ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/parallel/ForceMatrixDecomposition.cpp
(Generate patch)

Comparing branches/development/src/parallel/ForceMatrixDecomposition.cpp (file contents):
Revision 1713 by gezelter, Sat May 19 14:21:02 2012 UTC vs.
Revision 1803 by gezelter, Wed Oct 3 14:20:07 2012 UTC

# Line 95 | Line 95 | namespace OpenMD {
95      storageLayout_ = sman_->getStorageLayout();
96      ff_ = info_->getForceField();
97      nLocal_ = snap_->getNumberOfAtoms();
98 <    
98 >  
99      nGroups_ = info_->getNLocalCutoffGroups();
100      // gather the information for atomtype IDs (atids):
101      idents = info_->getIdentArray();
# Line 109 | Line 109 | namespace OpenMD {
109      PairList* oneTwo = info_->getOneTwoInteractions();
110      PairList* oneThree = info_->getOneThreeInteractions();
111      PairList* oneFour = info_->getOneFourInteractions();
112 <
112 >    
113 >    if (needVelocities_)
114 >      snap_->cgData.setStorageLayout(DataStorage::dslPosition |
115 >                                     DataStorage::dslVelocity);
116 >    else
117 >      snap_->cgData.setStorageLayout(DataStorage::dslPosition);
118 >    
119   #ifdef IS_MPI
120  
121      MPI::Intracomm row = rowComm.getComm();
# Line 145 | Line 151 | namespace OpenMD {
151      cgRowData.resize(nGroupsInRow_);
152      cgRowData.setStorageLayout(DataStorage::dslPosition);
153      cgColData.resize(nGroupsInCol_);
154 <    cgColData.setStorageLayout(DataStorage::dslPosition);
155 <        
154 >    if (needVelocities_)
155 >      // we only need column velocities if we need them.
156 >      cgColData.setStorageLayout(DataStorage::dslPosition |
157 >                                 DataStorage::dslVelocity);
158 >    else    
159 >      cgColData.setStorageLayout(DataStorage::dslPosition);
160 >      
161      identsRow.resize(nAtomsInRow_);
162      identsCol.resize(nAtomsInCol_);
163      
# Line 164 | Line 175 | namespace OpenMD {
175  
176      pot_row.resize(nAtomsInRow_);
177      pot_col.resize(nAtomsInCol_);
178 +
179 +    expot_row.resize(nAtomsInRow_);
180 +    expot_col.resize(nAtomsInCol_);
181  
182      AtomRowToGlobal.resize(nAtomsInRow_);
183      AtomColToGlobal.resize(nAtomsInCol_);
# Line 296 | Line 310 | namespace OpenMD {
310      
311      RealType tol = 1e-6;
312      largestRcut_ = 0.0;
299    RealType rc;
313      int atid;
314      set<AtomType*> atypes = info_->getSimulatedAtomTypes();
315      
# Line 381 | Line 394 | namespace OpenMD {
394        }
395        
396        bool gTypeFound = false;
397 <      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
397 >      for (unsigned int gt = 0; gt < gTypeCutoffs.size(); gt++) {
398          if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
399            groupToGtype[cg1] = gt;
400            gTypeFound = true;
# Line 406 | Line 419 | namespace OpenMD {
419      
420      RealType tradRcut = groupMax;
421  
422 <    for (int i = 0; i < gTypeCutoffs.size();  i++) {
423 <      for (int j = 0; j < gTypeCutoffs.size();  j++) {      
422 >    for (unsigned int i = 0; i < gTypeCutoffs.size();  i++) {
423 >      for (unsigned int j = 0; j < gTypeCutoffs.size();  j++) {      
424          RealType thisRcut;
425          switch(cutoffPolicy_) {
426          case TRADITIONAL:
# Line 450 | Line 463 | namespace OpenMD {
463      }
464    }
465  
453
466    groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
467      int i, j;  
468   #ifdef IS_MPI
# Line 464 | Line 476 | namespace OpenMD {
476    }
477  
478    int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
479 <    for (int j = 0; j < toposForAtom[atom1].size(); j++) {
479 >    for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) {
480        if (toposForAtom[atom1][j] == atom2)
481          return topoDist[atom1][j];
482      }
# Line 474 | Line 486 | namespace OpenMD {
486    void ForceMatrixDecomposition::zeroWorkArrays() {
487      pairwisePot = 0.0;
488      embeddingPot = 0.0;
489 +    excludedPot = 0.0;
490 +    excludedSelfPot = 0.0;
491  
492   #ifdef IS_MPI
493      if (storageLayout_ & DataStorage::dslForce) {
# Line 490 | Line 504 | namespace OpenMD {
504           Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
505  
506      fill(pot_col.begin(), pot_col.end(),
507 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
508 +
509 +    fill(expot_row.begin(), expot_row.end(),
510 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
511 +
512 +    fill(expot_col.begin(), expot_col.end(),
513           Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
514  
515      if (storageLayout_ & DataStorage::dslParticlePot) {    
# Line 525 | Line 545 | namespace OpenMD {
545             atomColData.skippedCharge.end(), 0.0);
546      }
547  
548 +    if (storageLayout_ & DataStorage::dslFlucQForce) {      
549 +      fill(atomRowData.flucQFrc.begin(),
550 +           atomRowData.flucQFrc.end(), 0.0);
551 +      fill(atomColData.flucQFrc.begin(),
552 +           atomColData.flucQFrc.end(), 0.0);
553 +    }
554 +
555      if (storageLayout_ & DataStorage::dslElectricField) {    
556        fill(atomRowData.electricField.begin(),
557             atomRowData.electricField.end(), V3Zero);
558        fill(atomColData.electricField.begin(),
559             atomColData.electricField.end(), V3Zero);
560      }
534    if (storageLayout_ & DataStorage::dslFlucQForce) {    
535      fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(),
536           0.0);
537      fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(),
538           0.0);
539    }
561  
562   #endif
563      // even in parallel, we need to zero out the local arrays:
# Line 592 | Line 613 | namespace OpenMD {
613      cgPlanVectorColumn->gather(snap_->cgData.position,
614                                 cgColData.position);
615  
616 +
617 +
618 +    if (needVelocities_) {
619 +      // gather up the atomic velocities
620 +      AtomPlanVectorColumn->gather(snap_->atomData.velocity,
621 +                                   atomColData.velocity);
622 +      
623 +      cgPlanVectorColumn->gather(snap_->cgData.velocity,
624 +                                 cgColData.velocity);
625 +    }
626 +
627      
628      // if needed, gather the atomic rotation matrices
629      if (storageLayout_ & DataStorage::dslAmat) {
# Line 600 | Line 632 | namespace OpenMD {
632        AtomPlanMatrixColumn->gather(snap_->atomData.aMat,
633                                     atomColData.aMat);
634      }
635 <    
636 <    // if needed, gather the atomic eletrostatic frames
637 <    if (storageLayout_ & DataStorage::dslElectroFrame) {
638 <      AtomPlanMatrixRow->gather(snap_->atomData.electroFrame,
639 <                                atomRowData.electroFrame);
640 <      AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame,
641 <                                   atomColData.electroFrame);
635 >
636 >    // if needed, gather the atomic eletrostatic information
637 >    if (storageLayout_ & DataStorage::dslDipole) {
638 >      AtomPlanVectorRow->gather(snap_->atomData.dipole,
639 >                                atomRowData.dipole);
640 >      AtomPlanVectorColumn->gather(snap_->atomData.dipole,
641 >                                   atomColData.dipole);
642      }
643  
644 +    if (storageLayout_ & DataStorage::dslQuadrupole) {
645 +      AtomPlanMatrixRow->gather(snap_->atomData.quadrupole,
646 +                                atomRowData.quadrupole);
647 +      AtomPlanMatrixColumn->gather(snap_->atomData.quadrupole,
648 +                                   atomColData.quadrupole);
649 +    }
650 +        
651      // if needed, gather the atomic fluctuating charge values
652      if (storageLayout_ & DataStorage::dslFlucQPosition) {
653        AtomPlanRealRow->gather(snap_->atomData.flucQPos,
# Line 647 | Line 686 | namespace OpenMD {
686        
687        int n = snap_->atomData.electricField.size();
688        vector<Vector3d> field_tmp(n, V3Zero);
689 <      AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp);
689 >      AtomPlanVectorColumn->scatter(atomColData.electricField,
690 >                                    field_tmp);
691        for (int i = 0; i < n; i++)
692          snap_->atomData.electricField[i] += field_tmp[i];
693      }
# Line 751 | Line 791 | namespace OpenMD {
791  
792      vector<potVec> pot_temp(nLocal_,
793                              Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
794 +    vector<potVec> expot_temp(nLocal_,
795 +                              Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
796  
797      // scatter/gather pot_row into the members of my column
798            
799      AtomPlanPotRow->scatter(pot_row, pot_temp);
800 +    AtomPlanPotRow->scatter(expot_row, expot_temp);
801  
802 <    for (int ii = 0;  ii < pot_temp.size(); ii++ )
802 >    for (int ii = 0;  ii < pot_temp.size(); ii++ )
803        pairwisePot += pot_temp[ii];
804 <    
804 >
805 >    for (int ii = 0;  ii < expot_temp.size(); ii++ )
806 >      excludedPot += expot_temp[ii];
807 >        
808 >    if (storageLayout_ & DataStorage::dslParticlePot) {
809 >      // This is the pairwise contribution to the particle pot.  The
810 >      // embedding contribution is added in each of the low level
811 >      // non-bonded routines.  In single processor, this is done in
812 >      // unpackInteractionData, not in collectData.
813 >      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
814 >        for (int i = 0; i < nLocal_; i++) {
815 >          // factor of two is because the total potential terms are divided
816 >          // by 2 in parallel due to row/ column scatter      
817 >          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
818 >        }
819 >      }
820 >    }
821 >
822      fill(pot_temp.begin(), pot_temp.end(),
823           Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
824 +    fill(expot_temp.begin(), expot_temp.end(),
825 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
826        
827      AtomPlanPotColumn->scatter(pot_col, pot_temp);    
828 +    AtomPlanPotColumn->scatter(expot_col, expot_temp);    
829      
830      for (int ii = 0;  ii < pot_temp.size(); ii++ )
831        pairwisePot += pot_temp[ii];    
832 +
833 +    for (int ii = 0;  ii < expot_temp.size(); ii++ )
834 +      excludedPot += expot_temp[ii];    
835 +
836 +    if (storageLayout_ & DataStorage::dslParticlePot) {
837 +      // This is the pairwise contribution to the particle pot.  The
838 +      // embedding contribution is added in each of the low level
839 +      // non-bonded routines.  In single processor, this is done in
840 +      // unpackInteractionData, not in collectData.
841 +      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
842 +        for (int i = 0; i < nLocal_; i++) {
843 +          // factor of two is because the total potential terms are divided
844 +          // by 2 in parallel due to row/ column scatter      
845 +          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
846 +        }
847 +      }
848 +    }
849      
850 +    if (storageLayout_ & DataStorage::dslParticlePot) {
851 +      int npp = snap_->atomData.particlePot.size();
852 +      vector<RealType> ppot_temp(npp, 0.0);
853 +
854 +      // This is the direct or embedding contribution to the particle
855 +      // pot.
856 +      
857 +      AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp);
858 +      for (int i = 0; i < npp; i++) {
859 +        snap_->atomData.particlePot[i] += ppot_temp[i];
860 +      }
861 +
862 +      fill(ppot_temp.begin(), ppot_temp.end(), 0.0);
863 +      
864 +      AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp);
865 +      for (int i = 0; i < npp; i++) {
866 +        snap_->atomData.particlePot[i] += ppot_temp[i];
867 +      }
868 +    }
869 +
870      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
871        RealType ploc1 = pairwisePot[ii];
872        RealType ploc2 = 0.0;
# Line 775 | Line 875 | namespace OpenMD {
875      }
876  
877      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
878 <      RealType ploc1 = embeddingPot[ii];
878 >      RealType ploc1 = excludedPot[ii];
879        RealType ploc2 = 0.0;
880        MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
881 <      embeddingPot[ii] = ploc2;
881 >      excludedPot[ii] = ploc2;
882      }
883  
884 +    // Here be dragons.
885 +    MPI::Intracomm col = colComm.getComm();
886 +
887 +    col.Allreduce(MPI::IN_PLACE,
888 +                  &snap_->frameData.conductiveHeatFlux[0], 3,
889 +                  MPI::REALTYPE, MPI::SUM);
890 +
891 +
892   #endif
893  
894    }
895  
896 +  /**
897 +   * Collects information obtained during the post-pair (and embedding
898 +   * functional) loops onto local data structures.
899 +   */
900 +  void ForceMatrixDecomposition::collectSelfData() {
901 +    snap_ = sman_->getCurrentSnapshot();
902 +    storageLayout_ = sman_->getStorageLayout();
903 +
904 + #ifdef IS_MPI
905 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
906 +      RealType ploc1 = embeddingPot[ii];
907 +      RealType ploc2 = 0.0;
908 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
909 +      embeddingPot[ii] = ploc2;
910 +    }    
911 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
912 +      RealType ploc1 = excludedSelfPot[ii];
913 +      RealType ploc2 = 0.0;
914 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
915 +      excludedSelfPot[ii] = ploc2;
916 +    }    
917 + #endif
918 +    
919 +  }
920 +
921 +
922 +
923    int ForceMatrixDecomposition::getNAtomsInRow() {  
924   #ifdef IS_MPI
925      return nAtomsInRow_;
# Line 825 | Line 960 | namespace OpenMD {
960      return d;    
961    }
962  
963 +  Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){
964 + #ifdef IS_MPI
965 +    return cgColData.velocity[cg2];
966 + #else
967 +    return snap_->cgData.velocity[cg2];
968 + #endif
969 +  }
970  
971 +  Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){
972 + #ifdef IS_MPI
973 +    return atomColData.velocity[atom2];
974 + #else
975 +    return snap_->atomData.velocity[atom2];
976 + #endif
977 +  }
978 +
979 +
980    Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
981  
982      Vector3d d;
# Line 891 | Line 1042 | namespace OpenMD {
1042     * We need to exclude some overcounted interactions that result from
1043     * the parallel decomposition.
1044     */
1045 <  bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) {
1045 >  bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) {
1046      int unique_id_1, unique_id_2;
1047          
1048   #ifdef IS_MPI
1049      // in MPI, we have to look up the unique IDs for each atom
1050      unique_id_1 = AtomRowToGlobal[atom1];
1051      unique_id_2 = AtomColToGlobal[atom2];
1052 +    // group1 = cgRowToGlobal[cg1];
1053 +    // group2 = cgColToGlobal[cg2];
1054   #else
1055      unique_id_1 = AtomLocalToGlobal[atom1];
1056      unique_id_2 = AtomLocalToGlobal[atom2];
1057 +    int group1 = cgLocalToGlobal[cg1];
1058 +    int group2 = cgLocalToGlobal[cg2];
1059   #endif  
1060  
1061      if (unique_id_1 == unique_id_2) return true;
# Line 912 | Line 1067 | namespace OpenMD {
1067      } else {
1068        if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
1069      }
1070 + #endif    
1071 +
1072 + #ifndef IS_MPI
1073 +    if (group1 == group2) {
1074 +      if (unique_id_1 < unique_id_2) return true;
1075 +    }
1076   #endif
1077      
1078      return false;
# Line 972 | Line 1133 | namespace OpenMD {
1133        idat.A2 = &(atomColData.aMat[atom2]);
1134      }
1135      
975    if (storageLayout_ & DataStorage::dslElectroFrame) {
976      idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
977      idat.eFrame2 = &(atomColData.electroFrame[atom2]);
978    }
979
1136      if (storageLayout_ & DataStorage::dslTorque) {
1137        idat.t1 = &(atomRowData.torque[atom1]);
1138        idat.t2 = &(atomColData.torque[atom2]);
1139      }
1140  
1141 +    if (storageLayout_ & DataStorage::dslDipole) {
1142 +      idat.dipole1 = &(atomRowData.dipole[atom1]);
1143 +      idat.dipole2 = &(atomColData.dipole[atom2]);
1144 +    }
1145 +
1146 +    if (storageLayout_ & DataStorage::dslQuadrupole) {
1147 +      idat.quadrupole1 = &(atomRowData.quadrupole[atom1]);
1148 +      idat.quadrupole2 = &(atomColData.quadrupole[atom2]);
1149 +    }
1150 +
1151      if (storageLayout_ & DataStorage::dslDensity) {
1152        idat.rho1 = &(atomRowData.density[atom1]);
1153        idat.rho2 = &(atomColData.density[atom2]);
# Line 1007 | Line 1173 | namespace OpenMD {
1173        idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
1174      }
1175  
1176 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1177 +      idat.flucQ1 = &(atomRowData.flucQPos[atom1]);
1178 +      idat.flucQ2 = &(atomColData.flucQPos[atom2]);
1179 +    }
1180 +
1181   #else
1182      
1012
1013    // cerr << "atoms = " << atom1 << " " << atom2 << "\n";
1014    // cerr << "pos1 = " << snap_->atomData.position[atom1] << "\n";
1015    // cerr << "pos2 = " << snap_->atomData.position[atom2] << "\n";
1016
1183      idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]);
1018    //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]),
1019    //                         ff_->getAtomType(idents[atom2]) );
1184  
1185      if (storageLayout_ & DataStorage::dslAmat) {
1186        idat.A1 = &(snap_->atomData.aMat[atom1]);
1187        idat.A2 = &(snap_->atomData.aMat[atom2]);
1188      }
1189  
1026    if (storageLayout_ & DataStorage::dslElectroFrame) {
1027      idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
1028      idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
1029    }
1030
1190      if (storageLayout_ & DataStorage::dslTorque) {
1191        idat.t1 = &(snap_->atomData.torque[atom1]);
1192        idat.t2 = &(snap_->atomData.torque[atom2]);
1193      }
1194  
1195 +    if (storageLayout_ & DataStorage::dslDipole) {
1196 +      idat.dipole1 = &(snap_->atomData.dipole[atom1]);
1197 +      idat.dipole2 = &(snap_->atomData.dipole[atom2]);
1198 +    }
1199 +
1200 +    if (storageLayout_ & DataStorage::dslQuadrupole) {
1201 +      idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]);
1202 +      idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]);
1203 +    }
1204 +
1205      if (storageLayout_ & DataStorage::dslDensity) {    
1206        idat.rho1 = &(snap_->atomData.density[atom1]);
1207        idat.rho2 = &(snap_->atomData.density[atom2]);
# Line 1057 | Line 1226 | namespace OpenMD {
1226        idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
1227        idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1228      }
1229 +
1230 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1231 +      idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]);
1232 +      idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]);
1233 +    }
1234 +
1235   #endif
1236    }
1237  
# Line 1065 | Line 1240 | namespace OpenMD {
1240   #ifdef IS_MPI
1241      pot_row[atom1] += RealType(0.5) *  *(idat.pot);
1242      pot_col[atom2] += RealType(0.5) *  *(idat.pot);
1243 +    expot_row[atom1] += RealType(0.5) *  *(idat.excludedPot);
1244 +    expot_col[atom2] += RealType(0.5) *  *(idat.excludedPot);
1245  
1246      atomRowData.force[atom1] += *(idat.f1);
1247      atomColData.force[atom2] -= *(idat.f1);
1248  
1249 <    // should particle pot be done here also?
1249 >    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1250 >      atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1251 >      atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1252 >    }
1253 >
1254 >    if (storageLayout_ & DataStorage::dslElectricField) {              
1255 >      atomRowData.electricField[atom1] += *(idat.eField1);
1256 >      atomColData.electricField[atom2] += *(idat.eField2);
1257 >    }
1258 >
1259   #else
1260      pairwisePot += *(idat.pot);
1261 +    excludedPot += *(idat.excludedPot);
1262  
1263      snap_->atomData.force[atom1] += *(idat.f1);
1264      snap_->atomData.force[atom2] -= *(idat.f1);
1265  
1266      if (idat.doParticlePot) {
1267 +      // This is the pairwise contribution to the particle pot.  The
1268 +      // embedding contribution is added in each of the low level
1269 +      // non-bonded routines.  In parallel, this calculation is done
1270 +      // in collectData, not in unpackInteractionData.
1271        snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw);
1272 <      snap_->atomData.particlePot[atom2] -= *(idat.vpair) * *(idat.sw);
1272 >      snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw);
1273      }
1274 <      
1274 >    
1275 >    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1276 >      snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1277 >      snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1278 >    }
1279 >
1280 >    if (storageLayout_ & DataStorage::dslElectricField) {              
1281 >      snap_->atomData.electricField[atom1] += *(idat.eField1);
1282 >      snap_->atomData.electricField[atom2] += *(idat.eField2);
1283 >    }
1284 >
1285   #endif
1286      
1287    }
# Line 1149 | Line 1350 | namespace OpenMD {
1350          for (int j = 0; j < 3; j++) {
1351            scaled[j] -= roundMe(scaled[j]);
1352            scaled[j] += 0.5;
1353 +          // Handle the special case when an object is exactly on the
1354 +          // boundary (a scaled coordinate of 1.0 is the same as
1355 +          // scaled coordinate of 0.0)
1356 +          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1357          }
1358          
1359          // find xyz-indices of cell that cutoffGroup is in.
# Line 1173 | Line 1378 | namespace OpenMD {
1378          for (int j = 0; j < 3; j++) {
1379            scaled[j] -= roundMe(scaled[j]);
1380            scaled[j] += 0.5;
1381 +          // Handle the special case when an object is exactly on the
1382 +          // boundary (a scaled coordinate of 1.0 is the same as
1383 +          // scaled coordinate of 0.0)
1384 +          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1385          }
1386          
1387          // find xyz-indices of cell that cutoffGroup is in.
# Line 1199 | Line 1408 | namespace OpenMD {
1408          for (int j = 0; j < 3; j++) {
1409            scaled[j] -= roundMe(scaled[j]);
1410            scaled[j] += 0.5;
1411 +          // Handle the special case when an object is exactly on the
1412 +          // boundary (a scaled coordinate of 1.0 is the same as
1413 +          // scaled coordinate of 0.0)
1414 +          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1415          }
1416          
1417          // find xyz-indices of cell that cutoffGroup is in.

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines