| 35 |
|
* |
| 36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
| 37 |
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
| 38 |
< |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
| 38 |
> |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
| 39 |
|
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
| 40 |
|
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
| 41 |
|
*/ |
| 175 |
|
|
| 176 |
|
pot_row.resize(nAtomsInRow_); |
| 177 |
|
pot_col.resize(nAtomsInCol_); |
| 178 |
+ |
|
| 179 |
+ |
expot_row.resize(nAtomsInRow_); |
| 180 |
+ |
expot_col.resize(nAtomsInCol_); |
| 181 |
|
|
| 182 |
|
AtomRowToGlobal.resize(nAtomsInRow_); |
| 183 |
|
AtomColToGlobal.resize(nAtomsInCol_); |
| 310 |
|
|
| 311 |
|
RealType tol = 1e-6; |
| 312 |
|
largestRcut_ = 0.0; |
| 310 |
– |
RealType rc; |
| 313 |
|
int atid; |
| 314 |
|
set<AtomType*> atypes = info_->getSimulatedAtomTypes(); |
| 315 |
|
|
| 394 |
|
} |
| 395 |
|
|
| 396 |
|
bool gTypeFound = false; |
| 397 |
< |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
| 397 |
> |
for (unsigned int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
| 398 |
|
if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { |
| 399 |
|
groupToGtype[cg1] = gt; |
| 400 |
|
gTypeFound = true; |
| 419 |
|
|
| 420 |
|
RealType tradRcut = groupMax; |
| 421 |
|
|
| 422 |
< |
for (int i = 0; i < gTypeCutoffs.size(); i++) { |
| 423 |
< |
for (int j = 0; j < gTypeCutoffs.size(); j++) { |
| 422 |
> |
for (unsigned int i = 0; i < gTypeCutoffs.size(); i++) { |
| 423 |
> |
for (unsigned int j = 0; j < gTypeCutoffs.size(); j++) { |
| 424 |
|
RealType thisRcut; |
| 425 |
|
switch(cutoffPolicy_) { |
| 426 |
|
case TRADITIONAL: |
| 463 |
|
} |
| 464 |
|
} |
| 465 |
|
|
| 464 |
– |
|
| 466 |
|
groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { |
| 467 |
|
int i, j; |
| 468 |
|
#ifdef IS_MPI |
| 476 |
|
} |
| 477 |
|
|
| 478 |
|
int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { |
| 479 |
< |
for (int j = 0; j < toposForAtom[atom1].size(); j++) { |
| 479 |
> |
for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) { |
| 480 |
|
if (toposForAtom[atom1][j] == atom2) |
| 481 |
|
return topoDist[atom1][j]; |
| 482 |
|
} |
| 486 |
|
void ForceMatrixDecomposition::zeroWorkArrays() { |
| 487 |
|
pairwisePot = 0.0; |
| 488 |
|
embeddingPot = 0.0; |
| 489 |
+ |
excludedPot = 0.0; |
| 490 |
+ |
excludedSelfPot = 0.0; |
| 491 |
|
|
| 492 |
|
#ifdef IS_MPI |
| 493 |
|
if (storageLayout_ & DataStorage::dslForce) { |
| 504 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
| 505 |
|
|
| 506 |
|
fill(pot_col.begin(), pot_col.end(), |
| 507 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
| 508 |
+ |
|
| 509 |
+ |
fill(expot_row.begin(), expot_row.end(), |
| 510 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
| 511 |
+ |
|
| 512 |
+ |
fill(expot_col.begin(), expot_col.end(), |
| 513 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
| 514 |
|
|
| 515 |
|
if (storageLayout_ & DataStorage::dslParticlePot) { |
| 559 |
|
atomColData.electricField.end(), V3Zero); |
| 560 |
|
} |
| 561 |
|
|
| 553 |
– |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
| 554 |
– |
fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(), |
| 555 |
– |
0.0); |
| 556 |
– |
fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(), |
| 557 |
– |
0.0); |
| 558 |
– |
} |
| 559 |
– |
|
| 562 |
|
#endif |
| 563 |
|
// even in parallel, we need to zero out the local arrays: |
| 564 |
|
|
| 632 |
|
AtomPlanMatrixColumn->gather(snap_->atomData.aMat, |
| 633 |
|
atomColData.aMat); |
| 634 |
|
} |
| 635 |
< |
|
| 636 |
< |
// if needed, gather the atomic eletrostatic frames |
| 637 |
< |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
| 638 |
< |
AtomPlanMatrixRow->gather(snap_->atomData.electroFrame, |
| 639 |
< |
atomRowData.electroFrame); |
| 640 |
< |
AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame, |
| 641 |
< |
atomColData.electroFrame); |
| 635 |
> |
|
| 636 |
> |
// if needed, gather the atomic eletrostatic information |
| 637 |
> |
if (storageLayout_ & DataStorage::dslDipole) { |
| 638 |
> |
AtomPlanVectorRow->gather(snap_->atomData.dipole, |
| 639 |
> |
atomRowData.dipole); |
| 640 |
> |
AtomPlanVectorColumn->gather(snap_->atomData.dipole, |
| 641 |
> |
atomColData.dipole); |
| 642 |
|
} |
| 643 |
|
|
| 644 |
+ |
if (storageLayout_ & DataStorage::dslQuadrupole) { |
| 645 |
+ |
AtomPlanMatrixRow->gather(snap_->atomData.quadrupole, |
| 646 |
+ |
atomRowData.quadrupole); |
| 647 |
+ |
AtomPlanMatrixColumn->gather(snap_->atomData.quadrupole, |
| 648 |
+ |
atomColData.quadrupole); |
| 649 |
+ |
} |
| 650 |
+ |
|
| 651 |
|
// if needed, gather the atomic fluctuating charge values |
| 652 |
|
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
| 653 |
|
AtomPlanRealRow->gather(snap_->atomData.flucQPos, |
| 679 |
|
snap_->atomData.density[i] += rho_tmp[i]; |
| 680 |
|
} |
| 681 |
|
|
| 682 |
+ |
// this isn't necessary if we don't have polarizable atoms, but |
| 683 |
+ |
// we'll leave it here for now. |
| 684 |
|
if (storageLayout_ & DataStorage::dslElectricField) { |
| 685 |
|
|
| 686 |
|
AtomPlanVectorRow->scatter(atomRowData.electricField, |
| 688 |
|
|
| 689 |
|
int n = snap_->atomData.electricField.size(); |
| 690 |
|
vector<Vector3d> field_tmp(n, V3Zero); |
| 691 |
< |
AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp); |
| 691 |
> |
AtomPlanVectorColumn->scatter(atomColData.electricField, |
| 692 |
> |
field_tmp); |
| 693 |
|
for (int i = 0; i < n; i++) |
| 694 |
|
snap_->atomData.electricField[i] += field_tmp[i]; |
| 695 |
|
} |
| 789 |
|
|
| 790 |
|
} |
| 791 |
|
|
| 792 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
| 793 |
+ |
|
| 794 |
+ |
int nef = snap_->atomData.electricField.size(); |
| 795 |
+ |
vector<Vector3d> efield_tmp(nef, V3Zero); |
| 796 |
+ |
|
| 797 |
+ |
AtomPlanVectorRow->scatter(atomRowData.electricField, efield_tmp); |
| 798 |
+ |
for (int i = 0; i < nef; i++) { |
| 799 |
+ |
snap_->atomData.electricField[i] += efield_tmp[i]; |
| 800 |
+ |
efield_tmp[i] = 0.0; |
| 801 |
+ |
} |
| 802 |
+ |
|
| 803 |
+ |
AtomPlanVectorColumn->scatter(atomColData.electricField, efield_tmp); |
| 804 |
+ |
for (int i = 0; i < nef; i++) |
| 805 |
+ |
snap_->atomData.electricField[i] += efield_tmp[i]; |
| 806 |
+ |
} |
| 807 |
+ |
|
| 808 |
+ |
|
| 809 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
| 810 |
|
|
| 811 |
|
vector<potVec> pot_temp(nLocal_, |
| 812 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
| 813 |
+ |
vector<potVec> expot_temp(nLocal_, |
| 814 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
| 815 |
|
|
| 816 |
|
// scatter/gather pot_row into the members of my column |
| 817 |
|
|
| 818 |
|
AtomPlanPotRow->scatter(pot_row, pot_temp); |
| 819 |
+ |
AtomPlanPotRow->scatter(expot_row, expot_temp); |
| 820 |
|
|
| 821 |
< |
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
| 821 |
> |
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
| 822 |
|
pairwisePot += pot_temp[ii]; |
| 823 |
+ |
|
| 824 |
+ |
for (int ii = 0; ii < expot_temp.size(); ii++ ) |
| 825 |
+ |
excludedPot += expot_temp[ii]; |
| 826 |
|
|
| 827 |
|
if (storageLayout_ & DataStorage::dslParticlePot) { |
| 828 |
|
// This is the pairwise contribution to the particle pot. The |
| 840 |
|
|
| 841 |
|
fill(pot_temp.begin(), pot_temp.end(), |
| 842 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
| 843 |
+ |
fill(expot_temp.begin(), expot_temp.end(), |
| 844 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
| 845 |
|
|
| 846 |
|
AtomPlanPotColumn->scatter(pot_col, pot_temp); |
| 847 |
+ |
AtomPlanPotColumn->scatter(expot_col, expot_temp); |
| 848 |
|
|
| 849 |
|
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
| 850 |
|
pairwisePot += pot_temp[ii]; |
| 851 |
|
|
| 852 |
+ |
for (int ii = 0; ii < expot_temp.size(); ii++ ) |
| 853 |
+ |
excludedPot += expot_temp[ii]; |
| 854 |
+ |
|
| 855 |
|
if (storageLayout_ & DataStorage::dslParticlePot) { |
| 856 |
|
// This is the pairwise contribution to the particle pot. The |
| 857 |
|
// embedding contribution is added in each of the low level |
| 894 |
|
} |
| 895 |
|
|
| 896 |
|
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
| 897 |
< |
RealType ploc1 = embeddingPot[ii]; |
| 897 |
> |
RealType ploc1 = excludedPot[ii]; |
| 898 |
|
RealType ploc2 = 0.0; |
| 899 |
|
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
| 900 |
< |
embeddingPot[ii] = ploc2; |
| 900 |
> |
excludedPot[ii] = ploc2; |
| 901 |
|
} |
| 902 |
< |
|
| 902 |
> |
|
| 903 |
|
// Here be dragons. |
| 904 |
|
MPI::Intracomm col = colComm.getComm(); |
| 905 |
|
|
| 912 |
|
|
| 913 |
|
} |
| 914 |
|
|
| 915 |
+ |
/** |
| 916 |
+ |
* Collects information obtained during the post-pair (and embedding |
| 917 |
+ |
* functional) loops onto local data structures. |
| 918 |
+ |
*/ |
| 919 |
+ |
void ForceMatrixDecomposition::collectSelfData() { |
| 920 |
+ |
snap_ = sman_->getCurrentSnapshot(); |
| 921 |
+ |
storageLayout_ = sman_->getStorageLayout(); |
| 922 |
+ |
|
| 923 |
+ |
#ifdef IS_MPI |
| 924 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
| 925 |
+ |
RealType ploc1 = embeddingPot[ii]; |
| 926 |
+ |
RealType ploc2 = 0.0; |
| 927 |
+ |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
| 928 |
+ |
embeddingPot[ii] = ploc2; |
| 929 |
+ |
} |
| 930 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
| 931 |
+ |
RealType ploc1 = excludedSelfPot[ii]; |
| 932 |
+ |
RealType ploc2 = 0.0; |
| 933 |
+ |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
| 934 |
+ |
excludedSelfPot[ii] = ploc2; |
| 935 |
+ |
} |
| 936 |
+ |
#endif |
| 937 |
+ |
|
| 938 |
+ |
} |
| 939 |
+ |
|
| 940 |
+ |
|
| 941 |
+ |
|
| 942 |
|
int ForceMatrixDecomposition::getNAtomsInRow() { |
| 943 |
|
#ifdef IS_MPI |
| 944 |
|
return nAtomsInRow_; |
| 1061 |
|
* We need to exclude some overcounted interactions that result from |
| 1062 |
|
* the parallel decomposition. |
| 1063 |
|
*/ |
| 1064 |
< |
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
| 1064 |
> |
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) { |
| 1065 |
|
int unique_id_1, unique_id_2; |
| 1066 |
|
|
| 1067 |
|
#ifdef IS_MPI |
| 1068 |
|
// in MPI, we have to look up the unique IDs for each atom |
| 1069 |
|
unique_id_1 = AtomRowToGlobal[atom1]; |
| 1070 |
|
unique_id_2 = AtomColToGlobal[atom2]; |
| 1071 |
+ |
// group1 = cgRowToGlobal[cg1]; |
| 1072 |
+ |
// group2 = cgColToGlobal[cg2]; |
| 1073 |
|
#else |
| 1074 |
|
unique_id_1 = AtomLocalToGlobal[atom1]; |
| 1075 |
|
unique_id_2 = AtomLocalToGlobal[atom2]; |
| 1076 |
+ |
int group1 = cgLocalToGlobal[cg1]; |
| 1077 |
+ |
int group2 = cgLocalToGlobal[cg2]; |
| 1078 |
|
#endif |
| 1079 |
|
|
| 1080 |
|
if (unique_id_1 == unique_id_2) return true; |
| 1086 |
|
} else { |
| 1087 |
|
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
| 1088 |
|
} |
| 1089 |
+ |
#endif |
| 1090 |
+ |
|
| 1091 |
+ |
#ifndef IS_MPI |
| 1092 |
+ |
if (group1 == group2) { |
| 1093 |
+ |
if (unique_id_1 < unique_id_2) return true; |
| 1094 |
+ |
} |
| 1095 |
|
#endif |
| 1096 |
|
|
| 1097 |
|
return false; |
| 1152 |
|
idat.A2 = &(atomColData.aMat[atom2]); |
| 1153 |
|
} |
| 1154 |
|
|
| 1077 |
– |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
| 1078 |
– |
idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
| 1079 |
– |
idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
| 1080 |
– |
} |
| 1081 |
– |
|
| 1155 |
|
if (storageLayout_ & DataStorage::dslTorque) { |
| 1156 |
|
idat.t1 = &(atomRowData.torque[atom1]); |
| 1157 |
|
idat.t2 = &(atomColData.torque[atom2]); |
| 1158 |
|
} |
| 1159 |
|
|
| 1160 |
+ |
if (storageLayout_ & DataStorage::dslDipole) { |
| 1161 |
+ |
idat.dipole1 = &(atomRowData.dipole[atom1]); |
| 1162 |
+ |
idat.dipole2 = &(atomColData.dipole[atom2]); |
| 1163 |
+ |
} |
| 1164 |
+ |
|
| 1165 |
+ |
if (storageLayout_ & DataStorage::dslQuadrupole) { |
| 1166 |
+ |
idat.quadrupole1 = &(atomRowData.quadrupole[atom1]); |
| 1167 |
+ |
idat.quadrupole2 = &(atomColData.quadrupole[atom2]); |
| 1168 |
+ |
} |
| 1169 |
+ |
|
| 1170 |
|
if (storageLayout_ & DataStorage::dslDensity) { |
| 1171 |
|
idat.rho1 = &(atomRowData.density[atom1]); |
| 1172 |
|
idat.rho2 = &(atomColData.density[atom2]); |
| 1206 |
|
idat.A2 = &(snap_->atomData.aMat[atom2]); |
| 1207 |
|
} |
| 1208 |
|
|
| 1126 |
– |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
| 1127 |
– |
idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
| 1128 |
– |
idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
| 1129 |
– |
} |
| 1130 |
– |
|
| 1209 |
|
if (storageLayout_ & DataStorage::dslTorque) { |
| 1210 |
|
idat.t1 = &(snap_->atomData.torque[atom1]); |
| 1211 |
|
idat.t2 = &(snap_->atomData.torque[atom2]); |
| 1212 |
|
} |
| 1213 |
|
|
| 1214 |
+ |
if (storageLayout_ & DataStorage::dslDipole) { |
| 1215 |
+ |
idat.dipole1 = &(snap_->atomData.dipole[atom1]); |
| 1216 |
+ |
idat.dipole2 = &(snap_->atomData.dipole[atom2]); |
| 1217 |
+ |
} |
| 1218 |
+ |
|
| 1219 |
+ |
if (storageLayout_ & DataStorage::dslQuadrupole) { |
| 1220 |
+ |
idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]); |
| 1221 |
+ |
idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]); |
| 1222 |
+ |
} |
| 1223 |
+ |
|
| 1224 |
|
if (storageLayout_ & DataStorage::dslDensity) { |
| 1225 |
|
idat.rho1 = &(snap_->atomData.density[atom1]); |
| 1226 |
|
idat.rho2 = &(snap_->atomData.density[atom2]); |
| 1259 |
|
#ifdef IS_MPI |
| 1260 |
|
pot_row[atom1] += RealType(0.5) * *(idat.pot); |
| 1261 |
|
pot_col[atom2] += RealType(0.5) * *(idat.pot); |
| 1262 |
+ |
expot_row[atom1] += RealType(0.5) * *(idat.excludedPot); |
| 1263 |
+ |
expot_col[atom2] += RealType(0.5) * *(idat.excludedPot); |
| 1264 |
|
|
| 1265 |
|
atomRowData.force[atom1] += *(idat.f1); |
| 1266 |
|
atomColData.force[atom2] -= *(idat.f1); |
| 1277 |
|
|
| 1278 |
|
#else |
| 1279 |
|
pairwisePot += *(idat.pot); |
| 1280 |
+ |
excludedPot += *(idat.excludedPot); |
| 1281 |
|
|
| 1282 |
|
snap_->atomData.force[atom1] += *(idat.f1); |
| 1283 |
|
snap_->atomData.force[atom2] -= *(idat.f1); |
| 1325 |
|
#endif |
| 1326 |
|
|
| 1327 |
|
RealType rList_ = (largestRcut_ + skinThickness_); |
| 1237 |
– |
RealType rl2 = rList_ * rList_; |
| 1328 |
|
Snapshot* snap_ = sman_->getCurrentSnapshot(); |
| 1329 |
|
Mat3x3d Hmat = snap_->getHmat(); |
| 1330 |
|
Vector3d Hx = Hmat.getColumn(0); |
| 1368 |
|
for (int j = 0; j < 3; j++) { |
| 1369 |
|
scaled[j] -= roundMe(scaled[j]); |
| 1370 |
|
scaled[j] += 0.5; |
| 1371 |
+ |
// Handle the special case when an object is exactly on the |
| 1372 |
+ |
// boundary (a scaled coordinate of 1.0 is the same as |
| 1373 |
+ |
// scaled coordinate of 0.0) |
| 1374 |
+ |
if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
| 1375 |
|
} |
| 1376 |
|
|
| 1377 |
|
// find xyz-indices of cell that cutoffGroup is in. |
| 1396 |
|
for (int j = 0; j < 3; j++) { |
| 1397 |
|
scaled[j] -= roundMe(scaled[j]); |
| 1398 |
|
scaled[j] += 0.5; |
| 1399 |
+ |
// Handle the special case when an object is exactly on the |
| 1400 |
+ |
// boundary (a scaled coordinate of 1.0 is the same as |
| 1401 |
+ |
// scaled coordinate of 0.0) |
| 1402 |
+ |
if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
| 1403 |
|
} |
| 1404 |
|
|
| 1405 |
|
// find xyz-indices of cell that cutoffGroup is in. |
| 1426 |
|
for (int j = 0; j < 3; j++) { |
| 1427 |
|
scaled[j] -= roundMe(scaled[j]); |
| 1428 |
|
scaled[j] += 0.5; |
| 1429 |
+ |
// Handle the special case when an object is exactly on the |
| 1430 |
+ |
// boundary (a scaled coordinate of 1.0 is the same as |
| 1431 |
+ |
// scaled coordinate of 0.0) |
| 1432 |
+ |
if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
| 1433 |
|
} |
| 1434 |
|
|
| 1435 |
|
// find xyz-indices of cell that cutoffGroup is in. |