCell.z() = nCells_.z() * scaled.z();
1421 >        
1422 >        // find single index of this cell:
1423 >        cellIndex = Vlinear(whichCell, nCells_);
1424 >        
1425 >        // add this cutoff group to the list of groups in this cell;
1426 >        cellList_[cellIndex].push_back(i);
1427 >      }
1428  
498      // find xyz-indices of cell that cutoffGroup is in.
499      whichCell.x() = nCells_.x() * scaled.x();
500      whichCell.y() = nCells_.y() * scaled.y();
501      whichCell.z() = nCells_.z() * scaled.z();
502
503      // find single index of this cell:
504      cellIndex = Vlinear(whichCell, nCells_);
505      // add this cutoff group to the list of groups in this cell;
506      cellList_[cellIndex].push_back(i);
507    }
1429   #endif
1430  
1431 <
1432 <
1433 <    for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1434 <      for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1435 <        for (int m1x = 0; m1x < nCells_.x(); m1x++) {
515 <          Vector3i m1v(m1x, m1y, m1z);
516 <          int m1 = Vlinear(m1v, nCells_);
517 <
518 <          for (vector<Vector3i>::iterator os = cellOffsets_.begin();
519 <               os != cellOffsets_.end(); ++os) {
1431 >      for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1432 >        for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1433 >          for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1434 >            Vector3i m1v(m1x, m1y, m1z);
1435 >            int m1 = Vlinear(m1v, nCells_);
1436              
1437 <            Vector3i m2v = m1v + (*os);
1438 <            
1439 <            if (m2v.x() >= nCells_.x()) {
1440 <              m2v.x() = 0;          
1441 <            } else if (m2v.x() < 0) {
526 <              m2v.x() = nCells_.x() - 1;
527 <            }
528 <            
529 <            if (m2v.y() >= nCells_.y()) {
530 <              m2v.y() = 0;          
531 <            } else if (m2v.y() < 0) {
532 <              m2v.y() = nCells_.y() - 1;
533 <            }
534 <            
535 <            if (m2v.z() >= nCells_.z()) {
536 <              m2v.z() = 0;          
537 <            } else if (m2v.z() < 0) {
538 <              m2v.z() = nCells_.z() - 1;
539 <            }
540 <            
541 <            int m2 = Vlinear (m2v, nCells_);
1437 >            for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1438 >                 os != cellOffsets_.end(); ++os) {
1439 >              
1440 >              Vector3i m2v = m1v + (*os);
1441 >            
1442  
1443 < #ifdef IS_MPI
1444 <            for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1445 <                 j1 != cellListRow_[m1].end(); ++j1) {
1446 <              for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1447 <                   j2 != cellListCol_[m2].end(); ++j2) {
1448 <                              
1449 <                // Always do this if we're in different cells or if
1450 <                // we're in the same cell and the global index of the
1451 <                // j2 cutoff group is less than the j1 cutoff group
1443 >              if (m2v.x() >= nCells_.x()) {
1444 >                m2v.x() = 0;          
1445 >              } else if (m2v.x() < 0) {
1446 >                m2v.x() = nCells_.x() - 1;
1447 >              }
1448 >              
1449 >              if (m2v.y() >= nCells_.y()) {
1450 >                m2v.y() = 0;          
1451 >              } else if (m2v.y() < 0) {
1452 >                m2v.y() = nCells_.y() - 1;
1453 >              }
1454 >              
1455 >              if (m2v.z() >= nCells_.z()) {
1456 >                m2v.z() = 0;          
1457 >              } else if (m2v.z() < 0) {
1458 >                m2v.z() = nCells_.z() - 1;
1459 >              }
1460  
1461 <                if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) {
1461 >              int m2 = Vlinear (m2v, nCells_);
1462 >              
1463 > #ifdef IS_MPI
1464 >              for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1465 >                   j1 != cellListRow_[m1].end(); ++j1) {
1466 >                for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1467 >                     j2 != cellListCol_[m2].end(); ++j2) {
1468 >                  
1469 >                  // In parallel, we need to visit *all* pairs of row
1470 >                  // & column indicies and will divide labor in the
1471 >                  // force evaluation later.
1472                    dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1473                    snap_->wrapVector(dr);
1474 <                  if (dr.lengthSquare() < rl2) {
1474 >                  cuts = getGroupCutoffs( (*j1), (*j2) );
1475 >                  if (dr.lengthSquare() < cuts.third) {
1476                      neighborList.push_back(make_pair((*j1), (*j2)));
1477 <                  }
1477 >                  }                  
1478                  }
1479                }
561            }
1480   #else
1481 <            for (vector<int>::iterator j1 = cellList_[m1].begin();
1482 <                 j1 != cellList_[m1].end(); ++j1) {
1483 <              for (vector<int>::iterator j2 = cellList_[m2].begin();
1484 <                   j2 != cellList_[m2].end(); ++j2) {
1485 <                              
1486 <                // Always do this if we're in different cells or if
1487 <                // we're in the same cell and the global index of the
1488 <                // j2 cutoff group is less than the j1 cutoff group
1481 >              for (vector<int>::iterator j1 = cellList_[m1].begin();
1482 >                   j1 != cellList_[m1].end(); ++j1) {
1483 >                for (vector<int>::iterator j2 = cellList_[m2].begin();
1484 >                     j2 != cellList_[m2].end(); ++j2) {
1485 >    
1486 >                  // Always do this if we're in different cells or if
1487 >                  // we're in the same cell and the global index of
1488 >                  // the j2 cutoff group is greater than or equal to
1489 >                  // the j1 cutoff group.  Note that Rappaport's code
1490 >                  // has a "less than" conditional here, but that
1491 >                  // deals with atom-by-atom computation.  OpenMD
1492 >                  // allows atoms within a single cutoff group to
1493 >                  // interact with each other.
1494  
1495 <                if (m2 != m1 || (*j2) < (*j1)) {
1496 <                  dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1497 <                  snap_->wrapVector(dr);
1498 <                  if (dr.lengthSquare() < rl2) {
1499 <                    neighborList.push_back(make_pair((*j1), (*j2)));
1495 >
1496 >
1497 >                  if (m2 != m1 || (*j2) >= (*j1) ) {
1498 >
1499 >                    dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1500 >                    snap_->wrapVector(dr);
1501 >                    cuts = getGroupCutoffs( (*j1), (*j2) );
1502 >                    if (dr.lengthSquare() < cuts.third) {
1503 >                      neighborList.push_back(make_pair((*j1), (*j2)));
1504 >                    }
1505                    }
1506                  }
1507                }
580            }
1508   #endif
1509 +            }
1510            }
1511          }
1512        }
1513 +    } else {
1514 +      // branch to do all cutoff group pairs
1515 + #ifdef IS_MPI
1516 +      for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1517 +        for (int j2 = 0; j2 < nGroupsInCol_; j2++) {    
1518 +          dr = cgColData.position[j2] - cgRowData.position[j1];
1519 +          snap_->wrapVector(dr);
1520 +          cuts = getGroupCutoffs( j1, j2 );
1521 +          if (dr.lengthSquare() < cuts.third) {
1522 +            neighborList.push_back(make_pair(j1, j2));
1523 +          }
1524 +        }
1525 +      }      
1526 + #else
1527 +      // include all groups here.
1528 +      for (int j1 = 0; j1 < nGroups_; j1++) {
1529 +        // include self group interactions j2 == j1
1530 +        for (int j2 = j1; j2 < nGroups_; j2++) {
1531 +          dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1532 +          snap_->wrapVector(dr);
1533 +          cuts = getGroupCutoffs( j1, j2 );
1534 +          if (dr.lengthSquare() < cuts.third) {
1535 +            neighborList.push_back(make_pair(j1, j2));
1536 +          }
1537 +        }    
1538 +      }
1539 + #endif
1540      }
1541 <
1541 >      
1542      // save the local cutoff group positions for the check that is
1543      // done on each loop:
1544      saved_CG_positions_.clear();
1545      for (int i = 0; i < nGroups_; i++)
1546        saved_CG_positions_.push_back(snap_->cgData.position[i]);
1547 <
1547 >    
1548      return neighborList;
1549    }
1550   } //end namespace OpenMD

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines