ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/parallel/ForceMatrixDecomposition.cpp
(Generate patch)

Comparing branches/development/src/parallel/ForceMatrixDecomposition.cpp (file contents):
Revision 1583 by gezelter, Thu Jun 16 22:00:08 2011 UTC vs.
Revision 1803 by gezelter, Wed Oct 3 14:20:07 2012 UTC

# Line 36 | Line 36
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38   * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42   #include "parallel/ForceMatrixDecomposition.hpp"
43   #include "math/SquareMatrix3.hpp"
# Line 47 | Line 48 | namespace OpenMD {
48   using namespace std;
49   namespace OpenMD {
50  
51 +  ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) {
52 +
53 +    // In a parallel computation, row and colum scans must visit all
54 +    // surrounding cells (not just the 14 upper triangular blocks that
55 +    // are used when the processor can see all pairs)
56 + #ifdef IS_MPI
57 +    cellOffsets_.clear();
58 +    cellOffsets_.push_back( Vector3i(-1,-1,-1) );
59 +    cellOffsets_.push_back( Vector3i( 0,-1,-1) );
60 +    cellOffsets_.push_back( Vector3i( 1,-1,-1) );                          
61 +    cellOffsets_.push_back( Vector3i(-1, 0,-1) );
62 +    cellOffsets_.push_back( Vector3i( 0, 0,-1) );
63 +    cellOffsets_.push_back( Vector3i( 1, 0,-1) );
64 +    cellOffsets_.push_back( Vector3i(-1, 1,-1) );
65 +    cellOffsets_.push_back( Vector3i( 0, 1,-1) );      
66 +    cellOffsets_.push_back( Vector3i( 1, 1,-1) );
67 +    cellOffsets_.push_back( Vector3i(-1,-1, 0) );
68 +    cellOffsets_.push_back( Vector3i( 0,-1, 0) );
69 +    cellOffsets_.push_back( Vector3i( 1,-1, 0) );
70 +    cellOffsets_.push_back( Vector3i(-1, 0, 0) );      
71 +    cellOffsets_.push_back( Vector3i( 0, 0, 0) );
72 +    cellOffsets_.push_back( Vector3i( 1, 0, 0) );
73 +    cellOffsets_.push_back( Vector3i(-1, 1, 0) );
74 +    cellOffsets_.push_back( Vector3i( 0, 1, 0) );
75 +    cellOffsets_.push_back( Vector3i( 1, 1, 0) );
76 +    cellOffsets_.push_back( Vector3i(-1,-1, 1) );
77 +    cellOffsets_.push_back( Vector3i( 0,-1, 1) );
78 +    cellOffsets_.push_back( Vector3i( 1,-1, 1) );
79 +    cellOffsets_.push_back( Vector3i(-1, 0, 1) );
80 +    cellOffsets_.push_back( Vector3i( 0, 0, 1) );
81 +    cellOffsets_.push_back( Vector3i( 1, 0, 1) );
82 +    cellOffsets_.push_back( Vector3i(-1, 1, 1) );
83 +    cellOffsets_.push_back( Vector3i( 0, 1, 1) );
84 +    cellOffsets_.push_back( Vector3i( 1, 1, 1) );
85 + #endif    
86 +  }
87 +
88 +
89    /**
90     * distributeInitialData is essentially a copy of the older fortran
91     * SimulationSetup
92     */
54  
93    void ForceMatrixDecomposition::distributeInitialData() {
94      snap_ = sman_->getCurrentSnapshot();
95      storageLayout_ = sman_->getStorageLayout();
96      ff_ = info_->getForceField();
97      nLocal_ = snap_->getNumberOfAtoms();
98 <
98 >  
99      nGroups_ = info_->getNLocalCutoffGroups();
62    cerr << "in dId, nGroups = " << nGroups_ << "\n";
100      // gather the information for atomtype IDs (atids):
101      idents = info_->getIdentArray();
102      AtomLocalToGlobal = info_->getGlobalAtomIndices();
103      cgLocalToGlobal = info_->getGlobalGroupIndices();
104      vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
105 +
106      massFactors = info_->getMassFactors();
69    PairList excludes = info_->getExcludedInteractions();
70    PairList oneTwo = info_->getOneTwoInteractions();
71    PairList oneThree = info_->getOneThreeInteractions();
72    PairList oneFour = info_->getOneFourInteractions();
107  
108 +    PairList* excludes = info_->getExcludedInteractions();
109 +    PairList* oneTwo = info_->getOneTwoInteractions();
110 +    PairList* oneThree = info_->getOneThreeInteractions();
111 +    PairList* oneFour = info_->getOneFourInteractions();
112 +    
113 +    if (needVelocities_)
114 +      snap_->cgData.setStorageLayout(DataStorage::dslPosition |
115 +                                     DataStorage::dslVelocity);
116 +    else
117 +      snap_->cgData.setStorageLayout(DataStorage::dslPosition);
118 +    
119   #ifdef IS_MPI
120  
121 <    AtomCommIntRow = new Communicator<Row,int>(nLocal_);
122 <    AtomCommRealRow = new Communicator<Row,RealType>(nLocal_);
78 <    AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_);
79 <    AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_);
80 <    AtomCommPotRow = new Communicator<Row,potVec>(nLocal_);
121 >    MPI::Intracomm row = rowComm.getComm();
122 >    MPI::Intracomm col = colComm.getComm();
123  
124 <    AtomCommIntColumn = new Communicator<Column,int>(nLocal_);
125 <    AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_);
126 <    AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_);
127 <    AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_);
128 <    AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_);
124 >    AtomPlanIntRow = new Plan<int>(row, nLocal_);
125 >    AtomPlanRealRow = new Plan<RealType>(row, nLocal_);
126 >    AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_);
127 >    AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_);
128 >    AtomPlanPotRow = new Plan<potVec>(row, nLocal_);
129  
130 <    cgCommIntRow = new Communicator<Row,int>(nGroups_);
131 <    cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_);
132 <    cgCommIntColumn = new Communicator<Column,int>(nGroups_);
133 <    cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_);
130 >    AtomPlanIntColumn = new Plan<int>(col, nLocal_);
131 >    AtomPlanRealColumn = new Plan<RealType>(col, nLocal_);
132 >    AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_);
133 >    AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_);
134 >    AtomPlanPotColumn = new Plan<potVec>(col, nLocal_);
135  
136 <    nAtomsInRow_ = AtomCommIntRow->getSize();
137 <    nAtomsInCol_ = AtomCommIntColumn->getSize();
138 <    nGroupsInRow_ = cgCommIntRow->getSize();
139 <    nGroupsInCol_ = cgCommIntColumn->getSize();
136 >    cgPlanIntRow = new Plan<int>(row, nGroups_);
137 >    cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_);
138 >    cgPlanIntColumn = new Plan<int>(col, nGroups_);
139 >    cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_);
140  
141 +    nAtomsInRow_ = AtomPlanIntRow->getSize();
142 +    nAtomsInCol_ = AtomPlanIntColumn->getSize();
143 +    nGroupsInRow_ = cgPlanIntRow->getSize();
144 +    nGroupsInCol_ = cgPlanIntColumn->getSize();
145 +
146      // Modify the data storage objects with the correct layouts and sizes:
147      atomRowData.resize(nAtomsInRow_);
148      atomRowData.setStorageLayout(storageLayout_);
# Line 103 | Line 151 | namespace OpenMD {
151      cgRowData.resize(nGroupsInRow_);
152      cgRowData.setStorageLayout(DataStorage::dslPosition);
153      cgColData.resize(nGroupsInCol_);
154 <    cgColData.setStorageLayout(DataStorage::dslPosition);
155 <        
154 >    if (needVelocities_)
155 >      // we only need column velocities if we need them.
156 >      cgColData.setStorageLayout(DataStorage::dslPosition |
157 >                                 DataStorage::dslVelocity);
158 >    else    
159 >      cgColData.setStorageLayout(DataStorage::dslPosition);
160 >      
161      identsRow.resize(nAtomsInRow_);
162      identsCol.resize(nAtomsInCol_);
163      
164 <    AtomCommIntRow->gather(idents, identsRow);
165 <    AtomCommIntColumn->gather(idents, identsCol);
164 >    AtomPlanIntRow->gather(idents, identsRow);
165 >    AtomPlanIntColumn->gather(idents, identsCol);
166      
167 <    AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
168 <    AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
169 <    
117 <    cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
118 <    cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
167 >    // allocate memory for the parallel objects
168 >    atypesRow.resize(nAtomsInRow_);
169 >    atypesCol.resize(nAtomsInCol_);
170  
171 <    AtomCommRealRow->gather(massFactors, massFactorsRow);
172 <    AtomCommRealColumn->gather(massFactors, massFactorsCol);
171 >    for (int i = 0; i < nAtomsInRow_; i++)
172 >      atypesRow[i] = ff_->getAtomType(identsRow[i]);
173 >    for (int i = 0; i < nAtomsInCol_; i++)
174 >      atypesCol[i] = ff_->getAtomType(identsCol[i]);        
175  
176 +    pot_row.resize(nAtomsInRow_);
177 +    pot_col.resize(nAtomsInCol_);
178 +
179 +    expot_row.resize(nAtomsInRow_);
180 +    expot_col.resize(nAtomsInCol_);
181 +
182 +    AtomRowToGlobal.resize(nAtomsInRow_);
183 +    AtomColToGlobal.resize(nAtomsInCol_);
184 +    AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
185 +    AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
186 +
187 +    cgRowToGlobal.resize(nGroupsInRow_);
188 +    cgColToGlobal.resize(nGroupsInCol_);
189 +    cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
190 +    cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
191 +
192 +    massFactorsRow.resize(nAtomsInRow_);
193 +    massFactorsCol.resize(nAtomsInCol_);
194 +    AtomPlanRealRow->gather(massFactors, massFactorsRow);
195 +    AtomPlanRealColumn->gather(massFactors, massFactorsCol);
196 +
197      groupListRow_.clear();
198      groupListRow_.resize(nGroupsInRow_);
199      for (int i = 0; i < nGroupsInRow_; i++) {
# Line 142 | Line 216 | namespace OpenMD {
216        }      
217      }
218  
219 <    skipsForAtom.clear();
220 <    skipsForAtom.resize(nAtomsInRow_);
219 >    excludesForAtom.clear();
220 >    excludesForAtom.resize(nAtomsInRow_);
221      toposForAtom.clear();
222      toposForAtom.resize(nAtomsInRow_);
223      topoDist.clear();
# Line 154 | Line 228 | namespace OpenMD {
228        for (int j = 0; j < nAtomsInCol_; j++) {
229          int jglob = AtomColToGlobal[j];
230  
231 <        if (excludes.hasPair(iglob, jglob))
232 <          skipsForAtom[i].push_back(j);      
231 >        if (excludes->hasPair(iglob, jglob))
232 >          excludesForAtom[i].push_back(j);      
233          
234 <        if (oneTwo.hasPair(iglob, jglob)) {
234 >        if (oneTwo->hasPair(iglob, jglob)) {
235            toposForAtom[i].push_back(j);
236            topoDist[i].push_back(1);
237          } else {
238 <          if (oneThree.hasPair(iglob, jglob)) {
238 >          if (oneThree->hasPair(iglob, jglob)) {
239              toposForAtom[i].push_back(j);
240              topoDist[i].push_back(2);
241            } else {
242 <            if (oneFour.hasPair(iglob, jglob)) {
242 >            if (oneFour->hasPair(iglob, jglob)) {
243                toposForAtom[i].push_back(j);
244                topoDist[i].push_back(3);
245              }
# Line 174 | Line 248 | namespace OpenMD {
248        }      
249      }
250  
251 < #endif
252 <
253 <    groupList_.clear();
180 <    groupList_.resize(nGroups_);
181 <    for (int i = 0; i < nGroups_; i++) {
182 <      int gid = cgLocalToGlobal[i];
183 <      for (int j = 0; j < nLocal_; j++) {
184 <        int aid = AtomLocalToGlobal[j];
185 <        if (globalGroupMembership[aid] == gid) {
186 <          groupList_[i].push_back(j);
187 <        }
188 <      }      
189 <    }
190 <
191 <    skipsForAtom.clear();
192 <    skipsForAtom.resize(nLocal_);
251 > #else
252 >    excludesForAtom.clear();
253 >    excludesForAtom.resize(nLocal_);
254      toposForAtom.clear();
255      toposForAtom.resize(nLocal_);
256      topoDist.clear();
# Line 201 | Line 262 | namespace OpenMD {
262        for (int j = 0; j < nLocal_; j++) {
263          int jglob = AtomLocalToGlobal[j];
264  
265 <        if (excludes.hasPair(iglob, jglob))
266 <          skipsForAtom[i].push_back(j);              
265 >        if (excludes->hasPair(iglob, jglob))
266 >          excludesForAtom[i].push_back(j);              
267          
268 <        if (oneTwo.hasPair(iglob, jglob)) {
268 >        if (oneTwo->hasPair(iglob, jglob)) {
269            toposForAtom[i].push_back(j);
270            topoDist[i].push_back(1);
271          } else {
272 <          if (oneThree.hasPair(iglob, jglob)) {
272 >          if (oneThree->hasPair(iglob, jglob)) {
273              toposForAtom[i].push_back(j);
274              topoDist[i].push_back(2);
275            } else {
276 <            if (oneFour.hasPair(iglob, jglob)) {
276 >            if (oneFour->hasPair(iglob, jglob)) {
277                toposForAtom[i].push_back(j);
278                topoDist[i].push_back(3);
279              }
# Line 220 | Line 281 | namespace OpenMD {
281          }
282        }      
283      }
284 <    
284 > #endif
285 >
286 >    // allocate memory for the parallel objects
287 >    atypesLocal.resize(nLocal_);
288 >
289 >    for (int i = 0; i < nLocal_; i++)
290 >      atypesLocal[i] = ff_->getAtomType(idents[i]);
291 >
292 >    groupList_.clear();
293 >    groupList_.resize(nGroups_);
294 >    for (int i = 0; i < nGroups_; i++) {
295 >      int gid = cgLocalToGlobal[i];
296 >      for (int j = 0; j < nLocal_; j++) {
297 >        int aid = AtomLocalToGlobal[j];
298 >        if (globalGroupMembership[aid] == gid) {
299 >          groupList_[i].push_back(j);
300 >        }
301 >      }      
302 >    }
303 >
304 >
305      createGtypeCutoffMap();
306 +
307    }
308    
309    void ForceMatrixDecomposition::createGtypeCutoffMap() {
310 <
310 >    
311      RealType tol = 1e-6;
312 <    RealType rc;
312 >    largestRcut_ = 0.0;
313      int atid;
314      set<AtomType*> atypes = info_->getSimulatedAtomTypes();
315 <    vector<RealType> atypeCutoff;
316 <    atypeCutoff.resize( atypes.size() );
315 >    
316 >    map<int, RealType> atypeCutoff;
317        
318      for (set<AtomType*>::iterator at = atypes.begin();
319           at != atypes.end(); ++at){
320        atid = (*at)->getIdent();
321 <
240 <      if (userChoseCutoff_)
321 >      if (userChoseCutoff_)
322          atypeCutoff[atid] = userCutoff_;
323        else
324          atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
325      }
326 <
326 >    
327      vector<RealType> gTypeCutoffs;
247
328      // first we do a single loop over the cutoff groups to find the
329      // largest cutoff for any atypes present in this group.
330   #ifdef IS_MPI
# Line 302 | Line 382 | namespace OpenMD {
382  
383      vector<RealType> groupCutoff(nGroups_, 0.0);
384      groupToGtype.resize(nGroups_);
305
306    cerr << "nGroups = " << nGroups_ << "\n";
385      for (int cg1 = 0; cg1 < nGroups_; cg1++) {
308
386        groupCutoff[cg1] = 0.0;
387        vector<int> atomList = getAtomsInGroupRow(cg1);
311
388        for (vector<int>::iterator ia = atomList.begin();
389             ia != atomList.end(); ++ia) {            
390          int atom1 = (*ia);
391          atid = idents[atom1];
392 <        if (atypeCutoff[atid] > groupCutoff[cg1]) {
392 >        if (atypeCutoff[atid] > groupCutoff[cg1])
393            groupCutoff[cg1] = atypeCutoff[atid];
318        }
394        }
395 <
395 >      
396        bool gTypeFound = false;
397 <      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
397 >      for (unsigned int gt = 0; gt < gTypeCutoffs.size(); gt++) {
398          if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
399            groupToGtype[cg1] = gt;
400            gTypeFound = true;
401          }
402        }
403 <      if (!gTypeFound) {
403 >      if (!gTypeFound) {      
404          gTypeCutoffs.push_back( groupCutoff[cg1] );
405          groupToGtype[cg1] = gTypeCutoffs.size() - 1;
406        }      
407      }
408   #endif
409  
335    cerr << "gTypeCutoffs.size() = " << gTypeCutoffs.size() << "\n";
410      // Now we find the maximum group cutoff value present in the simulation
411  
412 <    RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end());
412 >    RealType groupMax = *max_element(gTypeCutoffs.begin(),
413 >                                     gTypeCutoffs.end());
414  
415   #ifdef IS_MPI
416 <    MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX);
416 >    MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE,
417 >                              MPI::MAX);
418   #endif
419      
420      RealType tradRcut = groupMax;
421  
422 <    for (int i = 0; i < gTypeCutoffs.size();  i++) {
423 <      for (int j = 0; j < gTypeCutoffs.size();  j++) {      
422 >    for (unsigned int i = 0; i < gTypeCutoffs.size();  i++) {
423 >      for (unsigned int j = 0; j < gTypeCutoffs.size();  j++) {      
424          RealType thisRcut;
425          switch(cutoffPolicy_) {
426          case TRADITIONAL:
# Line 368 | Line 444 | namespace OpenMD {
444  
445          pair<int,int> key = make_pair(i,j);
446          gTypeCutoffMap[key].first = thisRcut;
371
447          if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
373
448          gTypeCutoffMap[key].second = thisRcut*thisRcut;
375        
449          gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
377
450          // sanity check
451          
452          if (userChoseCutoff_) {
# Line 391 | Line 463 | namespace OpenMD {
463      }
464    }
465  
394
466    groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
467      int i, j;  
468   #ifdef IS_MPI
# Line 405 | Line 476 | namespace OpenMD {
476    }
477  
478    int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
479 <    for (int j = 0; j < toposForAtom[atom1].size(); j++) {
479 >    for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) {
480        if (toposForAtom[atom1][j] == atom2)
481          return topoDist[atom1][j];
482      }
# Line 415 | Line 486 | namespace OpenMD {
486    void ForceMatrixDecomposition::zeroWorkArrays() {
487      pairwisePot = 0.0;
488      embeddingPot = 0.0;
489 +    excludedPot = 0.0;
490 +    excludedSelfPot = 0.0;
491  
492   #ifdef IS_MPI
493      if (storageLayout_ & DataStorage::dslForce) {
# Line 433 | Line 506 | namespace OpenMD {
506      fill(pot_col.begin(), pot_col.end(),
507           Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
508  
509 +    fill(expot_row.begin(), expot_row.end(),
510 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
511 +
512 +    fill(expot_col.begin(), expot_col.end(),
513 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
514 +
515      if (storageLayout_ & DataStorage::dslParticlePot) {    
516 <      fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0);
517 <      fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0);
516 >      fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(),
517 >           0.0);
518 >      fill(atomColData.particlePot.begin(), atomColData.particlePot.end(),
519 >           0.0);
520      }
521  
522      if (storageLayout_ & DataStorage::dslDensity) {      
# Line 444 | Line 525 | namespace OpenMD {
525      }
526  
527      if (storageLayout_ & DataStorage::dslFunctional) {  
528 <      fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0);
529 <      fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0);
528 >      fill(atomRowData.functional.begin(), atomRowData.functional.end(),
529 >           0.0);
530 >      fill(atomColData.functional.begin(), atomColData.functional.end(),
531 >           0.0);
532      }
533  
534      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
# Line 455 | Line 538 | namespace OpenMD {
538             atomColData.functionalDerivative.end(), 0.0);
539      }
540  
541 < #else
542 <    
541 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
542 >      fill(atomRowData.skippedCharge.begin(),
543 >           atomRowData.skippedCharge.end(), 0.0);
544 >      fill(atomColData.skippedCharge.begin(),
545 >           atomColData.skippedCharge.end(), 0.0);
546 >    }
547 >
548 >    if (storageLayout_ & DataStorage::dslFlucQForce) {      
549 >      fill(atomRowData.flucQFrc.begin(),
550 >           atomRowData.flucQFrc.end(), 0.0);
551 >      fill(atomColData.flucQFrc.begin(),
552 >           atomColData.flucQFrc.end(), 0.0);
553 >    }
554 >
555 >    if (storageLayout_ & DataStorage::dslElectricField) {    
556 >      fill(atomRowData.electricField.begin(),
557 >           atomRowData.electricField.end(), V3Zero);
558 >      fill(atomColData.electricField.begin(),
559 >           atomColData.electricField.end(), V3Zero);
560 >    }
561 >
562 > #endif
563 >    // even in parallel, we need to zero out the local arrays:
564 >
565      if (storageLayout_ & DataStorage::dslParticlePot) {      
566        fill(snap_->atomData.particlePot.begin(),
567             snap_->atomData.particlePot.end(), 0.0);
# Line 466 | Line 571 | namespace OpenMD {
571        fill(snap_->atomData.density.begin(),
572             snap_->atomData.density.end(), 0.0);
573      }
574 +
575      if (storageLayout_ & DataStorage::dslFunctional) {
576        fill(snap_->atomData.functional.begin(),
577             snap_->atomData.functional.end(), 0.0);
578      }
579 +
580      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
581        fill(snap_->atomData.functionalDerivative.begin(),
582             snap_->atomData.functionalDerivative.end(), 0.0);
583      }
584 < #endif
585 <    
584 >
585 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
586 >      fill(snap_->atomData.skippedCharge.begin(),
587 >           snap_->atomData.skippedCharge.end(), 0.0);
588 >    }
589 >
590 >    if (storageLayout_ & DataStorage::dslElectricField) {      
591 >      fill(snap_->atomData.electricField.begin(),
592 >           snap_->atomData.electricField.end(), V3Zero);
593 >    }
594    }
595  
596  
# Line 485 | Line 600 | namespace OpenMD {
600   #ifdef IS_MPI
601      
602      // gather up the atomic positions
603 <    AtomCommVectorRow->gather(snap_->atomData.position,
603 >    AtomPlanVectorRow->gather(snap_->atomData.position,
604                                atomRowData.position);
605 <    AtomCommVectorColumn->gather(snap_->atomData.position,
605 >    AtomPlanVectorColumn->gather(snap_->atomData.position,
606                                   atomColData.position);
607      
608      // gather up the cutoff group positions
609 <    cgCommVectorRow->gather(snap_->cgData.position,
609 >
610 >    cgPlanVectorRow->gather(snap_->cgData.position,
611                              cgRowData.position);
612 <    cgCommVectorColumn->gather(snap_->cgData.position,
612 >
613 >    cgPlanVectorColumn->gather(snap_->cgData.position,
614                                 cgColData.position);
615 +
616 +
617 +
618 +    if (needVelocities_) {
619 +      // gather up the atomic velocities
620 +      AtomPlanVectorColumn->gather(snap_->atomData.velocity,
621 +                                   atomColData.velocity);
622 +      
623 +      cgPlanVectorColumn->gather(snap_->cgData.velocity,
624 +                                 cgColData.velocity);
625 +    }
626 +
627      
628      // if needed, gather the atomic rotation matrices
629      if (storageLayout_ & DataStorage::dslAmat) {
630 <      AtomCommMatrixRow->gather(snap_->atomData.aMat,
630 >      AtomPlanMatrixRow->gather(snap_->atomData.aMat,
631                                  atomRowData.aMat);
632 <      AtomCommMatrixColumn->gather(snap_->atomData.aMat,
632 >      AtomPlanMatrixColumn->gather(snap_->atomData.aMat,
633                                     atomColData.aMat);
634      }
635 <    
636 <    // if needed, gather the atomic eletrostatic frames
637 <    if (storageLayout_ & DataStorage::dslElectroFrame) {
638 <      AtomCommMatrixRow->gather(snap_->atomData.electroFrame,
639 <                                atomRowData.electroFrame);
640 <      AtomCommMatrixColumn->gather(snap_->atomData.electroFrame,
641 <                                   atomColData.electroFrame);
635 >
636 >    // if needed, gather the atomic eletrostatic information
637 >    if (storageLayout_ & DataStorage::dslDipole) {
638 >      AtomPlanVectorRow->gather(snap_->atomData.dipole,
639 >                                atomRowData.dipole);
640 >      AtomPlanVectorColumn->gather(snap_->atomData.dipole,
641 >                                   atomColData.dipole);
642      }
643 +
644 +    if (storageLayout_ & DataStorage::dslQuadrupole) {
645 +      AtomPlanMatrixRow->gather(snap_->atomData.quadrupole,
646 +                                atomRowData.quadrupole);
647 +      AtomPlanMatrixColumn->gather(snap_->atomData.quadrupole,
648 +                                   atomColData.quadrupole);
649 +    }
650 +        
651 +    // if needed, gather the atomic fluctuating charge values
652 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {
653 +      AtomPlanRealRow->gather(snap_->atomData.flucQPos,
654 +                              atomRowData.flucQPos);
655 +      AtomPlanRealColumn->gather(snap_->atomData.flucQPos,
656 +                                 atomColData.flucQPos);
657 +    }
658 +
659   #endif      
660    }
661    
# Line 524 | Line 669 | namespace OpenMD {
669      
670      if (storageLayout_ & DataStorage::dslDensity) {
671        
672 <      AtomCommRealRow->scatter(atomRowData.density,
672 >      AtomPlanRealRow->scatter(atomRowData.density,
673                                 snap_->atomData.density);
674        
675        int n = snap_->atomData.density.size();
676        vector<RealType> rho_tmp(n, 0.0);
677 <      AtomCommRealColumn->scatter(atomColData.density, rho_tmp);
677 >      AtomPlanRealColumn->scatter(atomColData.density, rho_tmp);
678        for (int i = 0; i < n; i++)
679          snap_->atomData.density[i] += rho_tmp[i];
680      }
681 +
682 +    if (storageLayout_ & DataStorage::dslElectricField) {
683 +      
684 +      AtomPlanVectorRow->scatter(atomRowData.electricField,
685 +                                 snap_->atomData.electricField);
686 +      
687 +      int n = snap_->atomData.electricField.size();
688 +      vector<Vector3d> field_tmp(n, V3Zero);
689 +      AtomPlanVectorColumn->scatter(atomColData.electricField,
690 +                                    field_tmp);
691 +      for (int i = 0; i < n; i++)
692 +        snap_->atomData.electricField[i] += field_tmp[i];
693 +    }
694   #endif
695    }
696  
# Line 545 | Line 703 | namespace OpenMD {
703      storageLayout_ = sman_->getStorageLayout();
704   #ifdef IS_MPI
705      if (storageLayout_ & DataStorage::dslFunctional) {
706 <      AtomCommRealRow->gather(snap_->atomData.functional,
706 >      AtomPlanRealRow->gather(snap_->atomData.functional,
707                                atomRowData.functional);
708 <      AtomCommRealColumn->gather(snap_->atomData.functional,
708 >      AtomPlanRealColumn->gather(snap_->atomData.functional,
709                                   atomColData.functional);
710      }
711      
712      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
713 <      AtomCommRealRow->gather(snap_->atomData.functionalDerivative,
713 >      AtomPlanRealRow->gather(snap_->atomData.functionalDerivative,
714                                atomRowData.functionalDerivative);
715 <      AtomCommRealColumn->gather(snap_->atomData.functionalDerivative,
715 >      AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative,
716                                   atomColData.functionalDerivative);
717      }
718   #endif
# Line 568 | Line 726 | namespace OpenMD {
726      int n = snap_->atomData.force.size();
727      vector<Vector3d> frc_tmp(n, V3Zero);
728      
729 <    AtomCommVectorRow->scatter(atomRowData.force, frc_tmp);
729 >    AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp);
730      for (int i = 0; i < n; i++) {
731        snap_->atomData.force[i] += frc_tmp[i];
732        frc_tmp[i] = 0.0;
733      }
734      
735 <    AtomCommVectorColumn->scatter(atomColData.force, frc_tmp);
736 <    for (int i = 0; i < n; i++)
735 >    AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp);
736 >    for (int i = 0; i < n; i++) {
737        snap_->atomData.force[i] += frc_tmp[i];
738 <    
739 <    
738 >    }
739 >        
740      if (storageLayout_ & DataStorage::dslTorque) {
741  
742 <      int nt = snap_->atomData.force.size();
742 >      int nt = snap_->atomData.torque.size();
743        vector<Vector3d> trq_tmp(nt, V3Zero);
744  
745 <      AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp);
746 <      for (int i = 0; i < n; i++) {
745 >      AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp);
746 >      for (int i = 0; i < nt; i++) {
747          snap_->atomData.torque[i] += trq_tmp[i];
748          trq_tmp[i] = 0.0;
749        }
750        
751 <      AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp);
752 <      for (int i = 0; i < n; i++)
751 >      AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp);
752 >      for (int i = 0; i < nt; i++)
753          snap_->atomData.torque[i] += trq_tmp[i];
754 +    }
755 +
756 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
757 +
758 +      int ns = snap_->atomData.skippedCharge.size();
759 +      vector<RealType> skch_tmp(ns, 0.0);
760 +
761 +      AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
762 +      for (int i = 0; i < ns; i++) {
763 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
764 +        skch_tmp[i] = 0.0;
765 +      }
766 +      
767 +      AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
768 +      for (int i = 0; i < ns; i++)
769 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
770 +            
771      }
772      
773 +    if (storageLayout_ & DataStorage::dslFlucQForce) {
774 +
775 +      int nq = snap_->atomData.flucQFrc.size();
776 +      vector<RealType> fqfrc_tmp(nq, 0.0);
777 +
778 +      AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp);
779 +      for (int i = 0; i < nq; i++) {
780 +        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
781 +        fqfrc_tmp[i] = 0.0;
782 +      }
783 +      
784 +      AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp);
785 +      for (int i = 0; i < nq; i++)
786 +        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
787 +            
788 +    }
789 +
790      nLocal_ = snap_->getNumberOfAtoms();
791  
792      vector<potVec> pot_temp(nLocal_,
793                              Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
794 +    vector<potVec> expot_temp(nLocal_,
795 +                              Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
796  
797      // scatter/gather pot_row into the members of my column
798            
799 <    AtomCommPotRow->scatter(pot_row, pot_temp);
799 >    AtomPlanPotRow->scatter(pot_row, pot_temp);
800 >    AtomPlanPotRow->scatter(expot_row, expot_temp);
801  
802 <    for (int ii = 0;  ii < pot_temp.size(); ii++ )
802 >    for (int ii = 0;  ii < pot_temp.size(); ii++ )
803        pairwisePot += pot_temp[ii];
804 <    
804 >
805 >    for (int ii = 0;  ii < expot_temp.size(); ii++ )
806 >      excludedPot += expot_temp[ii];
807 >        
808 >    if (storageLayout_ & DataStorage::dslParticlePot) {
809 >      // This is the pairwise contribution to the particle pot.  The
810 >      // embedding contribution is added in each of the low level
811 >      // non-bonded routines.  In single processor, this is done in
812 >      // unpackInteractionData, not in collectData.
813 >      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
814 >        for (int i = 0; i < nLocal_; i++) {
815 >          // factor of two is because the total potential terms are divided
816 >          // by 2 in parallel due to row/ column scatter      
817 >          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
818 >        }
819 >      }
820 >    }
821 >
822      fill(pot_temp.begin(), pot_temp.end(),
823           Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
824 +    fill(expot_temp.begin(), expot_temp.end(),
825 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
826        
827 <    AtomCommPotColumn->scatter(pot_col, pot_temp);    
827 >    AtomPlanPotColumn->scatter(pot_col, pot_temp);    
828 >    AtomPlanPotColumn->scatter(expot_col, expot_temp);    
829      
830      for (int ii = 0;  ii < pot_temp.size(); ii++ )
831        pairwisePot += pot_temp[ii];    
832 +
833 +    for (int ii = 0;  ii < expot_temp.size(); ii++ )
834 +      excludedPot += expot_temp[ii];    
835 +
836 +    if (storageLayout_ & DataStorage::dslParticlePot) {
837 +      // This is the pairwise contribution to the particle pot.  The
838 +      // embedding contribution is added in each of the low level
839 +      // non-bonded routines.  In single processor, this is done in
840 +      // unpackInteractionData, not in collectData.
841 +      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
842 +        for (int i = 0; i < nLocal_; i++) {
843 +          // factor of two is because the total potential terms are divided
844 +          // by 2 in parallel due to row/ column scatter      
845 +          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
846 +        }
847 +      }
848 +    }
849 +    
850 +    if (storageLayout_ & DataStorage::dslParticlePot) {
851 +      int npp = snap_->atomData.particlePot.size();
852 +      vector<RealType> ppot_temp(npp, 0.0);
853 +
854 +      // This is the direct or embedding contribution to the particle
855 +      // pot.
856 +      
857 +      AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp);
858 +      for (int i = 0; i < npp; i++) {
859 +        snap_->atomData.particlePot[i] += ppot_temp[i];
860 +      }
861 +
862 +      fill(ppot_temp.begin(), ppot_temp.end(), 0.0);
863 +      
864 +      AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp);
865 +      for (int i = 0; i < npp; i++) {
866 +        snap_->atomData.particlePot[i] += ppot_temp[i];
867 +      }
868 +    }
869 +
870 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
871 +      RealType ploc1 = pairwisePot[ii];
872 +      RealType ploc2 = 0.0;
873 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
874 +      pairwisePot[ii] = ploc2;
875 +    }
876 +
877 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
878 +      RealType ploc1 = excludedPot[ii];
879 +      RealType ploc2 = 0.0;
880 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
881 +      excludedPot[ii] = ploc2;
882 +    }
883 +
884 +    // Here be dragons.
885 +    MPI::Intracomm col = colComm.getComm();
886 +
887 +    col.Allreduce(MPI::IN_PLACE,
888 +                  &snap_->frameData.conductiveHeatFlux[0], 3,
889 +                  MPI::REALTYPE, MPI::SUM);
890 +
891 +
892   #endif
893  
894    }
895  
896 +  /**
897 +   * Collects information obtained during the post-pair (and embedding
898 +   * functional) loops onto local data structures.
899 +   */
900 +  void ForceMatrixDecomposition::collectSelfData() {
901 +    snap_ = sman_->getCurrentSnapshot();
902 +    storageLayout_ = sman_->getStorageLayout();
903 +
904 + #ifdef IS_MPI
905 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
906 +      RealType ploc1 = embeddingPot[ii];
907 +      RealType ploc2 = 0.0;
908 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
909 +      embeddingPot[ii] = ploc2;
910 +    }    
911 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
912 +      RealType ploc1 = excludedSelfPot[ii];
913 +      RealType ploc2 = 0.0;
914 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
915 +      excludedSelfPot[ii] = ploc2;
916 +    }    
917 + #endif
918 +    
919 +  }
920 +
921 +
922 +
923    int ForceMatrixDecomposition::getNAtomsInRow() {  
924   #ifdef IS_MPI
925      return nAtomsInRow_;
# Line 658 | Line 960 | namespace OpenMD {
960      return d;    
961    }
962  
963 +  Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){
964 + #ifdef IS_MPI
965 +    return cgColData.velocity[cg2];
966 + #else
967 +    return snap_->cgData.velocity[cg2];
968 + #endif
969 +  }
970  
971 +  Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){
972 + #ifdef IS_MPI
973 +    return atomColData.velocity[atom2];
974 + #else
975 +    return snap_->atomData.velocity[atom2];
976 + #endif
977 +  }
978 +
979 +
980    Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
981  
982      Vector3d d;
# Line 716 | Line 1034 | namespace OpenMD {
1034      return d;    
1035    }
1036  
1037 <  vector<int> ForceMatrixDecomposition::getSkipsForAtom(int atom1) {
1038 <    return skipsForAtom[atom1];
1037 >  vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
1038 >    return excludesForAtom[atom1];
1039    }
1040  
1041    /**
1042 <   * There are a number of reasons to skip a pair or a
725 <   * particle. Mostly we do this to exclude atoms who are involved in
726 <   * short range interactions (bonds, bends, torsions), but we also
727 <   * need to exclude some overcounted interactions that result from
1042 >   * We need to exclude some overcounted interactions that result from
1043     * the parallel decomposition.
1044     */
1045 <  bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) {
1045 >  bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) {
1046      int unique_id_1, unique_id_2;
1047 <
1047 >        
1048   #ifdef IS_MPI
1049      // in MPI, we have to look up the unique IDs for each atom
1050      unique_id_1 = AtomRowToGlobal[atom1];
1051      unique_id_2 = AtomColToGlobal[atom2];
1052 +    // group1 = cgRowToGlobal[cg1];
1053 +    // group2 = cgColToGlobal[cg2];
1054 + #else
1055 +    unique_id_1 = AtomLocalToGlobal[atom1];
1056 +    unique_id_2 = AtomLocalToGlobal[atom2];
1057 +    int group1 = cgLocalToGlobal[cg1];
1058 +    int group2 = cgLocalToGlobal[cg2];
1059 + #endif  
1060  
738    // this situation should only arise in MPI simulations
1061      if (unique_id_1 == unique_id_2) return true;
1062 <    
1062 >
1063 > #ifdef IS_MPI
1064      // this prevents us from doing the pair on multiple processors
1065      if (unique_id_1 < unique_id_2) {
1066        if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
1067      } else {
1068 <      if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
1068 >      if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
1069      }
1070 < #else
1071 <    // in the normal loop, the atom numbers are unique
1072 <    unique_id_1 = atom1;
1073 <    unique_id_2 = atom2;
1070 > #endif    
1071 >
1072 > #ifndef IS_MPI
1073 >    if (group1 == group2) {
1074 >      if (unique_id_1 < unique_id_2) return true;
1075 >    }
1076   #endif
1077      
1078 <    for (vector<int>::iterator i = skipsForAtom[atom1].begin();
1079 <         i != skipsForAtom[atom1].end(); ++i) {
1080 <      if ( (*i) == unique_id_2 ) return true;
1078 >    return false;
1079 >  }
1080 >
1081 >  /**
1082 >   * We need to handle the interactions for atoms who are involved in
1083 >   * the same rigid body as well as some short range interactions
1084 >   * (bonds, bends, torsions) differently from other interactions.
1085 >   * We'll still visit the pairwise routines, but with a flag that
1086 >   * tells those routines to exclude the pair from direct long range
1087 >   * interactions.  Some indirect interactions (notably reaction
1088 >   * field) must still be handled for these pairs.
1089 >   */
1090 >  bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
1091 >
1092 >    // excludesForAtom was constructed to use row/column indices in the MPI
1093 >    // version, and to use local IDs in the non-MPI version:
1094 >    
1095 >    for (vector<int>::iterator i = excludesForAtom[atom1].begin();
1096 >         i != excludesForAtom[atom1].end(); ++i) {
1097 >      if ( (*i) == atom2 ) return true;
1098      }
1099  
1100      return false;
# Line 777 | Line 1119 | namespace OpenMD {
1119  
1120      // filling interaction blocks with pointers
1121    void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
1122 <                                                     int atom1, int atom2) {    
1122 >                                                     int atom1, int atom2) {
1123 >
1124 >    idat.excluded = excludeAtomPair(atom1, atom2);
1125 >  
1126   #ifdef IS_MPI
1127 +    idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]);
1128 +    //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
1129 +    //                         ff_->getAtomType(identsCol[atom2]) );
1130      
783    idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
784                             ff_->getAtomType(identsCol[atom2]) );
785    
1131      if (storageLayout_ & DataStorage::dslAmat) {
1132        idat.A1 = &(atomRowData.aMat[atom1]);
1133        idat.A2 = &(atomColData.aMat[atom2]);
1134      }
1135      
791    if (storageLayout_ & DataStorage::dslElectroFrame) {
792      idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
793      idat.eFrame2 = &(atomColData.electroFrame[atom2]);
794    }
795
1136      if (storageLayout_ & DataStorage::dslTorque) {
1137        idat.t1 = &(atomRowData.torque[atom1]);
1138        idat.t2 = &(atomColData.torque[atom2]);
1139      }
1140  
1141 +    if (storageLayout_ & DataStorage::dslDipole) {
1142 +      idat.dipole1 = &(atomRowData.dipole[atom1]);
1143 +      idat.dipole2 = &(atomColData.dipole[atom2]);
1144 +    }
1145 +
1146 +    if (storageLayout_ & DataStorage::dslQuadrupole) {
1147 +      idat.quadrupole1 = &(atomRowData.quadrupole[atom1]);
1148 +      idat.quadrupole2 = &(atomColData.quadrupole[atom2]);
1149 +    }
1150 +
1151      if (storageLayout_ & DataStorage::dslDensity) {
1152        idat.rho1 = &(atomRowData.density[atom1]);
1153        idat.rho2 = &(atomColData.density[atom2]);
# Line 818 | Line 1168 | namespace OpenMD {
1168        idat.particlePot2 = &(atomColData.particlePot[atom2]);
1169      }
1170  
1171 < #else
1171 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {              
1172 >      idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
1173 >      idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
1174 >    }
1175  
1176 <    idat.atypes = make_pair( ff_->getAtomType(idents[atom1]),
1177 <                             ff_->getAtomType(idents[atom2]) );
1176 >    if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1177 >      idat.flucQ1 = &(atomRowData.flucQPos[atom1]);
1178 >      idat.flucQ2 = &(atomColData.flucQPos[atom2]);
1179 >    }
1180  
1181 + #else
1182 +    
1183 +    idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]);
1184 +
1185      if (storageLayout_ & DataStorage::dslAmat) {
1186        idat.A1 = &(snap_->atomData.aMat[atom1]);
1187        idat.A2 = &(snap_->atomData.aMat[atom2]);
1188      }
1189  
831    if (storageLayout_ & DataStorage::dslElectroFrame) {
832      idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
833      idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
834    }
835
1190      if (storageLayout_ & DataStorage::dslTorque) {
1191        idat.t1 = &(snap_->atomData.torque[atom1]);
1192        idat.t2 = &(snap_->atomData.torque[atom2]);
1193      }
1194  
1195 +    if (storageLayout_ & DataStorage::dslDipole) {
1196 +      idat.dipole1 = &(snap_->atomData.dipole[atom1]);
1197 +      idat.dipole2 = &(snap_->atomData.dipole[atom2]);
1198 +    }
1199 +
1200 +    if (storageLayout_ & DataStorage::dslQuadrupole) {
1201 +      idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]);
1202 +      idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]);
1203 +    }
1204 +
1205      if (storageLayout_ & DataStorage::dslDensity) {    
1206        idat.rho1 = &(snap_->atomData.density[atom1]);
1207        idat.rho2 = &(snap_->atomData.density[atom2]);
# Line 858 | Line 1222 | namespace OpenMD {
1222        idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
1223      }
1224  
1225 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
1226 +      idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
1227 +      idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1228 +    }
1229 +
1230 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1231 +      idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]);
1232 +      idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]);
1233 +    }
1234 +
1235   #endif
1236    }
1237  
1238    
1239    void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {    
1240   #ifdef IS_MPI
1241 <    pot_row[atom1] += 0.5 *  *(idat.pot);
1242 <    pot_col[atom2] += 0.5 *  *(idat.pot);
1241 >    pot_row[atom1] += RealType(0.5) *  *(idat.pot);
1242 >    pot_col[atom2] += RealType(0.5) *  *(idat.pot);
1243 >    expot_row[atom1] += RealType(0.5) *  *(idat.excludedPot);
1244 >    expot_col[atom2] += RealType(0.5) *  *(idat.excludedPot);
1245  
1246      atomRowData.force[atom1] += *(idat.f1);
1247      atomColData.force[atom2] -= *(idat.f1);
1248 +
1249 +    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1250 +      atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1251 +      atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1252 +    }
1253 +
1254 +    if (storageLayout_ & DataStorage::dslElectricField) {              
1255 +      atomRowData.electricField[atom1] += *(idat.eField1);
1256 +      atomColData.electricField[atom2] += *(idat.eField2);
1257 +    }
1258 +
1259   #else
1260      pairwisePot += *(idat.pot);
1261 +    excludedPot += *(idat.excludedPot);
1262  
1263      snap_->atomData.force[atom1] += *(idat.f1);
1264      snap_->atomData.force[atom2] -= *(idat.f1);
877 #endif
1265  
1266 <  }
1267 <
1268 <
1269 <  void ForceMatrixDecomposition::fillSkipData(InteractionData &idat,
1270 <                                              int atom1, int atom2) {
1271 <    // Still Missing:: skippedCharge fill must be added to DataStorage
1272 < #ifdef IS_MPI
886 <    idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
887 <                             ff_->getAtomType(identsCol[atom2]) );
888 <
889 <    if (storageLayout_ & DataStorage::dslElectroFrame) {
890 <      idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
891 <      idat.eFrame2 = &(atomColData.electroFrame[atom2]);
1266 >    if (idat.doParticlePot) {
1267 >      // This is the pairwise contribution to the particle pot.  The
1268 >      // embedding contribution is added in each of the low level
1269 >      // non-bonded routines.  In parallel, this calculation is done
1270 >      // in collectData, not in unpackInteractionData.
1271 >      snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw);
1272 >      snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw);
1273      }
1274 <    if (storageLayout_ & DataStorage::dslTorque) {
1275 <      idat.t1 = &(atomRowData.torque[atom1]);
1276 <      idat.t2 = &(atomColData.torque[atom2]);
1274 >    
1275 >    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1276 >      snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1277 >      snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1278      }
897 #else
898    idat.atypes = make_pair( ff_->getAtomType(idents[atom1]),
899                             ff_->getAtomType(idents[atom2]) );
1279  
1280 <    if (storageLayout_ & DataStorage::dslElectroFrame) {
1281 <      idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
1282 <      idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
1280 >    if (storageLayout_ & DataStorage::dslElectricField) {              
1281 >      snap_->atomData.electricField[atom1] += *(idat.eField1);
1282 >      snap_->atomData.electricField[atom2] += *(idat.eField2);
1283      }
905    if (storageLayout_ & DataStorage::dslTorque) {
906      idat.t1 = &(snap_->atomData.torque[atom1]);
907      idat.t2 = &(snap_->atomData.torque[atom2]);
908    }
909 #endif    
910  }
1284  
912
913  void ForceMatrixDecomposition::unpackSkipData(InteractionData &idat, int atom1, int atom2) {    
914 #ifdef IS_MPI
915    pot_row[atom1] += 0.5 *  *(idat.pot);
916    pot_col[atom2] += 0.5 *  *(idat.pot);
917 #else
918    pairwisePot += *(idat.pot);  
1285   #endif
1286 <
1286 >    
1287    }
1288  
923
1289    /*
1290     * buildNeighborList
1291     *
# Line 931 | Line 1296 | namespace OpenMD {
1296        
1297      vector<pair<int, int> > neighborList;
1298      groupCutoffs cuts;
1299 +    bool doAllPairs = false;
1300 +
1301   #ifdef IS_MPI
1302      cellListRow_.clear();
1303      cellListCol_.clear();
# Line 950 | Line 1317 | namespace OpenMD {
1317      nCells_.y() = (int) ( Hy.length() )/ rList_;
1318      nCells_.z() = (int) ( Hz.length() )/ rList_;
1319  
1320 +    // handle small boxes where the cell offsets can end up repeating cells
1321 +    
1322 +    if (nCells_.x() < 3) doAllPairs = true;
1323 +    if (nCells_.y() < 3) doAllPairs = true;
1324 +    if (nCells_.z() < 3) doAllPairs = true;
1325 +
1326      Mat3x3d invHmat = snap_->getInvHmat();
1327      Vector3d rs, scaled, dr;
1328      Vector3i whichCell;
# Line 963 | Line 1336 | namespace OpenMD {
1336      cellList_.resize(nCtot);
1337   #endif
1338  
1339 +    if (!doAllPairs) {
1340   #ifdef IS_MPI
967    for (int i = 0; i < nGroupsInRow_; i++) {
968      rs = cgRowData.position[i];
1341  
1342 <      // scaled positions relative to the box vectors
1343 <      scaled = invHmat * rs;
1344 <
1345 <      // wrap the vector back into the unit box by subtracting integer box
1346 <      // numbers
1347 <      for (int j = 0; j < 3; j++) {
1348 <        scaled[j] -= roundMe(scaled[j]);
1349 <        scaled[j] += 0.5;
1342 >      for (int i = 0; i < nGroupsInRow_; i++) {
1343 >        rs = cgRowData.position[i];
1344 >        
1345 >        // scaled positions relative to the box vectors
1346 >        scaled = invHmat * rs;
1347 >        
1348 >        // wrap the vector back into the unit box by subtracting integer box
1349 >        // numbers
1350 >        for (int j = 0; j < 3; j++) {
1351 >          scaled[j] -= roundMe(scaled[j]);
1352 >          scaled[j] += 0.5;
1353 >          // Handle the special case when an object is exactly on the
1354 >          // boundary (a scaled coordinate of 1.0 is the same as
1355 >          // scaled coordinate of 0.0)
1356 >          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1357 >        }
1358 >        
1359 >        // find xyz-indices of cell that cutoffGroup is in.
1360 >        whichCell.x() = nCells_.x() * scaled.x();
1361 >        whichCell.y() = nCells_.y() * scaled.y();
1362 >        whichCell.z() = nCells_.z() * scaled.z();
1363 >        
1364 >        // find single index of this cell:
1365 >        cellIndex = Vlinear(whichCell, nCells_);
1366 >        
1367 >        // add this cutoff group to the list of groups in this cell;
1368 >        cellListRow_[cellIndex].push_back(i);
1369        }
1370 <    
1371 <      // find xyz-indices of cell that cutoffGroup is in.
1372 <      whichCell.x() = nCells_.x() * scaled.x();
1373 <      whichCell.y() = nCells_.y() * scaled.y();
1374 <      whichCell.z() = nCells_.z() * scaled.z();
1375 <
1376 <      // find single index of this cell:
1377 <      cellIndex = Vlinear(whichCell, nCells_);
1378 <
1379 <      // add this cutoff group to the list of groups in this cell;
1380 <      cellListRow_[cellIndex].push_back(i);
1381 <    }
1382 <
1383 <    for (int i = 0; i < nGroupsInCol_; i++) {
1384 <      rs = cgColData.position[i];
1385 <
1386 <      // scaled positions relative to the box vectors
1387 <      scaled = invHmat * rs;
1388 <
1389 <      // wrap the vector back into the unit box by subtracting integer box
1390 <      // numbers
1391 <      for (int j = 0; j < 3; j++) {
1392 <        scaled[j] -= roundMe(scaled[j]);
1393 <        scaled[j] += 0.5;
1370 >      for (int i = 0; i < nGroupsInCol_; i++) {
1371 >        rs = cgColData.position[i];
1372 >        
1373 >        // scaled positions relative to the box vectors
1374 >        scaled = invHmat * rs;
1375 >        
1376 >        // wrap the vector back into the unit box by subtracting integer box
1377 >        // numbers
1378 >        for (int j = 0; j < 3; j++) {
1379 >          scaled[j] -= roundMe(scaled[j]);
1380 >          scaled[j] += 0.5;
1381 >          // Handle the special case when an object is exactly on the
1382 >          // boundary (a scaled coordinate of 1.0 is the same as
1383 >          // scaled coordinate of 0.0)
1384 >          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1385 >        }
1386 >        
1387 >        // find xyz-indices of cell that cutoffGroup is in.
1388 >        whichCell.x() = nCells_.x() * scaled.x();
1389 >        whichCell.y() = nCells_.y() * scaled.y();
1390 >        whichCell.z() = nCells_.z() * scaled.z();
1391 >        
1392 >        // find single index of this cell:
1393 >        cellIndex = Vlinear(whichCell, nCells_);
1394 >        
1395 >        // add this cutoff group to the list of groups in this cell;
1396 >        cellListCol_[cellIndex].push_back(i);
1397        }
1398 <
1005 <      // find xyz-indices of cell that cutoffGroup is in.
1006 <      whichCell.x() = nCells_.x() * scaled.x();
1007 <      whichCell.y() = nCells_.y() * scaled.y();
1008 <      whichCell.z() = nCells_.z() * scaled.z();
1009 <
1010 <      // find single index of this cell:
1011 <      cellIndex = Vlinear(whichCell, nCells_);
1012 <
1013 <      // add this cutoff group to the list of groups in this cell;
1014 <      cellListCol_[cellIndex].push_back(i);
1015 <    }
1398 >    
1399   #else
1400 <    for (int i = 0; i < nGroups_; i++) {
1401 <      rs = snap_->cgData.position[i];
1402 <
1403 <      // scaled positions relative to the box vectors
1404 <      scaled = invHmat * rs;
1405 <
1406 <      // wrap the vector back into the unit box by subtracting integer box
1407 <      // numbers
1408 <      for (int j = 0; j < 3; j++) {
1409 <        scaled[j] -= roundMe(scaled[j]);
1410 <        scaled[j] += 0.5;
1400 >      for (int i = 0; i < nGroups_; i++) {
1401 >        rs = snap_->cgData.position[i];
1402 >        
1403 >        // scaled positions relative to the box vectors
1404 >        scaled = invHmat * rs;
1405 >        
1406 >        // wrap the vector back into the unit box by subtracting integer box
1407 >        // numbers
1408 >        for (int j = 0; j < 3; j++) {
1409 >          scaled[j] -= roundMe(scaled[j]);
1410 >          scaled[j] += 0.5;
1411 >          // Handle the special case when an object is exactly on the
1412 >          // boundary (a scaled coordinate of 1.0 is the same as
1413 >          // scaled coordinate of 0.0)
1414 >          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1415 >        }
1416 >        
1417 >        // find xyz-indices of cell that cutoffGroup is in.
1418 >        whichCell.x() = nCells_.x() * scaled.x();
1419 >        whichCell.y() = nCells_.y() * scaled.y();
1420 >        whichCell.z() = nCells_.z() * scaled.z();
1421 >        
1422 >        // find single index of this cell:
1423 >        cellIndex = Vlinear(whichCell, nCells_);
1424 >        
1425 >        // add this cutoff group to the list of groups in this cell;
1426 >        cellList_[cellIndex].push_back(i);
1427        }
1428  
1030      // find xyz-indices of cell that cutoffGroup is in.
1031      whichCell.x() = nCells_.x() * scaled.x();
1032      whichCell.y() = nCells_.y() * scaled.y();
1033      whichCell.z() = nCells_.z() * scaled.z();
1034
1035      // find single index of this cell:
1036      cellIndex = Vlinear(whichCell, nCells_);      
1037
1038      // add this cutoff group to the list of groups in this cell;
1039      cellList_[cellIndex].push_back(i);
1040    }
1429   #endif
1430  
1431 <    for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1432 <      for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1433 <        for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1434 <          Vector3i m1v(m1x, m1y, m1z);
1435 <          int m1 = Vlinear(m1v, nCells_);
1048 <
1049 <          for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1050 <               os != cellOffsets_.end(); ++os) {
1431 >      for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1432 >        for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1433 >          for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1434 >            Vector3i m1v(m1x, m1y, m1z);
1435 >            int m1 = Vlinear(m1v, nCells_);
1436              
1437 <            Vector3i m2v = m1v + (*os);
1438 <            
1439 <            if (m2v.x() >= nCells_.x()) {
1440 <              m2v.x() = 0;          
1441 <            } else if (m2v.x() < 0) {
1057 <              m2v.x() = nCells_.x() - 1;
1058 <            }
1059 <            
1060 <            if (m2v.y() >= nCells_.y()) {
1061 <              m2v.y() = 0;          
1062 <            } else if (m2v.y() < 0) {
1063 <              m2v.y() = nCells_.y() - 1;
1064 <            }
1065 <            
1066 <            if (m2v.z() >= nCells_.z()) {
1067 <              m2v.z() = 0;          
1068 <            } else if (m2v.z() < 0) {
1069 <              m2v.z() = nCells_.z() - 1;
1070 <            }
1071 <            
1072 <            int m2 = Vlinear (m2v, nCells_);
1437 >            for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1438 >                 os != cellOffsets_.end(); ++os) {
1439 >              
1440 >              Vector3i m2v = m1v + (*os);
1441 >            
1442  
1443 < #ifdef IS_MPI
1444 <            for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1445 <                 j1 != cellListRow_[m1].end(); ++j1) {
1446 <              for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1447 <                   j2 != cellListCol_[m2].end(); ++j2) {
1448 <                              
1449 <                // Always do this if we're in different cells or if
1450 <                // we're in the same cell and the global index of the
1451 <                // j2 cutoff group is less than the j1 cutoff group
1443 >              if (m2v.x() >= nCells_.x()) {
1444 >                m2v.x() = 0;          
1445 >              } else if (m2v.x() < 0) {
1446 >                m2v.x() = nCells_.x() - 1;
1447 >              }
1448 >              
1449 >              if (m2v.y() >= nCells_.y()) {
1450 >                m2v.y() = 0;          
1451 >              } else if (m2v.y() < 0) {
1452 >                m2v.y() = nCells_.y() - 1;
1453 >              }
1454 >              
1455 >              if (m2v.z() >= nCells_.z()) {
1456 >                m2v.z() = 0;          
1457 >              } else if (m2v.z() < 0) {
1458 >                m2v.z() = nCells_.z() - 1;
1459 >              }
1460  
1461 <                if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) {
1461 >              int m2 = Vlinear (m2v, nCells_);
1462 >              
1463 > #ifdef IS_MPI
1464 >              for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1465 >                   j1 != cellListRow_[m1].end(); ++j1) {
1466 >                for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1467 >                     j2 != cellListCol_[m2].end(); ++j2) {
1468 >                  
1469 >                  // In parallel, we need to visit *all* pairs of row
1470 >                  // & column indicies and will divide labor in the
1471 >                  // force evaluation later.
1472                    dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1473                    snap_->wrapVector(dr);
1474                    cuts = getGroupCutoffs( (*j1), (*j2) );
1475                    if (dr.lengthSquare() < cuts.third) {
1476                      neighborList.push_back(make_pair((*j1), (*j2)));
1477 <                  }
1477 >                  }                  
1478                  }
1479                }
1093            }
1480   #else
1481 +              for (vector<int>::iterator j1 = cellList_[m1].begin();
1482 +                   j1 != cellList_[m1].end(); ++j1) {
1483 +                for (vector<int>::iterator j2 = cellList_[m2].begin();
1484 +                     j2 != cellList_[m2].end(); ++j2) {
1485 +    
1486 +                  // Always do this if we're in different cells or if
1487 +                  // we're in the same cell and the global index of
1488 +                  // the j2 cutoff group is greater than or equal to
1489 +                  // the j1 cutoff group.  Note that Rappaport's code
1490 +                  // has a "less than" conditional here, but that
1491 +                  // deals with atom-by-atom computation.  OpenMD
1492 +                  // allows atoms within a single cutoff group to
1493 +                  // interact with each other.
1494  
1096            for (vector<int>::iterator j1 = cellList_[m1].begin();
1097                 j1 != cellList_[m1].end(); ++j1) {
1098              for (vector<int>::iterator j2 = cellList_[m2].begin();
1099                   j2 != cellList_[m2].end(); ++j2) {
1495  
1101                // Always do this if we're in different cells or if
1102                // we're in the same cell and the global index of the
1103                // j2 cutoff group is less than the j1 cutoff group
1496  
1497 <                if (m2 != m1 || (*j2) < (*j1)) {
1498 <                  dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1499 <                  snap_->wrapVector(dr);
1500 <                  cuts = getGroupCutoffs( (*j1), (*j2) );
1501 <                  if (dr.lengthSquare() < cuts.third) {
1502 <                    neighborList.push_back(make_pair((*j1), (*j2)));
1497 >                  if (m2 != m1 || (*j2) >= (*j1) ) {
1498 >
1499 >                    dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1500 >                    snap_->wrapVector(dr);
1501 >                    cuts = getGroupCutoffs( (*j1), (*j2) );
1502 >                    if (dr.lengthSquare() < cuts.third) {
1503 >                      neighborList.push_back(make_pair((*j1), (*j2)));
1504 >                    }
1505                    }
1506                  }
1507                }
1114            }
1508   #endif
1509 +            }
1510            }
1511          }
1512        }
1513 +    } else {
1514 +      // branch to do all cutoff group pairs
1515 + #ifdef IS_MPI
1516 +      for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1517 +        for (int j2 = 0; j2 < nGroupsInCol_; j2++) {    
1518 +          dr = cgColData.position[j2] - cgRowData.position[j1];
1519 +          snap_->wrapVector(dr);
1520 +          cuts = getGroupCutoffs( j1, j2 );
1521 +          if (dr.lengthSquare() < cuts.third) {
1522 +            neighborList.push_back(make_pair(j1, j2));
1523 +          }
1524 +        }
1525 +      }      
1526 + #else
1527 +      // include all groups here.
1528 +      for (int j1 = 0; j1 < nGroups_; j1++) {
1529 +        // include self group interactions j2 == j1
1530 +        for (int j2 = j1; j2 < nGroups_; j2++) {
1531 +          dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1532 +          snap_->wrapVector(dr);
1533 +          cuts = getGroupCutoffs( j1, j2 );
1534 +          if (dr.lengthSquare() < cuts.third) {
1535 +            neighborList.push_back(make_pair(j1, j2));
1536 +          }
1537 +        }    
1538 +      }
1539 + #endif
1540      }
1541 <    
1541 >      
1542      // save the local cutoff group positions for the check that is
1543      // done on each loop:
1544      saved_CG_positions_.clear();
1545      for (int i = 0; i < nGroups_; i++)
1546        saved_CG_positions_.push_back(snap_->cgData.position[i]);
1547 <  
1547 >    
1548      return neighborList;
1549    }
1550   } //end namespace OpenMD

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines