| 35 |
|
* |
| 36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
| 37 |
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
| 38 |
< |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
| 39 |
< |
* [4] Vardeman & Gezelter, in progress (2009). |
| 38 |
> |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
| 39 |
> |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
| 40 |
> |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
| 41 |
|
*/ |
| 42 |
|
#include "parallel/ForceMatrixDecomposition.hpp" |
| 43 |
|
#include "math/SquareMatrix3.hpp" |
| 48 |
|
using namespace std; |
| 49 |
|
namespace OpenMD { |
| 50 |
|
|
| 51 |
+ |
ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) { |
| 52 |
+ |
|
| 53 |
+ |
// In a parallel computation, row and colum scans must visit all |
| 54 |
+ |
// surrounding cells (not just the 14 upper triangular blocks that |
| 55 |
+ |
// are used when the processor can see all pairs) |
| 56 |
+ |
#ifdef IS_MPI |
| 57 |
+ |
cellOffsets_.clear(); |
| 58 |
+ |
cellOffsets_.push_back( Vector3i(-1,-1,-1) ); |
| 59 |
+ |
cellOffsets_.push_back( Vector3i( 0,-1,-1) ); |
| 60 |
+ |
cellOffsets_.push_back( Vector3i( 1,-1,-1) ); |
| 61 |
+ |
cellOffsets_.push_back( Vector3i(-1, 0,-1) ); |
| 62 |
+ |
cellOffsets_.push_back( Vector3i( 0, 0,-1) ); |
| 63 |
+ |
cellOffsets_.push_back( Vector3i( 1, 0,-1) ); |
| 64 |
+ |
cellOffsets_.push_back( Vector3i(-1, 1,-1) ); |
| 65 |
+ |
cellOffsets_.push_back( Vector3i( 0, 1,-1) ); |
| 66 |
+ |
cellOffsets_.push_back( Vector3i( 1, 1,-1) ); |
| 67 |
+ |
cellOffsets_.push_back( Vector3i(-1,-1, 0) ); |
| 68 |
+ |
cellOffsets_.push_back( Vector3i( 0,-1, 0) ); |
| 69 |
+ |
cellOffsets_.push_back( Vector3i( 1,-1, 0) ); |
| 70 |
+ |
cellOffsets_.push_back( Vector3i(-1, 0, 0) ); |
| 71 |
+ |
cellOffsets_.push_back( Vector3i( 0, 0, 0) ); |
| 72 |
+ |
cellOffsets_.push_back( Vector3i( 1, 0, 0) ); |
| 73 |
+ |
cellOffsets_.push_back( Vector3i(-1, 1, 0) ); |
| 74 |
+ |
cellOffsets_.push_back( Vector3i( 0, 1, 0) ); |
| 75 |
+ |
cellOffsets_.push_back( Vector3i( 1, 1, 0) ); |
| 76 |
+ |
cellOffsets_.push_back( Vector3i(-1,-1, 1) ); |
| 77 |
+ |
cellOffsets_.push_back( Vector3i( 0,-1, 1) ); |
| 78 |
+ |
cellOffsets_.push_back( Vector3i( 1,-1, 1) ); |
| 79 |
+ |
cellOffsets_.push_back( Vector3i(-1, 0, 1) ); |
| 80 |
+ |
cellOffsets_.push_back( Vector3i( 0, 0, 1) ); |
| 81 |
+ |
cellOffsets_.push_back( Vector3i( 1, 0, 1) ); |
| 82 |
+ |
cellOffsets_.push_back( Vector3i(-1, 1, 1) ); |
| 83 |
+ |
cellOffsets_.push_back( Vector3i( 0, 1, 1) ); |
| 84 |
+ |
cellOffsets_.push_back( Vector3i( 1, 1, 1) ); |
| 85 |
+ |
#endif |
| 86 |
+ |
} |
| 87 |
+ |
|
| 88 |
+ |
|
| 89 |
|
/** |
| 90 |
|
* distributeInitialData is essentially a copy of the older fortran |
| 91 |
|
* SimulationSetup |
| 92 |
|
*/ |
| 54 |
– |
|
| 93 |
|
void ForceMatrixDecomposition::distributeInitialData() { |
| 94 |
|
snap_ = sman_->getCurrentSnapshot(); |
| 95 |
|
storageLayout_ = sman_->getStorageLayout(); |
| 96 |
|
ff_ = info_->getForceField(); |
| 97 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
| 98 |
< |
|
| 98 |
> |
|
| 99 |
|
nGroups_ = info_->getNLocalCutoffGroups(); |
| 100 |
|
// gather the information for atomtype IDs (atids): |
| 101 |
|
idents = info_->getIdentArray(); |
| 109 |
|
PairList* oneTwo = info_->getOneTwoInteractions(); |
| 110 |
|
PairList* oneThree = info_->getOneThreeInteractions(); |
| 111 |
|
PairList* oneFour = info_->getOneFourInteractions(); |
| 112 |
< |
|
| 112 |
> |
|
| 113 |
> |
if (needVelocities_) |
| 114 |
> |
snap_->cgData.setStorageLayout(DataStorage::dslPosition | |
| 115 |
> |
DataStorage::dslVelocity); |
| 116 |
> |
else |
| 117 |
> |
snap_->cgData.setStorageLayout(DataStorage::dslPosition); |
| 118 |
> |
|
| 119 |
|
#ifdef IS_MPI |
| 120 |
|
|
| 121 |
< |
AtomCommIntRow = new Communicator<Row,int>(nLocal_); |
| 122 |
< |
AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); |
| 79 |
< |
AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); |
| 80 |
< |
AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); |
| 81 |
< |
AtomCommPotRow = new Communicator<Row,potVec>(nLocal_); |
| 121 |
> |
MPI::Intracomm row = rowComm.getComm(); |
| 122 |
> |
MPI::Intracomm col = colComm.getComm(); |
| 123 |
|
|
| 124 |
< |
AtomCommIntColumn = new Communicator<Column,int>(nLocal_); |
| 125 |
< |
AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); |
| 126 |
< |
AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); |
| 127 |
< |
AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); |
| 128 |
< |
AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_); |
| 124 |
> |
AtomPlanIntRow = new Plan<int>(row, nLocal_); |
| 125 |
> |
AtomPlanRealRow = new Plan<RealType>(row, nLocal_); |
| 126 |
> |
AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_); |
| 127 |
> |
AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_); |
| 128 |
> |
AtomPlanPotRow = new Plan<potVec>(row, nLocal_); |
| 129 |
|
|
| 130 |
< |
cgCommIntRow = new Communicator<Row,int>(nGroups_); |
| 131 |
< |
cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); |
| 132 |
< |
cgCommIntColumn = new Communicator<Column,int>(nGroups_); |
| 133 |
< |
cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); |
| 130 |
> |
AtomPlanIntColumn = new Plan<int>(col, nLocal_); |
| 131 |
> |
AtomPlanRealColumn = new Plan<RealType>(col, nLocal_); |
| 132 |
> |
AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_); |
| 133 |
> |
AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_); |
| 134 |
> |
AtomPlanPotColumn = new Plan<potVec>(col, nLocal_); |
| 135 |
|
|
| 136 |
< |
nAtomsInRow_ = AtomCommIntRow->getSize(); |
| 137 |
< |
nAtomsInCol_ = AtomCommIntColumn->getSize(); |
| 138 |
< |
nGroupsInRow_ = cgCommIntRow->getSize(); |
| 139 |
< |
nGroupsInCol_ = cgCommIntColumn->getSize(); |
| 136 |
> |
cgPlanIntRow = new Plan<int>(row, nGroups_); |
| 137 |
> |
cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_); |
| 138 |
> |
cgPlanIntColumn = new Plan<int>(col, nGroups_); |
| 139 |
> |
cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_); |
| 140 |
|
|
| 141 |
+ |
nAtomsInRow_ = AtomPlanIntRow->getSize(); |
| 142 |
+ |
nAtomsInCol_ = AtomPlanIntColumn->getSize(); |
| 143 |
+ |
nGroupsInRow_ = cgPlanIntRow->getSize(); |
| 144 |
+ |
nGroupsInCol_ = cgPlanIntColumn->getSize(); |
| 145 |
+ |
|
| 146 |
|
// Modify the data storage objects with the correct layouts and sizes: |
| 147 |
|
atomRowData.resize(nAtomsInRow_); |
| 148 |
|
atomRowData.setStorageLayout(storageLayout_); |
| 151 |
|
cgRowData.resize(nGroupsInRow_); |
| 152 |
|
cgRowData.setStorageLayout(DataStorage::dslPosition); |
| 153 |
|
cgColData.resize(nGroupsInCol_); |
| 154 |
< |
cgColData.setStorageLayout(DataStorage::dslPosition); |
| 155 |
< |
|
| 154 |
> |
if (needVelocities_) |
| 155 |
> |
// we only need column velocities if we need them. |
| 156 |
> |
cgColData.setStorageLayout(DataStorage::dslPosition | |
| 157 |
> |
DataStorage::dslVelocity); |
| 158 |
> |
else |
| 159 |
> |
cgColData.setStorageLayout(DataStorage::dslPosition); |
| 160 |
> |
|
| 161 |
|
identsRow.resize(nAtomsInRow_); |
| 162 |
|
identsCol.resize(nAtomsInCol_); |
| 163 |
|
|
| 164 |
< |
AtomCommIntRow->gather(idents, identsRow); |
| 165 |
< |
AtomCommIntColumn->gather(idents, identsCol); |
| 164 |
> |
AtomPlanIntRow->gather(idents, identsRow); |
| 165 |
> |
AtomPlanIntColumn->gather(idents, identsCol); |
| 166 |
|
|
| 167 |
|
// allocate memory for the parallel objects |
| 168 |
|
atypesRow.resize(nAtomsInRow_); |
| 176 |
|
pot_row.resize(nAtomsInRow_); |
| 177 |
|
pot_col.resize(nAtomsInCol_); |
| 178 |
|
|
| 179 |
+ |
expot_row.resize(nAtomsInRow_); |
| 180 |
+ |
expot_col.resize(nAtomsInCol_); |
| 181 |
+ |
|
| 182 |
|
AtomRowToGlobal.resize(nAtomsInRow_); |
| 183 |
|
AtomColToGlobal.resize(nAtomsInCol_); |
| 184 |
< |
AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
| 185 |
< |
AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
| 186 |
< |
|
| 184 |
> |
AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
| 185 |
> |
AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
| 186 |
> |
|
| 187 |
|
cgRowToGlobal.resize(nGroupsInRow_); |
| 188 |
|
cgColToGlobal.resize(nGroupsInCol_); |
| 189 |
< |
cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
| 190 |
< |
cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
| 189 |
> |
cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
| 190 |
> |
cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
| 191 |
|
|
| 192 |
|
massFactorsRow.resize(nAtomsInRow_); |
| 193 |
|
massFactorsCol.resize(nAtomsInCol_); |
| 194 |
< |
AtomCommRealRow->gather(massFactors, massFactorsRow); |
| 195 |
< |
AtomCommRealColumn->gather(massFactors, massFactorsCol); |
| 194 |
> |
AtomPlanRealRow->gather(massFactors, massFactorsRow); |
| 195 |
> |
AtomPlanRealColumn->gather(massFactors, massFactorsCol); |
| 196 |
|
|
| 197 |
|
groupListRow_.clear(); |
| 198 |
|
groupListRow_.resize(nGroupsInRow_); |
| 244 |
|
topoDist[i].push_back(3); |
| 245 |
|
} |
| 246 |
|
} |
| 192 |
– |
} |
| 193 |
– |
} |
| 194 |
– |
} |
| 195 |
– |
|
| 196 |
– |
#endif |
| 197 |
– |
|
| 198 |
– |
// allocate memory for the parallel objects |
| 199 |
– |
atypesLocal.resize(nLocal_); |
| 200 |
– |
|
| 201 |
– |
for (int i = 0; i < nLocal_; i++) |
| 202 |
– |
atypesLocal[i] = ff_->getAtomType(idents[i]); |
| 203 |
– |
|
| 204 |
– |
groupList_.clear(); |
| 205 |
– |
groupList_.resize(nGroups_); |
| 206 |
– |
for (int i = 0; i < nGroups_; i++) { |
| 207 |
– |
int gid = cgLocalToGlobal[i]; |
| 208 |
– |
for (int j = 0; j < nLocal_; j++) { |
| 209 |
– |
int aid = AtomLocalToGlobal[j]; |
| 210 |
– |
if (globalGroupMembership[aid] == gid) { |
| 211 |
– |
groupList_[i].push_back(j); |
| 247 |
|
} |
| 248 |
|
} |
| 249 |
|
} |
| 250 |
|
|
| 251 |
+ |
#else |
| 252 |
|
excludesForAtom.clear(); |
| 253 |
|
excludesForAtom.resize(nLocal_); |
| 254 |
|
toposForAtom.clear(); |
| 281 |
|
} |
| 282 |
|
} |
| 283 |
|
} |
| 284 |
< |
|
| 284 |
> |
#endif |
| 285 |
> |
|
| 286 |
> |
// allocate memory for the parallel objects |
| 287 |
> |
atypesLocal.resize(nLocal_); |
| 288 |
> |
|
| 289 |
> |
for (int i = 0; i < nLocal_; i++) |
| 290 |
> |
atypesLocal[i] = ff_->getAtomType(idents[i]); |
| 291 |
> |
|
| 292 |
> |
groupList_.clear(); |
| 293 |
> |
groupList_.resize(nGroups_); |
| 294 |
> |
for (int i = 0; i < nGroups_; i++) { |
| 295 |
> |
int gid = cgLocalToGlobal[i]; |
| 296 |
> |
for (int j = 0; j < nLocal_; j++) { |
| 297 |
> |
int aid = AtomLocalToGlobal[j]; |
| 298 |
> |
if (globalGroupMembership[aid] == gid) { |
| 299 |
> |
groupList_[i].push_back(j); |
| 300 |
> |
} |
| 301 |
> |
} |
| 302 |
> |
} |
| 303 |
> |
|
| 304 |
> |
|
| 305 |
|
createGtypeCutoffMap(); |
| 306 |
|
|
| 307 |
|
} |
| 310 |
|
|
| 311 |
|
RealType tol = 1e-6; |
| 312 |
|
largestRcut_ = 0.0; |
| 257 |
– |
RealType rc; |
| 313 |
|
int atid; |
| 314 |
|
set<AtomType*> atypes = info_->getSimulatedAtomTypes(); |
| 315 |
|
|
| 394 |
|
} |
| 395 |
|
|
| 396 |
|
bool gTypeFound = false; |
| 397 |
< |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
| 397 |
> |
for (unsigned int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
| 398 |
|
if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { |
| 399 |
|
groupToGtype[cg1] = gt; |
| 400 |
|
gTypeFound = true; |
| 419 |
|
|
| 420 |
|
RealType tradRcut = groupMax; |
| 421 |
|
|
| 422 |
< |
for (int i = 0; i < gTypeCutoffs.size(); i++) { |
| 423 |
< |
for (int j = 0; j < gTypeCutoffs.size(); j++) { |
| 422 |
> |
for (unsigned int i = 0; i < gTypeCutoffs.size(); i++) { |
| 423 |
> |
for (unsigned int j = 0; j < gTypeCutoffs.size(); j++) { |
| 424 |
|
RealType thisRcut; |
| 425 |
|
switch(cutoffPolicy_) { |
| 426 |
|
case TRADITIONAL: |
| 463 |
|
} |
| 464 |
|
} |
| 465 |
|
|
| 411 |
– |
|
| 466 |
|
groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { |
| 467 |
|
int i, j; |
| 468 |
|
#ifdef IS_MPI |
| 476 |
|
} |
| 477 |
|
|
| 478 |
|
int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { |
| 479 |
< |
for (int j = 0; j < toposForAtom[atom1].size(); j++) { |
| 479 |
> |
for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) { |
| 480 |
|
if (toposForAtom[atom1][j] == atom2) |
| 481 |
|
return topoDist[atom1][j]; |
| 482 |
|
} |
| 486 |
|
void ForceMatrixDecomposition::zeroWorkArrays() { |
| 487 |
|
pairwisePot = 0.0; |
| 488 |
|
embeddingPot = 0.0; |
| 489 |
+ |
excludedPot = 0.0; |
| 490 |
+ |
excludedSelfPot = 0.0; |
| 491 |
|
|
| 492 |
|
#ifdef IS_MPI |
| 493 |
|
if (storageLayout_ & DataStorage::dslForce) { |
| 504 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
| 505 |
|
|
| 506 |
|
fill(pot_col.begin(), pot_col.end(), |
| 507 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
| 508 |
+ |
|
| 509 |
+ |
fill(expot_row.begin(), expot_row.end(), |
| 510 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
| 511 |
+ |
|
| 512 |
+ |
fill(expot_col.begin(), expot_col.end(), |
| 513 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
| 514 |
|
|
| 515 |
|
if (storageLayout_ & DataStorage::dslParticlePot) { |
| 545 |
|
atomColData.skippedCharge.end(), 0.0); |
| 546 |
|
} |
| 547 |
|
|
| 548 |
+ |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
| 549 |
+ |
fill(atomRowData.flucQFrc.begin(), |
| 550 |
+ |
atomRowData.flucQFrc.end(), 0.0); |
| 551 |
+ |
fill(atomColData.flucQFrc.begin(), |
| 552 |
+ |
atomColData.flucQFrc.end(), 0.0); |
| 553 |
+ |
} |
| 554 |
+ |
|
| 555 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
| 556 |
+ |
fill(atomRowData.electricField.begin(), |
| 557 |
+ |
atomRowData.electricField.end(), V3Zero); |
| 558 |
+ |
fill(atomColData.electricField.begin(), |
| 559 |
+ |
atomColData.electricField.end(), V3Zero); |
| 560 |
+ |
} |
| 561 |
+ |
|
| 562 |
|
#endif |
| 563 |
|
// even in parallel, we need to zero out the local arrays: |
| 564 |
|
|
| 571 |
|
fill(snap_->atomData.density.begin(), |
| 572 |
|
snap_->atomData.density.end(), 0.0); |
| 573 |
|
} |
| 574 |
+ |
|
| 575 |
|
if (storageLayout_ & DataStorage::dslFunctional) { |
| 576 |
|
fill(snap_->atomData.functional.begin(), |
| 577 |
|
snap_->atomData.functional.end(), 0.0); |
| 578 |
|
} |
| 579 |
+ |
|
| 580 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
| 581 |
|
fill(snap_->atomData.functionalDerivative.begin(), |
| 582 |
|
snap_->atomData.functionalDerivative.end(), 0.0); |
| 583 |
|
} |
| 584 |
+ |
|
| 585 |
|
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
| 586 |
|
fill(snap_->atomData.skippedCharge.begin(), |
| 587 |
|
snap_->atomData.skippedCharge.end(), 0.0); |
| 588 |
|
} |
| 589 |
< |
|
| 589 |
> |
|
| 590 |
> |
if (storageLayout_ & DataStorage::dslElectricField) { |
| 591 |
> |
fill(snap_->atomData.electricField.begin(), |
| 592 |
> |
snap_->atomData.electricField.end(), V3Zero); |
| 593 |
> |
} |
| 594 |
|
} |
| 595 |
|
|
| 596 |
|
|
| 600 |
|
#ifdef IS_MPI |
| 601 |
|
|
| 602 |
|
// gather up the atomic positions |
| 603 |
< |
AtomCommVectorRow->gather(snap_->atomData.position, |
| 603 |
> |
AtomPlanVectorRow->gather(snap_->atomData.position, |
| 604 |
|
atomRowData.position); |
| 605 |
< |
AtomCommVectorColumn->gather(snap_->atomData.position, |
| 605 |
> |
AtomPlanVectorColumn->gather(snap_->atomData.position, |
| 606 |
|
atomColData.position); |
| 607 |
|
|
| 608 |
|
// gather up the cutoff group positions |
| 609 |
< |
cgCommVectorRow->gather(snap_->cgData.position, |
| 609 |
> |
|
| 610 |
> |
cgPlanVectorRow->gather(snap_->cgData.position, |
| 611 |
|
cgRowData.position); |
| 612 |
< |
cgCommVectorColumn->gather(snap_->cgData.position, |
| 612 |
> |
|
| 613 |
> |
cgPlanVectorColumn->gather(snap_->cgData.position, |
| 614 |
|
cgColData.position); |
| 615 |
+ |
|
| 616 |
+ |
|
| 617 |
+ |
|
| 618 |
+ |
if (needVelocities_) { |
| 619 |
+ |
// gather up the atomic velocities |
| 620 |
+ |
AtomPlanVectorColumn->gather(snap_->atomData.velocity, |
| 621 |
+ |
atomColData.velocity); |
| 622 |
+ |
|
| 623 |
+ |
cgPlanVectorColumn->gather(snap_->cgData.velocity, |
| 624 |
+ |
cgColData.velocity); |
| 625 |
+ |
} |
| 626 |
+ |
|
| 627 |
|
|
| 628 |
|
// if needed, gather the atomic rotation matrices |
| 629 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
| 630 |
< |
AtomCommMatrixRow->gather(snap_->atomData.aMat, |
| 630 |
> |
AtomPlanMatrixRow->gather(snap_->atomData.aMat, |
| 631 |
|
atomRowData.aMat); |
| 632 |
< |
AtomCommMatrixColumn->gather(snap_->atomData.aMat, |
| 632 |
> |
AtomPlanMatrixColumn->gather(snap_->atomData.aMat, |
| 633 |
|
atomColData.aMat); |
| 634 |
|
} |
| 635 |
< |
|
| 636 |
< |
// if needed, gather the atomic eletrostatic frames |
| 637 |
< |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
| 638 |
< |
AtomCommMatrixRow->gather(snap_->atomData.electroFrame, |
| 639 |
< |
atomRowData.electroFrame); |
| 640 |
< |
AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, |
| 641 |
< |
atomColData.electroFrame); |
| 635 |
> |
|
| 636 |
> |
// if needed, gather the atomic eletrostatic information |
| 637 |
> |
if (storageLayout_ & DataStorage::dslDipole) { |
| 638 |
> |
AtomPlanVectorRow->gather(snap_->atomData.dipole, |
| 639 |
> |
atomRowData.dipole); |
| 640 |
> |
AtomPlanVectorColumn->gather(snap_->atomData.dipole, |
| 641 |
> |
atomColData.dipole); |
| 642 |
|
} |
| 643 |
|
|
| 644 |
+ |
if (storageLayout_ & DataStorage::dslQuadrupole) { |
| 645 |
+ |
AtomPlanMatrixRow->gather(snap_->atomData.quadrupole, |
| 646 |
+ |
atomRowData.quadrupole); |
| 647 |
+ |
AtomPlanMatrixColumn->gather(snap_->atomData.quadrupole, |
| 648 |
+ |
atomColData.quadrupole); |
| 649 |
+ |
} |
| 650 |
+ |
|
| 651 |
+ |
// if needed, gather the atomic fluctuating charge values |
| 652 |
+ |
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
| 653 |
+ |
AtomPlanRealRow->gather(snap_->atomData.flucQPos, |
| 654 |
+ |
atomRowData.flucQPos); |
| 655 |
+ |
AtomPlanRealColumn->gather(snap_->atomData.flucQPos, |
| 656 |
+ |
atomColData.flucQPos); |
| 657 |
+ |
} |
| 658 |
+ |
|
| 659 |
|
#endif |
| 660 |
|
} |
| 661 |
|
|
| 669 |
|
|
| 670 |
|
if (storageLayout_ & DataStorage::dslDensity) { |
| 671 |
|
|
| 672 |
< |
AtomCommRealRow->scatter(atomRowData.density, |
| 672 |
> |
AtomPlanRealRow->scatter(atomRowData.density, |
| 673 |
|
snap_->atomData.density); |
| 674 |
|
|
| 675 |
|
int n = snap_->atomData.density.size(); |
| 676 |
|
vector<RealType> rho_tmp(n, 0.0); |
| 677 |
< |
AtomCommRealColumn->scatter(atomColData.density, rho_tmp); |
| 677 |
> |
AtomPlanRealColumn->scatter(atomColData.density, rho_tmp); |
| 678 |
|
for (int i = 0; i < n; i++) |
| 679 |
|
snap_->atomData.density[i] += rho_tmp[i]; |
| 680 |
|
} |
| 681 |
+ |
|
| 682 |
+ |
// this isn't necessary if we don't have polarizable atoms, but |
| 683 |
+ |
// we'll leave it here for now. |
| 684 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
| 685 |
+ |
|
| 686 |
+ |
AtomPlanVectorRow->scatter(atomRowData.electricField, |
| 687 |
+ |
snap_->atomData.electricField); |
| 688 |
+ |
|
| 689 |
+ |
int n = snap_->atomData.electricField.size(); |
| 690 |
+ |
vector<Vector3d> field_tmp(n, V3Zero); |
| 691 |
+ |
AtomPlanVectorColumn->scatter(atomColData.electricField, |
| 692 |
+ |
field_tmp); |
| 693 |
+ |
for (int i = 0; i < n; i++) |
| 694 |
+ |
snap_->atomData.electricField[i] += field_tmp[i]; |
| 695 |
+ |
} |
| 696 |
|
#endif |
| 697 |
|
} |
| 698 |
|
|
| 705 |
|
storageLayout_ = sman_->getStorageLayout(); |
| 706 |
|
#ifdef IS_MPI |
| 707 |
|
if (storageLayout_ & DataStorage::dslFunctional) { |
| 708 |
< |
AtomCommRealRow->gather(snap_->atomData.functional, |
| 708 |
> |
AtomPlanRealRow->gather(snap_->atomData.functional, |
| 709 |
|
atomRowData.functional); |
| 710 |
< |
AtomCommRealColumn->gather(snap_->atomData.functional, |
| 710 |
> |
AtomPlanRealColumn->gather(snap_->atomData.functional, |
| 711 |
|
atomColData.functional); |
| 712 |
|
} |
| 713 |
|
|
| 714 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
| 715 |
< |
AtomCommRealRow->gather(snap_->atomData.functionalDerivative, |
| 715 |
> |
AtomPlanRealRow->gather(snap_->atomData.functionalDerivative, |
| 716 |
|
atomRowData.functionalDerivative); |
| 717 |
< |
AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, |
| 717 |
> |
AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative, |
| 718 |
|
atomColData.functionalDerivative); |
| 719 |
|
} |
| 720 |
|
#endif |
| 728 |
|
int n = snap_->atomData.force.size(); |
| 729 |
|
vector<Vector3d> frc_tmp(n, V3Zero); |
| 730 |
|
|
| 731 |
< |
AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); |
| 731 |
> |
AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp); |
| 732 |
|
for (int i = 0; i < n; i++) { |
| 733 |
|
snap_->atomData.force[i] += frc_tmp[i]; |
| 734 |
|
frc_tmp[i] = 0.0; |
| 735 |
|
} |
| 736 |
|
|
| 737 |
< |
AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); |
| 738 |
< |
for (int i = 0; i < n; i++) |
| 737 |
> |
AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp); |
| 738 |
> |
for (int i = 0; i < n; i++) { |
| 739 |
|
snap_->atomData.force[i] += frc_tmp[i]; |
| 740 |
+ |
} |
| 741 |
|
|
| 742 |
|
if (storageLayout_ & DataStorage::dslTorque) { |
| 743 |
|
|
| 744 |
|
int nt = snap_->atomData.torque.size(); |
| 745 |
|
vector<Vector3d> trq_tmp(nt, V3Zero); |
| 746 |
|
|
| 747 |
< |
AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); |
| 747 |
> |
AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp); |
| 748 |
|
for (int i = 0; i < nt; i++) { |
| 749 |
|
snap_->atomData.torque[i] += trq_tmp[i]; |
| 750 |
|
trq_tmp[i] = 0.0; |
| 751 |
|
} |
| 752 |
|
|
| 753 |
< |
AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); |
| 753 |
> |
AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp); |
| 754 |
|
for (int i = 0; i < nt; i++) |
| 755 |
|
snap_->atomData.torque[i] += trq_tmp[i]; |
| 756 |
|
} |
| 760 |
|
int ns = snap_->atomData.skippedCharge.size(); |
| 761 |
|
vector<RealType> skch_tmp(ns, 0.0); |
| 762 |
|
|
| 763 |
< |
AtomCommRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
| 763 |
> |
AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
| 764 |
|
for (int i = 0; i < ns; i++) { |
| 765 |
|
snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
| 766 |
|
skch_tmp[i] = 0.0; |
| 767 |
|
} |
| 768 |
|
|
| 769 |
< |
AtomCommRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
| 770 |
< |
for (int i = 0; i < ns; i++) |
| 769 |
> |
AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
| 770 |
> |
for (int i = 0; i < ns; i++) |
| 771 |
|
snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
| 772 |
+ |
|
| 773 |
|
} |
| 774 |
|
|
| 775 |
+ |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
| 776 |
+ |
|
| 777 |
+ |
int nq = snap_->atomData.flucQFrc.size(); |
| 778 |
+ |
vector<RealType> fqfrc_tmp(nq, 0.0); |
| 779 |
+ |
|
| 780 |
+ |
AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp); |
| 781 |
+ |
for (int i = 0; i < nq; i++) { |
| 782 |
+ |
snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
| 783 |
+ |
fqfrc_tmp[i] = 0.0; |
| 784 |
+ |
} |
| 785 |
+ |
|
| 786 |
+ |
AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp); |
| 787 |
+ |
for (int i = 0; i < nq; i++) |
| 788 |
+ |
snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
| 789 |
+ |
|
| 790 |
+ |
} |
| 791 |
+ |
|
| 792 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
| 793 |
+ |
|
| 794 |
+ |
int nef = snap_->atomData.electricField.size(); |
| 795 |
+ |
vector<Vector3d> efield_tmp(nef, V3Zero); |
| 796 |
+ |
|
| 797 |
+ |
AtomPlanVectorRow->scatter(atomRowData.electricField, efield_tmp); |
| 798 |
+ |
for (int i = 0; i < nef; i++) { |
| 799 |
+ |
snap_->atomData.electricField[i] += efield_tmp[i]; |
| 800 |
+ |
efield_tmp[i] = 0.0; |
| 801 |
+ |
} |
| 802 |
+ |
|
| 803 |
+ |
AtomPlanVectorColumn->scatter(atomColData.electricField, efield_tmp); |
| 804 |
+ |
for (int i = 0; i < nef; i++) |
| 805 |
+ |
snap_->atomData.electricField[i] += efield_tmp[i]; |
| 806 |
+ |
} |
| 807 |
+ |
|
| 808 |
+ |
|
| 809 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
| 810 |
|
|
| 811 |
|
vector<potVec> pot_temp(nLocal_, |
| 812 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
| 813 |
+ |
vector<potVec> expot_temp(nLocal_, |
| 814 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
| 815 |
|
|
| 816 |
|
// scatter/gather pot_row into the members of my column |
| 817 |
|
|
| 818 |
< |
AtomCommPotRow->scatter(pot_row, pot_temp); |
| 818 |
> |
AtomPlanPotRow->scatter(pot_row, pot_temp); |
| 819 |
> |
AtomPlanPotRow->scatter(expot_row, expot_temp); |
| 820 |
|
|
| 821 |
< |
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
| 821 |
> |
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
| 822 |
|
pairwisePot += pot_temp[ii]; |
| 823 |
< |
|
| 823 |
> |
|
| 824 |
> |
for (int ii = 0; ii < expot_temp.size(); ii++ ) |
| 825 |
> |
excludedPot += expot_temp[ii]; |
| 826 |
> |
|
| 827 |
> |
if (storageLayout_ & DataStorage::dslParticlePot) { |
| 828 |
> |
// This is the pairwise contribution to the particle pot. The |
| 829 |
> |
// embedding contribution is added in each of the low level |
| 830 |
> |
// non-bonded routines. In single processor, this is done in |
| 831 |
> |
// unpackInteractionData, not in collectData. |
| 832 |
> |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
| 833 |
> |
for (int i = 0; i < nLocal_; i++) { |
| 834 |
> |
// factor of two is because the total potential terms are divided |
| 835 |
> |
// by 2 in parallel due to row/ column scatter |
| 836 |
> |
snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); |
| 837 |
> |
} |
| 838 |
> |
} |
| 839 |
> |
} |
| 840 |
> |
|
| 841 |
|
fill(pot_temp.begin(), pot_temp.end(), |
| 842 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
| 843 |
+ |
fill(expot_temp.begin(), expot_temp.end(), |
| 844 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
| 845 |
|
|
| 846 |
< |
AtomCommPotColumn->scatter(pot_col, pot_temp); |
| 846 |
> |
AtomPlanPotColumn->scatter(pot_col, pot_temp); |
| 847 |
> |
AtomPlanPotColumn->scatter(expot_col, expot_temp); |
| 848 |
|
|
| 849 |
|
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
| 850 |
|
pairwisePot += pot_temp[ii]; |
| 851 |
+ |
|
| 852 |
+ |
for (int ii = 0; ii < expot_temp.size(); ii++ ) |
| 853 |
+ |
excludedPot += expot_temp[ii]; |
| 854 |
+ |
|
| 855 |
+ |
if (storageLayout_ & DataStorage::dslParticlePot) { |
| 856 |
+ |
// This is the pairwise contribution to the particle pot. The |
| 857 |
+ |
// embedding contribution is added in each of the low level |
| 858 |
+ |
// non-bonded routines. In single processor, this is done in |
| 859 |
+ |
// unpackInteractionData, not in collectData. |
| 860 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
| 861 |
+ |
for (int i = 0; i < nLocal_; i++) { |
| 862 |
+ |
// factor of two is because the total potential terms are divided |
| 863 |
+ |
// by 2 in parallel due to row/ column scatter |
| 864 |
+ |
snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); |
| 865 |
+ |
} |
| 866 |
+ |
} |
| 867 |
+ |
} |
| 868 |
+ |
|
| 869 |
+ |
if (storageLayout_ & DataStorage::dslParticlePot) { |
| 870 |
+ |
int npp = snap_->atomData.particlePot.size(); |
| 871 |
+ |
vector<RealType> ppot_temp(npp, 0.0); |
| 872 |
+ |
|
| 873 |
+ |
// This is the direct or embedding contribution to the particle |
| 874 |
+ |
// pot. |
| 875 |
+ |
|
| 876 |
+ |
AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp); |
| 877 |
+ |
for (int i = 0; i < npp; i++) { |
| 878 |
+ |
snap_->atomData.particlePot[i] += ppot_temp[i]; |
| 879 |
+ |
} |
| 880 |
+ |
|
| 881 |
+ |
fill(ppot_temp.begin(), ppot_temp.end(), 0.0); |
| 882 |
+ |
|
| 883 |
+ |
AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp); |
| 884 |
+ |
for (int i = 0; i < npp; i++) { |
| 885 |
+ |
snap_->atomData.particlePot[i] += ppot_temp[i]; |
| 886 |
+ |
} |
| 887 |
+ |
} |
| 888 |
+ |
|
| 889 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
| 890 |
+ |
RealType ploc1 = pairwisePot[ii]; |
| 891 |
+ |
RealType ploc2 = 0.0; |
| 892 |
+ |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
| 893 |
+ |
pairwisePot[ii] = ploc2; |
| 894 |
+ |
} |
| 895 |
+ |
|
| 896 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
| 897 |
+ |
RealType ploc1 = excludedPot[ii]; |
| 898 |
+ |
RealType ploc2 = 0.0; |
| 899 |
+ |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
| 900 |
+ |
excludedPot[ii] = ploc2; |
| 901 |
+ |
} |
| 902 |
+ |
|
| 903 |
+ |
// Here be dragons. |
| 904 |
+ |
MPI::Intracomm col = colComm.getComm(); |
| 905 |
+ |
|
| 906 |
+ |
col.Allreduce(MPI::IN_PLACE, |
| 907 |
+ |
&snap_->frameData.conductiveHeatFlux[0], 3, |
| 908 |
+ |
MPI::REALTYPE, MPI::SUM); |
| 909 |
+ |
|
| 910 |
+ |
|
| 911 |
|
#endif |
| 912 |
|
|
| 913 |
|
} |
| 914 |
|
|
| 915 |
+ |
/** |
| 916 |
+ |
* Collects information obtained during the post-pair (and embedding |
| 917 |
+ |
* functional) loops onto local data structures. |
| 918 |
+ |
*/ |
| 919 |
+ |
void ForceMatrixDecomposition::collectSelfData() { |
| 920 |
+ |
snap_ = sman_->getCurrentSnapshot(); |
| 921 |
+ |
storageLayout_ = sman_->getStorageLayout(); |
| 922 |
+ |
|
| 923 |
+ |
#ifdef IS_MPI |
| 924 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
| 925 |
+ |
RealType ploc1 = embeddingPot[ii]; |
| 926 |
+ |
RealType ploc2 = 0.0; |
| 927 |
+ |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
| 928 |
+ |
embeddingPot[ii] = ploc2; |
| 929 |
+ |
} |
| 930 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
| 931 |
+ |
RealType ploc1 = excludedSelfPot[ii]; |
| 932 |
+ |
RealType ploc2 = 0.0; |
| 933 |
+ |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
| 934 |
+ |
excludedSelfPot[ii] = ploc2; |
| 935 |
+ |
} |
| 936 |
+ |
#endif |
| 937 |
+ |
|
| 938 |
+ |
} |
| 939 |
+ |
|
| 940 |
+ |
|
| 941 |
+ |
|
| 942 |
|
int ForceMatrixDecomposition::getNAtomsInRow() { |
| 943 |
|
#ifdef IS_MPI |
| 944 |
|
return nAtomsInRow_; |
| 979 |
|
return d; |
| 980 |
|
} |
| 981 |
|
|
| 982 |
+ |
Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ |
| 983 |
+ |
#ifdef IS_MPI |
| 984 |
+ |
return cgColData.velocity[cg2]; |
| 985 |
+ |
#else |
| 986 |
+ |
return snap_->cgData.velocity[cg2]; |
| 987 |
+ |
#endif |
| 988 |
+ |
} |
| 989 |
|
|
| 990 |
+ |
Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ |
| 991 |
+ |
#ifdef IS_MPI |
| 992 |
+ |
return atomColData.velocity[atom2]; |
| 993 |
+ |
#else |
| 994 |
+ |
return snap_->atomData.velocity[atom2]; |
| 995 |
+ |
#endif |
| 996 |
+ |
} |
| 997 |
+ |
|
| 998 |
+ |
|
| 999 |
|
Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ |
| 1000 |
|
|
| 1001 |
|
Vector3d d; |
| 1061 |
|
* We need to exclude some overcounted interactions that result from |
| 1062 |
|
* the parallel decomposition. |
| 1063 |
|
*/ |
| 1064 |
< |
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
| 1064 |
> |
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) { |
| 1065 |
|
int unique_id_1, unique_id_2; |
| 1066 |
< |
|
| 1066 |
> |
|
| 1067 |
|
#ifdef IS_MPI |
| 1068 |
|
// in MPI, we have to look up the unique IDs for each atom |
| 1069 |
|
unique_id_1 = AtomRowToGlobal[atom1]; |
| 1070 |
|
unique_id_2 = AtomColToGlobal[atom2]; |
| 1071 |
+ |
// group1 = cgRowToGlobal[cg1]; |
| 1072 |
+ |
// group2 = cgColToGlobal[cg2]; |
| 1073 |
+ |
#else |
| 1074 |
+ |
unique_id_1 = AtomLocalToGlobal[atom1]; |
| 1075 |
+ |
unique_id_2 = AtomLocalToGlobal[atom2]; |
| 1076 |
+ |
int group1 = cgLocalToGlobal[cg1]; |
| 1077 |
+ |
int group2 = cgLocalToGlobal[cg2]; |
| 1078 |
+ |
#endif |
| 1079 |
|
|
| 783 |
– |
// this situation should only arise in MPI simulations |
| 1080 |
|
if (unique_id_1 == unique_id_2) return true; |
| 1081 |
< |
|
| 1081 |
> |
|
| 1082 |
> |
#ifdef IS_MPI |
| 1083 |
|
// this prevents us from doing the pair on multiple processors |
| 1084 |
|
if (unique_id_1 < unique_id_2) { |
| 1085 |
|
if ((unique_id_1 + unique_id_2) % 2 == 0) return true; |
| 1086 |
|
} else { |
| 1087 |
< |
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
| 1087 |
> |
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
| 1088 |
|
} |
| 1089 |
+ |
#endif |
| 1090 |
+ |
|
| 1091 |
+ |
#ifndef IS_MPI |
| 1092 |
+ |
if (group1 == group2) { |
| 1093 |
+ |
if (unique_id_1 < unique_id_2) return true; |
| 1094 |
+ |
} |
| 1095 |
|
#endif |
| 1096 |
+ |
|
| 1097 |
|
return false; |
| 1098 |
|
} |
| 1099 |
|
|
| 1107 |
|
* field) must still be handled for these pairs. |
| 1108 |
|
*/ |
| 1109 |
|
bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { |
| 1110 |
< |
int unique_id_2; |
| 1110 |
> |
|
| 1111 |
> |
// excludesForAtom was constructed to use row/column indices in the MPI |
| 1112 |
> |
// version, and to use local IDs in the non-MPI version: |
| 1113 |
|
|
| 808 |
– |
#ifdef IS_MPI |
| 809 |
– |
// in MPI, we have to look up the unique IDs for the row atom. |
| 810 |
– |
unique_id_2 = AtomColToGlobal[atom2]; |
| 811 |
– |
#else |
| 812 |
– |
// in the normal loop, the atom numbers are unique |
| 813 |
– |
unique_id_2 = atom2; |
| 814 |
– |
#endif |
| 815 |
– |
|
| 1114 |
|
for (vector<int>::iterator i = excludesForAtom[atom1].begin(); |
| 1115 |
|
i != excludesForAtom[atom1].end(); ++i) { |
| 1116 |
< |
if ( (*i) == unique_id_2 ) return true; |
| 1116 |
> |
if ( (*i) == atom2 ) return true; |
| 1117 |
|
} |
| 1118 |
|
|
| 1119 |
|
return false; |
| 1152 |
|
idat.A2 = &(atomColData.aMat[atom2]); |
| 1153 |
|
} |
| 1154 |
|
|
| 857 |
– |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
| 858 |
– |
idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
| 859 |
– |
idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
| 860 |
– |
} |
| 861 |
– |
|
| 1155 |
|
if (storageLayout_ & DataStorage::dslTorque) { |
| 1156 |
|
idat.t1 = &(atomRowData.torque[atom1]); |
| 1157 |
|
idat.t2 = &(atomColData.torque[atom2]); |
| 1158 |
|
} |
| 1159 |
|
|
| 1160 |
+ |
if (storageLayout_ & DataStorage::dslDipole) { |
| 1161 |
+ |
idat.dipole1 = &(atomRowData.dipole[atom1]); |
| 1162 |
+ |
idat.dipole2 = &(atomColData.dipole[atom2]); |
| 1163 |
+ |
} |
| 1164 |
+ |
|
| 1165 |
+ |
if (storageLayout_ & DataStorage::dslQuadrupole) { |
| 1166 |
+ |
idat.quadrupole1 = &(atomRowData.quadrupole[atom1]); |
| 1167 |
+ |
idat.quadrupole2 = &(atomColData.quadrupole[atom2]); |
| 1168 |
+ |
} |
| 1169 |
+ |
|
| 1170 |
|
if (storageLayout_ & DataStorage::dslDensity) { |
| 1171 |
|
idat.rho1 = &(atomRowData.density[atom1]); |
| 1172 |
|
idat.rho2 = &(atomColData.density[atom2]); |
| 1192 |
|
idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
| 1193 |
|
} |
| 1194 |
|
|
| 1195 |
< |
#else |
| 1195 |
> |
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
| 1196 |
> |
idat.flucQ1 = &(atomRowData.flucQPos[atom1]); |
| 1197 |
> |
idat.flucQ2 = &(atomColData.flucQPos[atom2]); |
| 1198 |
> |
} |
| 1199 |
|
|
| 1200 |
+ |
#else |
| 1201 |
+ |
|
| 1202 |
|
idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); |
| 895 |
– |
//idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
| 896 |
– |
// ff_->getAtomType(idents[atom2]) ); |
| 1203 |
|
|
| 1204 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
| 1205 |
|
idat.A1 = &(snap_->atomData.aMat[atom1]); |
| 1206 |
|
idat.A2 = &(snap_->atomData.aMat[atom2]); |
| 1207 |
|
} |
| 1208 |
|
|
| 903 |
– |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
| 904 |
– |
idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
| 905 |
– |
idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
| 906 |
– |
} |
| 907 |
– |
|
| 1209 |
|
if (storageLayout_ & DataStorage::dslTorque) { |
| 1210 |
|
idat.t1 = &(snap_->atomData.torque[atom1]); |
| 1211 |
|
idat.t2 = &(snap_->atomData.torque[atom2]); |
| 1212 |
|
} |
| 1213 |
|
|
| 1214 |
+ |
if (storageLayout_ & DataStorage::dslDipole) { |
| 1215 |
+ |
idat.dipole1 = &(snap_->atomData.dipole[atom1]); |
| 1216 |
+ |
idat.dipole2 = &(snap_->atomData.dipole[atom2]); |
| 1217 |
+ |
} |
| 1218 |
+ |
|
| 1219 |
+ |
if (storageLayout_ & DataStorage::dslQuadrupole) { |
| 1220 |
+ |
idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]); |
| 1221 |
+ |
idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]); |
| 1222 |
+ |
} |
| 1223 |
+ |
|
| 1224 |
|
if (storageLayout_ & DataStorage::dslDensity) { |
| 1225 |
|
idat.rho1 = &(snap_->atomData.density[atom1]); |
| 1226 |
|
idat.rho2 = &(snap_->atomData.density[atom2]); |
| 1245 |
|
idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
| 1246 |
|
idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
| 1247 |
|
} |
| 1248 |
+ |
|
| 1249 |
+ |
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
| 1250 |
+ |
idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]); |
| 1251 |
+ |
idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]); |
| 1252 |
+ |
} |
| 1253 |
+ |
|
| 1254 |
|
#endif |
| 1255 |
|
} |
| 1256 |
|
|
| 1257 |
|
|
| 1258 |
|
void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { |
| 1259 |
|
#ifdef IS_MPI |
| 1260 |
< |
pot_row[atom1] += 0.5 * *(idat.pot); |
| 1261 |
< |
pot_col[atom2] += 0.5 * *(idat.pot); |
| 1260 |
> |
pot_row[atom1] += RealType(0.5) * *(idat.pot); |
| 1261 |
> |
pot_col[atom2] += RealType(0.5) * *(idat.pot); |
| 1262 |
> |
expot_row[atom1] += RealType(0.5) * *(idat.excludedPot); |
| 1263 |
> |
expot_col[atom2] += RealType(0.5) * *(idat.excludedPot); |
| 1264 |
|
|
| 1265 |
|
atomRowData.force[atom1] += *(idat.f1); |
| 1266 |
|
atomColData.force[atom2] -= *(idat.f1); |
| 1267 |
+ |
|
| 1268 |
+ |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
| 1269 |
+ |
atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1); |
| 1270 |
+ |
atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2); |
| 1271 |
+ |
} |
| 1272 |
+ |
|
| 1273 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
| 1274 |
+ |
atomRowData.electricField[atom1] += *(idat.eField1); |
| 1275 |
+ |
atomColData.electricField[atom2] += *(idat.eField2); |
| 1276 |
+ |
} |
| 1277 |
+ |
|
| 1278 |
|
#else |
| 1279 |
|
pairwisePot += *(idat.pot); |
| 1280 |
+ |
excludedPot += *(idat.excludedPot); |
| 1281 |
|
|
| 1282 |
|
snap_->atomData.force[atom1] += *(idat.f1); |
| 1283 |
|
snap_->atomData.force[atom2] -= *(idat.f1); |
| 1284 |
+ |
|
| 1285 |
+ |
if (idat.doParticlePot) { |
| 1286 |
+ |
// This is the pairwise contribution to the particle pot. The |
| 1287 |
+ |
// embedding contribution is added in each of the low level |
| 1288 |
+ |
// non-bonded routines. In parallel, this calculation is done |
| 1289 |
+ |
// in collectData, not in unpackInteractionData. |
| 1290 |
+ |
snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw); |
| 1291 |
+ |
snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw); |
| 1292 |
+ |
} |
| 1293 |
+ |
|
| 1294 |
+ |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
| 1295 |
+ |
snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1); |
| 1296 |
+ |
snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2); |
| 1297 |
+ |
} |
| 1298 |
+ |
|
| 1299 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
| 1300 |
+ |
snap_->atomData.electricField[atom1] += *(idat.eField1); |
| 1301 |
+ |
snap_->atomData.electricField[atom2] += *(idat.eField2); |
| 1302 |
+ |
} |
| 1303 |
+ |
|
| 1304 |
|
#endif |
| 1305 |
|
|
| 1306 |
|
} |
| 1325 |
|
#endif |
| 1326 |
|
|
| 1327 |
|
RealType rList_ = (largestRcut_ + skinThickness_); |
| 977 |
– |
RealType rl2 = rList_ * rList_; |
| 1328 |
|
Snapshot* snap_ = sman_->getCurrentSnapshot(); |
| 1329 |
|
Mat3x3d Hmat = snap_->getHmat(); |
| 1330 |
|
Vector3d Hx = Hmat.getColumn(0); |
| 1368 |
|
for (int j = 0; j < 3; j++) { |
| 1369 |
|
scaled[j] -= roundMe(scaled[j]); |
| 1370 |
|
scaled[j] += 0.5; |
| 1371 |
+ |
// Handle the special case when an object is exactly on the |
| 1372 |
+ |
// boundary (a scaled coordinate of 1.0 is the same as |
| 1373 |
+ |
// scaled coordinate of 0.0) |
| 1374 |
+ |
if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
| 1375 |
|
} |
| 1376 |
|
|
| 1377 |
|
// find xyz-indices of cell that cutoffGroup is in. |
| 1385 |
|
// add this cutoff group to the list of groups in this cell; |
| 1386 |
|
cellListRow_[cellIndex].push_back(i); |
| 1387 |
|
} |
| 1034 |
– |
|
| 1388 |
|
for (int i = 0; i < nGroupsInCol_; i++) { |
| 1389 |
|
rs = cgColData.position[i]; |
| 1390 |
|
|
| 1396 |
|
for (int j = 0; j < 3; j++) { |
| 1397 |
|
scaled[j] -= roundMe(scaled[j]); |
| 1398 |
|
scaled[j] += 0.5; |
| 1399 |
+ |
// Handle the special case when an object is exactly on the |
| 1400 |
+ |
// boundary (a scaled coordinate of 1.0 is the same as |
| 1401 |
+ |
// scaled coordinate of 0.0) |
| 1402 |
+ |
if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
| 1403 |
|
} |
| 1404 |
|
|
| 1405 |
|
// find xyz-indices of cell that cutoffGroup is in. |
| 1413 |
|
// add this cutoff group to the list of groups in this cell; |
| 1414 |
|
cellListCol_[cellIndex].push_back(i); |
| 1415 |
|
} |
| 1416 |
+ |
|
| 1417 |
|
#else |
| 1418 |
|
for (int i = 0; i < nGroups_; i++) { |
| 1419 |
|
rs = snap_->cgData.position[i]; |
| 1426 |
|
for (int j = 0; j < 3; j++) { |
| 1427 |
|
scaled[j] -= roundMe(scaled[j]); |
| 1428 |
|
scaled[j] += 0.5; |
| 1429 |
+ |
// Handle the special case when an object is exactly on the |
| 1430 |
+ |
// boundary (a scaled coordinate of 1.0 is the same as |
| 1431 |
+ |
// scaled coordinate of 0.0) |
| 1432 |
+ |
if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
| 1433 |
|
} |
| 1434 |
|
|
| 1435 |
|
// find xyz-indices of cell that cutoffGroup is in. |
| 1438 |
|
whichCell.z() = nCells_.z() * scaled.z(); |
| 1439 |
|
|
| 1440 |
|
// find single index of this cell: |
| 1441 |
< |
cellIndex = Vlinear(whichCell, nCells_); |
| 1441 |
> |
cellIndex = Vlinear(whichCell, nCells_); |
| 1442 |
|
|
| 1443 |
|
// add this cutoff group to the list of groups in this cell; |
| 1444 |
|
cellList_[cellIndex].push_back(i); |
| 1445 |
|
} |
| 1446 |
+ |
|
| 1447 |
|
#endif |
| 1448 |
|
|
| 1449 |
|
for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
| 1456 |
|
os != cellOffsets_.end(); ++os) { |
| 1457 |
|
|
| 1458 |
|
Vector3i m2v = m1v + (*os); |
| 1459 |
< |
|
| 1459 |
> |
|
| 1460 |
> |
|
| 1461 |
|
if (m2v.x() >= nCells_.x()) { |
| 1462 |
|
m2v.x() = 0; |
| 1463 |
|
} else if (m2v.x() < 0) { |
| 1475 |
|
} else if (m2v.z() < 0) { |
| 1476 |
|
m2v.z() = nCells_.z() - 1; |
| 1477 |
|
} |
| 1478 |
< |
|
| 1478 |
> |
|
| 1479 |
|
int m2 = Vlinear (m2v, nCells_); |
| 1480 |
|
|
| 1481 |
|
#ifdef IS_MPI |
| 1484 |
|
for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
| 1485 |
|
j2 != cellListCol_[m2].end(); ++j2) { |
| 1486 |
|
|
| 1487 |
< |
// Always do this if we're in different cells or if |
| 1488 |
< |
// we're in the same cell and the global index of the |
| 1489 |
< |
// j2 cutoff group is less than the j1 cutoff group |
| 1490 |
< |
|
| 1491 |
< |
if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
| 1492 |
< |
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
| 1493 |
< |
snap_->wrapVector(dr); |
| 1494 |
< |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
| 1495 |
< |
if (dr.lengthSquare() < cuts.third) { |
| 1132 |
< |
neighborList.push_back(make_pair((*j1), (*j2))); |
| 1133 |
< |
} |
| 1134 |
< |
} |
| 1487 |
> |
// In parallel, we need to visit *all* pairs of row |
| 1488 |
> |
// & column indicies and will divide labor in the |
| 1489 |
> |
// force evaluation later. |
| 1490 |
> |
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
| 1491 |
> |
snap_->wrapVector(dr); |
| 1492 |
> |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
| 1493 |
> |
if (dr.lengthSquare() < cuts.third) { |
| 1494 |
> |
neighborList.push_back(make_pair((*j1), (*j2))); |
| 1495 |
> |
} |
| 1496 |
|
} |
| 1497 |
|
} |
| 1498 |
|
#else |
| 1138 |
– |
|
| 1499 |
|
for (vector<int>::iterator j1 = cellList_[m1].begin(); |
| 1500 |
|
j1 != cellList_[m1].end(); ++j1) { |
| 1501 |
|
for (vector<int>::iterator j2 = cellList_[m2].begin(); |
| 1502 |
|
j2 != cellList_[m2].end(); ++j2) { |
| 1503 |
< |
|
| 1503 |
> |
|
| 1504 |
|
// Always do this if we're in different cells or if |
| 1505 |
< |
// we're in the same cell and the global index of the |
| 1506 |
< |
// j2 cutoff group is less than the j1 cutoff group |
| 1507 |
< |
|
| 1508 |
< |
if (m2 != m1 || (*j2) < (*j1)) { |
| 1505 |
> |
// we're in the same cell and the global index of |
| 1506 |
> |
// the j2 cutoff group is greater than or equal to |
| 1507 |
> |
// the j1 cutoff group. Note that Rappaport's code |
| 1508 |
> |
// has a "less than" conditional here, but that |
| 1509 |
> |
// deals with atom-by-atom computation. OpenMD |
| 1510 |
> |
// allows atoms within a single cutoff group to |
| 1511 |
> |
// interact with each other. |
| 1512 |
> |
|
| 1513 |
> |
|
| 1514 |
> |
|
| 1515 |
> |
if (m2 != m1 || (*j2) >= (*j1) ) { |
| 1516 |
> |
|
| 1517 |
|
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
| 1518 |
|
snap_->wrapVector(dr); |
| 1519 |
|
cuts = getGroupCutoffs( (*j1), (*j2) ); |
| 1532 |
|
// branch to do all cutoff group pairs |
| 1533 |
|
#ifdef IS_MPI |
| 1534 |
|
for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
| 1535 |
< |
for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
| 1535 |
> |
for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
| 1536 |
|
dr = cgColData.position[j2] - cgRowData.position[j1]; |
| 1537 |
|
snap_->wrapVector(dr); |
| 1538 |
|
cuts = getGroupCutoffs( j1, j2 ); |
| 1540 |
|
neighborList.push_back(make_pair(j1, j2)); |
| 1541 |
|
} |
| 1542 |
|
} |
| 1543 |
< |
} |
| 1543 |
> |
} |
| 1544 |
|
#else |
| 1545 |
< |
for (int j1 = 0; j1 < nGroups_ - 1; j1++) { |
| 1546 |
< |
for (int j2 = j1 + 1; j2 < nGroups_; j2++) { |
| 1545 |
> |
// include all groups here. |
| 1546 |
> |
for (int j1 = 0; j1 < nGroups_; j1++) { |
| 1547 |
> |
// include self group interactions j2 == j1 |
| 1548 |
> |
for (int j2 = j1; j2 < nGroups_; j2++) { |
| 1549 |
|
dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
| 1550 |
|
snap_->wrapVector(dr); |
| 1551 |
|
cuts = getGroupCutoffs( j1, j2 ); |
| 1552 |
|
if (dr.lengthSquare() < cuts.third) { |
| 1553 |
|
neighborList.push_back(make_pair(j1, j2)); |
| 1554 |
|
} |
| 1555 |
< |
} |
| 1556 |
< |
} |
| 1555 |
> |
} |
| 1556 |
> |
} |
| 1557 |
|
#endif |
| 1558 |
|
} |
| 1559 |
|
|