35 |
|
* |
36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
< |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
38 |
> |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
|
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
|
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
679 |
|
snap_->atomData.density[i] += rho_tmp[i]; |
680 |
|
} |
681 |
|
|
682 |
+ |
// this isn't necessary if we don't have polarizable atoms, but |
683 |
+ |
// we'll leave it here for now. |
684 |
|
if (storageLayout_ & DataStorage::dslElectricField) { |
685 |
|
|
686 |
|
AtomPlanVectorRow->scatter(atomRowData.electricField, |
688 |
|
|
689 |
|
int n = snap_->atomData.electricField.size(); |
690 |
|
vector<Vector3d> field_tmp(n, V3Zero); |
691 |
< |
AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp); |
691 |
> |
AtomPlanVectorColumn->scatter(atomColData.electricField, |
692 |
> |
field_tmp); |
693 |
|
for (int i = 0; i < n; i++) |
694 |
|
snap_->atomData.electricField[i] += field_tmp[i]; |
695 |
|
} |
788 |
|
snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
789 |
|
|
790 |
|
} |
791 |
+ |
|
792 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
793 |
|
|
794 |
+ |
int nef = snap_->atomData.electricField.size(); |
795 |
+ |
vector<Vector3d> efield_tmp(nef, V3Zero); |
796 |
+ |
|
797 |
+ |
AtomPlanVectorRow->scatter(atomRowData.electricField, efield_tmp); |
798 |
+ |
for (int i = 0; i < nef; i++) { |
799 |
+ |
snap_->atomData.electricField[i] += efield_tmp[i]; |
800 |
+ |
efield_tmp[i] = 0.0; |
801 |
+ |
} |
802 |
+ |
|
803 |
+ |
AtomPlanVectorColumn->scatter(atomColData.electricField, efield_tmp); |
804 |
+ |
for (int i = 0; i < nef; i++) |
805 |
+ |
snap_->atomData.electricField[i] += efield_tmp[i]; |
806 |
+ |
} |
807 |
+ |
|
808 |
+ |
|
809 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
810 |
|
|
811 |
|
vector<potVec> pot_temp(nLocal_, |
975 |
|
d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; |
976 |
|
#endif |
977 |
|
|
978 |
< |
snap_->wrapVector(d); |
978 |
> |
if (usePeriodicBoundaryConditions_) { |
979 |
> |
snap_->wrapVector(d); |
980 |
> |
} |
981 |
|
return d; |
982 |
|
} |
983 |
|
|
1007 |
|
#else |
1008 |
|
d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1]; |
1009 |
|
#endif |
1010 |
< |
|
1011 |
< |
snap_->wrapVector(d); |
1010 |
> |
if (usePeriodicBoundaryConditions_) { |
1011 |
> |
snap_->wrapVector(d); |
1012 |
> |
} |
1013 |
|
return d; |
1014 |
|
} |
1015 |
|
|
1021 |
|
#else |
1022 |
|
d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2]; |
1023 |
|
#endif |
1024 |
< |
|
1025 |
< |
snap_->wrapVector(d); |
1024 |
> |
if (usePeriodicBoundaryConditions_) { |
1025 |
> |
snap_->wrapVector(d); |
1026 |
> |
} |
1027 |
|
return d; |
1028 |
|
} |
1029 |
|
|
1052 |
|
#else |
1053 |
|
d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1]; |
1054 |
|
#endif |
1055 |
< |
|
1056 |
< |
snap_->wrapVector(d); |
1055 |
> |
if (usePeriodicBoundaryConditions_) { |
1056 |
> |
snap_->wrapVector(d); |
1057 |
> |
} |
1058 |
|
return d; |
1059 |
|
} |
1060 |
|
|
1067 |
|
* the parallel decomposition. |
1068 |
|
*/ |
1069 |
|
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) { |
1070 |
< |
int unique_id_1, unique_id_2, group1, group2; |
1070 |
> |
int unique_id_1, unique_id_2; |
1071 |
|
|
1072 |
|
#ifdef IS_MPI |
1073 |
|
// in MPI, we have to look up the unique IDs for each atom |
1074 |
|
unique_id_1 = AtomRowToGlobal[atom1]; |
1075 |
|
unique_id_2 = AtomColToGlobal[atom2]; |
1076 |
< |
group1 = cgRowToGlobal[cg1]; |
1077 |
< |
group2 = cgColToGlobal[cg2]; |
1076 |
> |
// group1 = cgRowToGlobal[cg1]; |
1077 |
> |
// group2 = cgColToGlobal[cg2]; |
1078 |
|
#else |
1079 |
|
unique_id_1 = AtomLocalToGlobal[atom1]; |
1080 |
|
unique_id_2 = AtomLocalToGlobal[atom2]; |
1081 |
< |
group1 = cgLocalToGlobal[cg1]; |
1082 |
< |
group2 = cgLocalToGlobal[cg2]; |
1081 |
> |
int group1 = cgLocalToGlobal[cg1]; |
1082 |
> |
int group2 = cgLocalToGlobal[cg2]; |
1083 |
|
#endif |
1084 |
|
|
1085 |
|
if (unique_id_1 == unique_id_2) return true; |
1321 |
|
vector<pair<int, int> > neighborList; |
1322 |
|
groupCutoffs cuts; |
1323 |
|
bool doAllPairs = false; |
1324 |
+ |
|
1325 |
+ |
RealType rList_ = (largestRcut_ + skinThickness_); |
1326 |
+ |
Snapshot* snap_ = sman_->getCurrentSnapshot(); |
1327 |
+ |
Mat3x3d invHmat = snap_->getInvHmat(); |
1328 |
+ |
Vector3d rs, scaled, dr; |
1329 |
+ |
Vector3i whichCell; |
1330 |
+ |
int cellIndex; |
1331 |
|
|
1332 |
|
#ifdef IS_MPI |
1333 |
|
cellListRow_.clear(); |
1336 |
|
cellList_.clear(); |
1337 |
|
#endif |
1338 |
|
|
1339 |
< |
RealType rList_ = (largestRcut_ + skinThickness_); |
1340 |
< |
RealType rl2 = rList_ * rList_; |
1341 |
< |
Snapshot* snap_ = sman_->getCurrentSnapshot(); |
1310 |
< |
Mat3x3d Hmat = snap_->getHmat(); |
1311 |
< |
Vector3d Hx = Hmat.getColumn(0); |
1312 |
< |
Vector3d Hy = Hmat.getColumn(1); |
1313 |
< |
Vector3d Hz = Hmat.getColumn(2); |
1339 |
> |
if (!usePeriodicBoundaryConditions_) { |
1340 |
> |
doAllPairs = true; |
1341 |
> |
} else { |
1342 |
|
|
1343 |
< |
nCells_.x() = (int) ( Hx.length() )/ rList_; |
1344 |
< |
nCells_.y() = (int) ( Hy.length() )/ rList_; |
1345 |
< |
nCells_.z() = (int) ( Hz.length() )/ rList_; |
1343 |
> |
Mat3x3d Hmat = snap_->getHmat(); |
1344 |
> |
Vector3d Hx = Hmat.getColumn(0); |
1345 |
> |
Vector3d Hy = Hmat.getColumn(1); |
1346 |
> |
Vector3d Hz = Hmat.getColumn(2); |
1347 |
|
|
1348 |
< |
// handle small boxes where the cell offsets can end up repeating cells |
1349 |
< |
|
1350 |
< |
if (nCells_.x() < 3) doAllPairs = true; |
1351 |
< |
if (nCells_.y() < 3) doAllPairs = true; |
1352 |
< |
if (nCells_.z() < 3) doAllPairs = true; |
1353 |
< |
|
1354 |
< |
Mat3x3d invHmat = snap_->getInvHmat(); |
1355 |
< |
Vector3d rs, scaled, dr; |
1356 |
< |
Vector3i whichCell; |
1357 |
< |
int cellIndex; |
1358 |
< |
int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); |
1359 |
< |
|
1348 |
> |
nCells_.x() = (int) ( Hx.length() )/ rList_; |
1349 |
> |
nCells_.y() = (int) ( Hy.length() )/ rList_; |
1350 |
> |
nCells_.z() = (int) ( Hz.length() )/ rList_; |
1351 |
> |
|
1352 |
> |
// handle small boxes where the cell offsets can end up repeating cells |
1353 |
> |
|
1354 |
> |
if (nCells_.x() < 3) doAllPairs = true; |
1355 |
> |
if (nCells_.y() < 3) doAllPairs = true; |
1356 |
> |
if (nCells_.z() < 3) doAllPairs = true; |
1357 |
> |
|
1358 |
> |
int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); |
1359 |
> |
|
1360 |
|
#ifdef IS_MPI |
1361 |
< |
cellListRow_.resize(nCtot); |
1362 |
< |
cellListCol_.resize(nCtot); |
1361 |
> |
cellListRow_.resize(nCtot); |
1362 |
> |
cellListCol_.resize(nCtot); |
1363 |
|
#else |
1364 |
< |
cellList_.resize(nCtot); |
1364 |
> |
cellList_.resize(nCtot); |
1365 |
|
#endif |
1366 |
+ |
} |
1367 |
|
|
1368 |
|
if (!doAllPairs) { |
1369 |
|
#ifdef IS_MPI |
1499 |
|
// & column indicies and will divide labor in the |
1500 |
|
// force evaluation later. |
1501 |
|
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1502 |
< |
snap_->wrapVector(dr); |
1502 |
> |
if (usePeriodicBoundaryConditions_) { |
1503 |
> |
snap_->wrapVector(dr); |
1504 |
> |
} |
1505 |
|
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1506 |
|
if (dr.lengthSquare() < cuts.third) { |
1507 |
|
neighborList.push_back(make_pair((*j1), (*j2))); |
1528 |
|
if (m2 != m1 || (*j2) >= (*j1) ) { |
1529 |
|
|
1530 |
|
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1531 |
< |
snap_->wrapVector(dr); |
1531 |
> |
if (usePeriodicBoundaryConditions_) { |
1532 |
> |
snap_->wrapVector(dr); |
1533 |
> |
} |
1534 |
|
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1535 |
|
if (dr.lengthSquare() < cuts.third) { |
1536 |
|
neighborList.push_back(make_pair((*j1), (*j2))); |
1549 |
|
for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
1550 |
|
for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1551 |
|
dr = cgColData.position[j2] - cgRowData.position[j1]; |
1552 |
< |
snap_->wrapVector(dr); |
1552 |
> |
if (usePeriodicBoundaryConditions_) { |
1553 |
> |
snap_->wrapVector(dr); |
1554 |
> |
} |
1555 |
|
cuts = getGroupCutoffs( j1, j2 ); |
1556 |
|
if (dr.lengthSquare() < cuts.third) { |
1557 |
|
neighborList.push_back(make_pair(j1, j2)); |
1564 |
|
// include self group interactions j2 == j1 |
1565 |
|
for (int j2 = j1; j2 < nGroups_; j2++) { |
1566 |
|
dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
1567 |
< |
snap_->wrapVector(dr); |
1567 |
> |
if (usePeriodicBoundaryConditions_) { |
1568 |
> |
snap_->wrapVector(dr); |
1569 |
> |
} |
1570 |
|
cuts = getGroupCutoffs( j1, j2 ); |
1571 |
|
if (dr.lengthSquare() < cuts.third) { |
1572 |
|
neighborList.push_back(make_pair(j1, j2)); |