ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/parallel/ForceMatrixDecomposition.cpp
(Generate patch)

Comparing branches/development/src/parallel/ForceMatrixDecomposition.cpp (file contents):
Revision 1761 by gezelter, Fri Jun 22 20:01:37 2012 UTC vs.
Revision 1803 by gezelter, Wed Oct 3 14:20:07 2012 UTC

# Line 310 | Line 310 | namespace OpenMD {
310      
311      RealType tol = 1e-6;
312      largestRcut_ = 0.0;
313    RealType rc;
313      int atid;
314      set<AtomType*> atypes = info_->getSimulatedAtomTypes();
315      
# Line 395 | Line 394 | namespace OpenMD {
394        }
395        
396        bool gTypeFound = false;
397 <      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
397 >      for (unsigned int gt = 0; gt < gTypeCutoffs.size(); gt++) {
398          if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
399            groupToGtype[cg1] = gt;
400            gTypeFound = true;
# Line 420 | Line 419 | namespace OpenMD {
419      
420      RealType tradRcut = groupMax;
421  
422 <    for (int i = 0; i < gTypeCutoffs.size();  i++) {
423 <      for (int j = 0; j < gTypeCutoffs.size();  j++) {      
422 >    for (unsigned int i = 0; i < gTypeCutoffs.size();  i++) {
423 >      for (unsigned int j = 0; j < gTypeCutoffs.size();  j++) {      
424          RealType thisRcut;
425          switch(cutoffPolicy_) {
426          case TRADITIONAL:
# Line 477 | Line 476 | namespace OpenMD {
476    }
477  
478    int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
479 <    for (int j = 0; j < toposForAtom[atom1].size(); j++) {
479 >    for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) {
480        if (toposForAtom[atom1][j] == atom2)
481          return topoDist[atom1][j];
482      }
# Line 560 | Line 559 | namespace OpenMD {
559             atomColData.electricField.end(), V3Zero);
560      }
561  
563    if (storageLayout_ & DataStorage::dslFlucQForce) {    
564      fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(),
565           0.0);
566      fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(),
567           0.0);
568    }
569
562   #endif
563      // even in parallel, we need to zero out the local arrays:
564  
# Line 640 | Line 632 | namespace OpenMD {
632        AtomPlanMatrixColumn->gather(snap_->atomData.aMat,
633                                     atomColData.aMat);
634      }
635 <    
636 <    // if needed, gather the atomic eletrostatic frames
637 <    if (storageLayout_ & DataStorage::dslElectroFrame) {
638 <      AtomPlanMatrixRow->gather(snap_->atomData.electroFrame,
639 <                                atomRowData.electroFrame);
640 <      AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame,
641 <                                   atomColData.electroFrame);
635 >
636 >    // if needed, gather the atomic eletrostatic information
637 >    if (storageLayout_ & DataStorage::dslDipole) {
638 >      AtomPlanVectorRow->gather(snap_->atomData.dipole,
639 >                                atomRowData.dipole);
640 >      AtomPlanVectorColumn->gather(snap_->atomData.dipole,
641 >                                   atomColData.dipole);
642      }
643  
644 +    if (storageLayout_ & DataStorage::dslQuadrupole) {
645 +      AtomPlanMatrixRow->gather(snap_->atomData.quadrupole,
646 +                                atomRowData.quadrupole);
647 +      AtomPlanMatrixColumn->gather(snap_->atomData.quadrupole,
648 +                                   atomColData.quadrupole);
649 +    }
650 +        
651      // if needed, gather the atomic fluctuating charge values
652      if (storageLayout_ & DataStorage::dslFlucQPosition) {
653        AtomPlanRealRow->gather(snap_->atomData.flucQPos,
# Line 687 | Line 686 | namespace OpenMD {
686        
687        int n = snap_->atomData.electricField.size();
688        vector<Vector3d> field_tmp(n, V3Zero);
689 <      AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp);
689 >      AtomPlanVectorColumn->scatter(atomColData.electricField,
690 >                                    field_tmp);
691        for (int i = 0; i < n; i++)
692          snap_->atomData.electricField[i] += field_tmp[i];
693      }
# Line 1043 | Line 1043 | namespace OpenMD {
1043     * the parallel decomposition.
1044     */
1045    bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) {
1046 <    int unique_id_1, unique_id_2, group1, group2;
1046 >    int unique_id_1, unique_id_2;
1047          
1048   #ifdef IS_MPI
1049      // in MPI, we have to look up the unique IDs for each atom
1050      unique_id_1 = AtomRowToGlobal[atom1];
1051      unique_id_2 = AtomColToGlobal[atom2];
1052 <    group1 = cgRowToGlobal[cg1];
1053 <    group2 = cgColToGlobal[cg2];
1052 >    // group1 = cgRowToGlobal[cg1];
1053 >    // group2 = cgColToGlobal[cg2];
1054   #else
1055      unique_id_1 = AtomLocalToGlobal[atom1];
1056      unique_id_2 = AtomLocalToGlobal[atom2];
1057 <    group1 = cgLocalToGlobal[cg1];
1058 <    group2 = cgLocalToGlobal[cg2];
1057 >    int group1 = cgLocalToGlobal[cg1];
1058 >    int group2 = cgLocalToGlobal[cg2];
1059   #endif  
1060  
1061      if (unique_id_1 == unique_id_2) return true;
# Line 1133 | Line 1133 | namespace OpenMD {
1133        idat.A2 = &(atomColData.aMat[atom2]);
1134      }
1135      
1136    if (storageLayout_ & DataStorage::dslElectroFrame) {
1137      idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
1138      idat.eFrame2 = &(atomColData.electroFrame[atom2]);
1139    }
1140
1136      if (storageLayout_ & DataStorage::dslTorque) {
1137        idat.t1 = &(atomRowData.torque[atom1]);
1138        idat.t2 = &(atomColData.torque[atom2]);
1139      }
1140  
1141 +    if (storageLayout_ & DataStorage::dslDipole) {
1142 +      idat.dipole1 = &(atomRowData.dipole[atom1]);
1143 +      idat.dipole2 = &(atomColData.dipole[atom2]);
1144 +    }
1145 +
1146 +    if (storageLayout_ & DataStorage::dslQuadrupole) {
1147 +      idat.quadrupole1 = &(atomRowData.quadrupole[atom1]);
1148 +      idat.quadrupole2 = &(atomColData.quadrupole[atom2]);
1149 +    }
1150 +
1151      if (storageLayout_ & DataStorage::dslDensity) {
1152        idat.rho1 = &(atomRowData.density[atom1]);
1153        idat.rho2 = &(atomColData.density[atom2]);
# Line 1180 | Line 1185 | namespace OpenMD {
1185      if (storageLayout_ & DataStorage::dslAmat) {
1186        idat.A1 = &(snap_->atomData.aMat[atom1]);
1187        idat.A2 = &(snap_->atomData.aMat[atom2]);
1183    }
1184
1185    if (storageLayout_ & DataStorage::dslElectroFrame) {
1186      idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
1187      idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
1188      }
1189  
1190      if (storageLayout_ & DataStorage::dslTorque) {
# Line 1192 | Line 1192 | namespace OpenMD {
1192        idat.t2 = &(snap_->atomData.torque[atom2]);
1193      }
1194  
1195 +    if (storageLayout_ & DataStorage::dslDipole) {
1196 +      idat.dipole1 = &(snap_->atomData.dipole[atom1]);
1197 +      idat.dipole2 = &(snap_->atomData.dipole[atom2]);
1198 +    }
1199 +
1200 +    if (storageLayout_ & DataStorage::dslQuadrupole) {
1201 +      idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]);
1202 +      idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]);
1203 +    }
1204 +
1205      if (storageLayout_ & DataStorage::dslDensity) {    
1206        idat.rho1 = &(snap_->atomData.density[atom1]);
1207        idat.rho2 = &(snap_->atomData.density[atom2]);
# Line 1340 | Line 1350 | namespace OpenMD {
1350          for (int j = 0; j < 3; j++) {
1351            scaled[j] -= roundMe(scaled[j]);
1352            scaled[j] += 0.5;
1353 +          // Handle the special case when an object is exactly on the
1354 +          // boundary (a scaled coordinate of 1.0 is the same as
1355 +          // scaled coordinate of 0.0)
1356 +          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1357          }
1358          
1359          // find xyz-indices of cell that cutoffGroup is in.
# Line 1364 | Line 1378 | namespace OpenMD {
1378          for (int j = 0; j < 3; j++) {
1379            scaled[j] -= roundMe(scaled[j]);
1380            scaled[j] += 0.5;
1381 +          // Handle the special case when an object is exactly on the
1382 +          // boundary (a scaled coordinate of 1.0 is the same as
1383 +          // scaled coordinate of 0.0)
1384 +          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1385          }
1386          
1387          // find xyz-indices of cell that cutoffGroup is in.
# Line 1390 | Line 1408 | namespace OpenMD {
1408          for (int j = 0; j < 3; j++) {
1409            scaled[j] -= roundMe(scaled[j]);
1410            scaled[j] += 0.5;
1411 +          // Handle the special case when an object is exactly on the
1412 +          // boundary (a scaled coordinate of 1.0 is the same as
1413 +          // scaled coordinate of 0.0)
1414 +          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1415          }
1416          
1417          // find xyz-indices of cell that cutoffGroup is in.

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines