35 |
|
* |
36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
< |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
38 |
> |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
|
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
|
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
175 |
|
|
176 |
|
pot_row.resize(nAtomsInRow_); |
177 |
|
pot_col.resize(nAtomsInCol_); |
178 |
+ |
|
179 |
+ |
expot_row.resize(nAtomsInRow_); |
180 |
+ |
expot_col.resize(nAtomsInCol_); |
181 |
|
|
182 |
|
AtomRowToGlobal.resize(nAtomsInRow_); |
183 |
|
AtomColToGlobal.resize(nAtomsInCol_); |
310 |
|
|
311 |
|
RealType tol = 1e-6; |
312 |
|
largestRcut_ = 0.0; |
310 |
– |
RealType rc; |
313 |
|
int atid; |
314 |
|
set<AtomType*> atypes = info_->getSimulatedAtomTypes(); |
315 |
|
|
394 |
|
} |
395 |
|
|
396 |
|
bool gTypeFound = false; |
397 |
< |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
397 |
> |
for (unsigned int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
398 |
|
if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { |
399 |
|
groupToGtype[cg1] = gt; |
400 |
|
gTypeFound = true; |
419 |
|
|
420 |
|
RealType tradRcut = groupMax; |
421 |
|
|
422 |
< |
for (int i = 0; i < gTypeCutoffs.size(); i++) { |
423 |
< |
for (int j = 0; j < gTypeCutoffs.size(); j++) { |
422 |
> |
for (unsigned int i = 0; i < gTypeCutoffs.size(); i++) { |
423 |
> |
for (unsigned int j = 0; j < gTypeCutoffs.size(); j++) { |
424 |
|
RealType thisRcut; |
425 |
|
switch(cutoffPolicy_) { |
426 |
|
case TRADITIONAL: |
463 |
|
} |
464 |
|
} |
465 |
|
|
464 |
– |
|
466 |
|
groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { |
467 |
|
int i, j; |
468 |
|
#ifdef IS_MPI |
476 |
|
} |
477 |
|
|
478 |
|
int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { |
479 |
< |
for (int j = 0; j < toposForAtom[atom1].size(); j++) { |
479 |
> |
for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) { |
480 |
|
if (toposForAtom[atom1][j] == atom2) |
481 |
|
return topoDist[atom1][j]; |
482 |
|
} |
486 |
|
void ForceMatrixDecomposition::zeroWorkArrays() { |
487 |
|
pairwisePot = 0.0; |
488 |
|
embeddingPot = 0.0; |
489 |
+ |
excludedPot = 0.0; |
490 |
+ |
excludedSelfPot = 0.0; |
491 |
|
|
492 |
|
#ifdef IS_MPI |
493 |
|
if (storageLayout_ & DataStorage::dslForce) { |
504 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
505 |
|
|
506 |
|
fill(pot_col.begin(), pot_col.end(), |
507 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
508 |
+ |
|
509 |
+ |
fill(expot_row.begin(), expot_row.end(), |
510 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
511 |
+ |
|
512 |
+ |
fill(expot_col.begin(), expot_col.end(), |
513 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
514 |
|
|
515 |
|
if (storageLayout_ & DataStorage::dslParticlePot) { |
559 |
|
atomColData.electricField.end(), V3Zero); |
560 |
|
} |
561 |
|
|
553 |
– |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
554 |
– |
fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(), |
555 |
– |
0.0); |
556 |
– |
fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(), |
557 |
– |
0.0); |
558 |
– |
} |
559 |
– |
|
562 |
|
#endif |
563 |
|
// even in parallel, we need to zero out the local arrays: |
564 |
|
|
632 |
|
AtomPlanMatrixColumn->gather(snap_->atomData.aMat, |
633 |
|
atomColData.aMat); |
634 |
|
} |
635 |
< |
|
636 |
< |
// if needed, gather the atomic eletrostatic frames |
637 |
< |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
638 |
< |
AtomPlanMatrixRow->gather(snap_->atomData.electroFrame, |
639 |
< |
atomRowData.electroFrame); |
640 |
< |
AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame, |
641 |
< |
atomColData.electroFrame); |
635 |
> |
|
636 |
> |
// if needed, gather the atomic eletrostatic information |
637 |
> |
if (storageLayout_ & DataStorage::dslDipole) { |
638 |
> |
AtomPlanVectorRow->gather(snap_->atomData.dipole, |
639 |
> |
atomRowData.dipole); |
640 |
> |
AtomPlanVectorColumn->gather(snap_->atomData.dipole, |
641 |
> |
atomColData.dipole); |
642 |
|
} |
643 |
|
|
644 |
+ |
if (storageLayout_ & DataStorage::dslQuadrupole) { |
645 |
+ |
AtomPlanMatrixRow->gather(snap_->atomData.quadrupole, |
646 |
+ |
atomRowData.quadrupole); |
647 |
+ |
AtomPlanMatrixColumn->gather(snap_->atomData.quadrupole, |
648 |
+ |
atomColData.quadrupole); |
649 |
+ |
} |
650 |
+ |
|
651 |
|
// if needed, gather the atomic fluctuating charge values |
652 |
|
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
653 |
|
AtomPlanRealRow->gather(snap_->atomData.flucQPos, |
679 |
|
snap_->atomData.density[i] += rho_tmp[i]; |
680 |
|
} |
681 |
|
|
682 |
+ |
// this isn't necessary if we don't have polarizable atoms, but |
683 |
+ |
// we'll leave it here for now. |
684 |
|
if (storageLayout_ & DataStorage::dslElectricField) { |
685 |
|
|
686 |
|
AtomPlanVectorRow->scatter(atomRowData.electricField, |
688 |
|
|
689 |
|
int n = snap_->atomData.electricField.size(); |
690 |
|
vector<Vector3d> field_tmp(n, V3Zero); |
691 |
< |
AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp); |
691 |
> |
AtomPlanVectorColumn->scatter(atomColData.electricField, |
692 |
> |
field_tmp); |
693 |
|
for (int i = 0; i < n; i++) |
694 |
|
snap_->atomData.electricField[i] += field_tmp[i]; |
695 |
|
} |
789 |
|
|
790 |
|
} |
791 |
|
|
792 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
793 |
+ |
|
794 |
+ |
int nef = snap_->atomData.electricField.size(); |
795 |
+ |
vector<Vector3d> efield_tmp(nef, V3Zero); |
796 |
+ |
|
797 |
+ |
AtomPlanVectorRow->scatter(atomRowData.electricField, efield_tmp); |
798 |
+ |
for (int i = 0; i < nef; i++) { |
799 |
+ |
snap_->atomData.electricField[i] += efield_tmp[i]; |
800 |
+ |
efield_tmp[i] = 0.0; |
801 |
+ |
} |
802 |
+ |
|
803 |
+ |
AtomPlanVectorColumn->scatter(atomColData.electricField, efield_tmp); |
804 |
+ |
for (int i = 0; i < nef; i++) |
805 |
+ |
snap_->atomData.electricField[i] += efield_tmp[i]; |
806 |
+ |
} |
807 |
+ |
|
808 |
+ |
|
809 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
810 |
|
|
811 |
|
vector<potVec> pot_temp(nLocal_, |
812 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
813 |
+ |
vector<potVec> expot_temp(nLocal_, |
814 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
815 |
|
|
816 |
|
// scatter/gather pot_row into the members of my column |
817 |
|
|
818 |
|
AtomPlanPotRow->scatter(pot_row, pot_temp); |
819 |
+ |
AtomPlanPotRow->scatter(expot_row, expot_temp); |
820 |
|
|
821 |
< |
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
821 |
> |
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
822 |
|
pairwisePot += pot_temp[ii]; |
823 |
+ |
|
824 |
+ |
for (int ii = 0; ii < expot_temp.size(); ii++ ) |
825 |
+ |
excludedPot += expot_temp[ii]; |
826 |
|
|
827 |
|
if (storageLayout_ & DataStorage::dslParticlePot) { |
828 |
|
// This is the pairwise contribution to the particle pot. The |
840 |
|
|
841 |
|
fill(pot_temp.begin(), pot_temp.end(), |
842 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
843 |
+ |
fill(expot_temp.begin(), expot_temp.end(), |
844 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
845 |
|
|
846 |
|
AtomPlanPotColumn->scatter(pot_col, pot_temp); |
847 |
+ |
AtomPlanPotColumn->scatter(expot_col, expot_temp); |
848 |
|
|
849 |
|
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
850 |
|
pairwisePot += pot_temp[ii]; |
851 |
|
|
852 |
+ |
for (int ii = 0; ii < expot_temp.size(); ii++ ) |
853 |
+ |
excludedPot += expot_temp[ii]; |
854 |
+ |
|
855 |
|
if (storageLayout_ & DataStorage::dslParticlePot) { |
856 |
|
// This is the pairwise contribution to the particle pot. The |
857 |
|
// embedding contribution is added in each of the low level |
894 |
|
} |
895 |
|
|
896 |
|
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
897 |
< |
RealType ploc1 = embeddingPot[ii]; |
897 |
> |
RealType ploc1 = excludedPot[ii]; |
898 |
|
RealType ploc2 = 0.0; |
899 |
|
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
900 |
< |
embeddingPot[ii] = ploc2; |
900 |
> |
excludedPot[ii] = ploc2; |
901 |
|
} |
902 |
< |
|
902 |
> |
|
903 |
|
// Here be dragons. |
904 |
|
MPI::Intracomm col = colComm.getComm(); |
905 |
|
|
912 |
|
|
913 |
|
} |
914 |
|
|
915 |
+ |
/** |
916 |
+ |
* Collects information obtained during the post-pair (and embedding |
917 |
+ |
* functional) loops onto local data structures. |
918 |
+ |
*/ |
919 |
+ |
void ForceMatrixDecomposition::collectSelfData() { |
920 |
+ |
snap_ = sman_->getCurrentSnapshot(); |
921 |
+ |
storageLayout_ = sman_->getStorageLayout(); |
922 |
+ |
|
923 |
+ |
#ifdef IS_MPI |
924 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
925 |
+ |
RealType ploc1 = embeddingPot[ii]; |
926 |
+ |
RealType ploc2 = 0.0; |
927 |
+ |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
928 |
+ |
embeddingPot[ii] = ploc2; |
929 |
+ |
} |
930 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
931 |
+ |
RealType ploc1 = excludedSelfPot[ii]; |
932 |
+ |
RealType ploc2 = 0.0; |
933 |
+ |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
934 |
+ |
excludedSelfPot[ii] = ploc2; |
935 |
+ |
} |
936 |
+ |
#endif |
937 |
+ |
|
938 |
+ |
} |
939 |
+ |
|
940 |
+ |
|
941 |
+ |
|
942 |
|
int ForceMatrixDecomposition::getNAtomsInRow() { |
943 |
|
#ifdef IS_MPI |
944 |
|
return nAtomsInRow_; |
1061 |
|
* We need to exclude some overcounted interactions that result from |
1062 |
|
* the parallel decomposition. |
1063 |
|
*/ |
1064 |
< |
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
1064 |
> |
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) { |
1065 |
|
int unique_id_1, unique_id_2; |
1066 |
|
|
1067 |
|
#ifdef IS_MPI |
1068 |
|
// in MPI, we have to look up the unique IDs for each atom |
1069 |
|
unique_id_1 = AtomRowToGlobal[atom1]; |
1070 |
|
unique_id_2 = AtomColToGlobal[atom2]; |
1071 |
+ |
// group1 = cgRowToGlobal[cg1]; |
1072 |
+ |
// group2 = cgColToGlobal[cg2]; |
1073 |
|
#else |
1074 |
|
unique_id_1 = AtomLocalToGlobal[atom1]; |
1075 |
|
unique_id_2 = AtomLocalToGlobal[atom2]; |
1076 |
+ |
int group1 = cgLocalToGlobal[cg1]; |
1077 |
+ |
int group2 = cgLocalToGlobal[cg2]; |
1078 |
|
#endif |
1079 |
|
|
1080 |
|
if (unique_id_1 == unique_id_2) return true; |
1086 |
|
} else { |
1087 |
|
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
1088 |
|
} |
1089 |
+ |
#endif |
1090 |
+ |
|
1091 |
+ |
#ifndef IS_MPI |
1092 |
+ |
if (group1 == group2) { |
1093 |
+ |
if (unique_id_1 < unique_id_2) return true; |
1094 |
+ |
} |
1095 |
|
#endif |
1096 |
|
|
1097 |
|
return false; |
1152 |
|
idat.A2 = &(atomColData.aMat[atom2]); |
1153 |
|
} |
1154 |
|
|
1077 |
– |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
1078 |
– |
idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
1079 |
– |
idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
1080 |
– |
} |
1081 |
– |
|
1155 |
|
if (storageLayout_ & DataStorage::dslTorque) { |
1156 |
|
idat.t1 = &(atomRowData.torque[atom1]); |
1157 |
|
idat.t2 = &(atomColData.torque[atom2]); |
1158 |
|
} |
1159 |
|
|
1160 |
+ |
if (storageLayout_ & DataStorage::dslDipole) { |
1161 |
+ |
idat.dipole1 = &(atomRowData.dipole[atom1]); |
1162 |
+ |
idat.dipole2 = &(atomColData.dipole[atom2]); |
1163 |
+ |
} |
1164 |
+ |
|
1165 |
+ |
if (storageLayout_ & DataStorage::dslQuadrupole) { |
1166 |
+ |
idat.quadrupole1 = &(atomRowData.quadrupole[atom1]); |
1167 |
+ |
idat.quadrupole2 = &(atomColData.quadrupole[atom2]); |
1168 |
+ |
} |
1169 |
+ |
|
1170 |
|
if (storageLayout_ & DataStorage::dslDensity) { |
1171 |
|
idat.rho1 = &(atomRowData.density[atom1]); |
1172 |
|
idat.rho2 = &(atomColData.density[atom2]); |
1206 |
|
idat.A2 = &(snap_->atomData.aMat[atom2]); |
1207 |
|
} |
1208 |
|
|
1126 |
– |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
1127 |
– |
idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
1128 |
– |
idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
1129 |
– |
} |
1130 |
– |
|
1209 |
|
if (storageLayout_ & DataStorage::dslTorque) { |
1210 |
|
idat.t1 = &(snap_->atomData.torque[atom1]); |
1211 |
|
idat.t2 = &(snap_->atomData.torque[atom2]); |
1212 |
|
} |
1213 |
|
|
1214 |
+ |
if (storageLayout_ & DataStorage::dslDipole) { |
1215 |
+ |
idat.dipole1 = &(snap_->atomData.dipole[atom1]); |
1216 |
+ |
idat.dipole2 = &(snap_->atomData.dipole[atom2]); |
1217 |
+ |
} |
1218 |
+ |
|
1219 |
+ |
if (storageLayout_ & DataStorage::dslQuadrupole) { |
1220 |
+ |
idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]); |
1221 |
+ |
idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]); |
1222 |
+ |
} |
1223 |
+ |
|
1224 |
|
if (storageLayout_ & DataStorage::dslDensity) { |
1225 |
|
idat.rho1 = &(snap_->atomData.density[atom1]); |
1226 |
|
idat.rho2 = &(snap_->atomData.density[atom2]); |
1259 |
|
#ifdef IS_MPI |
1260 |
|
pot_row[atom1] += RealType(0.5) * *(idat.pot); |
1261 |
|
pot_col[atom2] += RealType(0.5) * *(idat.pot); |
1262 |
+ |
expot_row[atom1] += RealType(0.5) * *(idat.excludedPot); |
1263 |
+ |
expot_col[atom2] += RealType(0.5) * *(idat.excludedPot); |
1264 |
|
|
1265 |
|
atomRowData.force[atom1] += *(idat.f1); |
1266 |
|
atomColData.force[atom2] -= *(idat.f1); |
1277 |
|
|
1278 |
|
#else |
1279 |
|
pairwisePot += *(idat.pot); |
1280 |
+ |
excludedPot += *(idat.excludedPot); |
1281 |
|
|
1282 |
|
snap_->atomData.force[atom1] += *(idat.f1); |
1283 |
|
snap_->atomData.force[atom2] -= *(idat.f1); |
1325 |
|
#endif |
1326 |
|
|
1327 |
|
RealType rList_ = (largestRcut_ + skinThickness_); |
1237 |
– |
RealType rl2 = rList_ * rList_; |
1328 |
|
Snapshot* snap_ = sman_->getCurrentSnapshot(); |
1329 |
|
Mat3x3d Hmat = snap_->getHmat(); |
1330 |
|
Vector3d Hx = Hmat.getColumn(0); |
1368 |
|
for (int j = 0; j < 3; j++) { |
1369 |
|
scaled[j] -= roundMe(scaled[j]); |
1370 |
|
scaled[j] += 0.5; |
1371 |
+ |
// Handle the special case when an object is exactly on the |
1372 |
+ |
// boundary (a scaled coordinate of 1.0 is the same as |
1373 |
+ |
// scaled coordinate of 0.0) |
1374 |
+ |
if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
1375 |
|
} |
1376 |
|
|
1377 |
|
// find xyz-indices of cell that cutoffGroup is in. |
1396 |
|
for (int j = 0; j < 3; j++) { |
1397 |
|
scaled[j] -= roundMe(scaled[j]); |
1398 |
|
scaled[j] += 0.5; |
1399 |
+ |
// Handle the special case when an object is exactly on the |
1400 |
+ |
// boundary (a scaled coordinate of 1.0 is the same as |
1401 |
+ |
// scaled coordinate of 0.0) |
1402 |
+ |
if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
1403 |
|
} |
1404 |
|
|
1405 |
|
// find xyz-indices of cell that cutoffGroup is in. |
1426 |
|
for (int j = 0; j < 3; j++) { |
1427 |
|
scaled[j] -= roundMe(scaled[j]); |
1428 |
|
scaled[j] += 0.5; |
1429 |
+ |
// Handle the special case when an object is exactly on the |
1430 |
+ |
// boundary (a scaled coordinate of 1.0 is the same as |
1431 |
+ |
// scaled coordinate of 0.0) |
1432 |
+ |
if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
1433 |
|
} |
1434 |
|
|
1435 |
|
// find xyz-indices of cell that cutoffGroup is in. |