ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/parallel/ForceMatrixDecomposition.cpp
(Generate patch)

Comparing:
branches/development/src/parallel/ForceDecomposition.cpp (file contents), Revision 1538 by chuckv, Tue Jan 11 18:58:12 2011 UTC vs.
branches/development/src/parallel/ForceMatrixDecomposition.cpp (file contents), Revision 1798 by gezelter, Thu Sep 13 14:10:11 2012 UTC

# Line 1 | Line 1
1 < /**
2 < * @file ForceDecomposition.cpp
3 < * @author Charles Vardeman <cvardema.at.nd.edu>
4 < * @date 08/18/2010
5 < * @time 11:56am
6 < * @version 1.0
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
8 * @section LICENSE
9 * Copyright (c) 2010 The University of Notre Dame. All Rights Reserved.
10 *
4   * The University of Notre Dame grants you ("Licensee") a
5   * non-exclusive, royalty free, license to use, modify and
6   * redistribute this software in source and binary code form, provided
# Line 43 | Line 36
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38   * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42 + #include "parallel/ForceMatrixDecomposition.hpp"
43 + #include "math/SquareMatrix3.hpp"
44 + #include "nonbonded/NonBondedInteraction.hpp"
45 + #include "brains/SnapshotManager.hpp"
46 + #include "brains/PairList.hpp"
47  
48 + using namespace std;
49 + namespace OpenMD {
50  
51 +  ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) {
52  
53 < /*  -*- c++ -*-  */
54 < #include "config.h"
55 < #include <stdlib.h>
53 >    // In a parallel computation, row and colum scans must visit all
54 >    // surrounding cells (not just the 14 upper triangular blocks that
55 >    // are used when the processor can see all pairs)
56   #ifdef IS_MPI
57 < #include <mpi.h>
58 < #endif
57 >    cellOffsets_.clear();
58 >    cellOffsets_.push_back( Vector3i(-1,-1,-1) );
59 >    cellOffsets_.push_back( Vector3i( 0,-1,-1) );
60 >    cellOffsets_.push_back( Vector3i( 1,-1,-1) );                          
61 >    cellOffsets_.push_back( Vector3i(-1, 0,-1) );
62 >    cellOffsets_.push_back( Vector3i( 0, 0,-1) );
63 >    cellOffsets_.push_back( Vector3i( 1, 0,-1) );
64 >    cellOffsets_.push_back( Vector3i(-1, 1,-1) );
65 >    cellOffsets_.push_back( Vector3i( 0, 1,-1) );      
66 >    cellOffsets_.push_back( Vector3i( 1, 1,-1) );
67 >    cellOffsets_.push_back( Vector3i(-1,-1, 0) );
68 >    cellOffsets_.push_back( Vector3i( 0,-1, 0) );
69 >    cellOffsets_.push_back( Vector3i( 1,-1, 0) );
70 >    cellOffsets_.push_back( Vector3i(-1, 0, 0) );      
71 >    cellOffsets_.push_back( Vector3i( 0, 0, 0) );
72 >    cellOffsets_.push_back( Vector3i( 1, 0, 0) );
73 >    cellOffsets_.push_back( Vector3i(-1, 1, 0) );
74 >    cellOffsets_.push_back( Vector3i( 0, 1, 0) );
75 >    cellOffsets_.push_back( Vector3i( 1, 1, 0) );
76 >    cellOffsets_.push_back( Vector3i(-1,-1, 1) );
77 >    cellOffsets_.push_back( Vector3i( 0,-1, 1) );
78 >    cellOffsets_.push_back( Vector3i( 1,-1, 1) );
79 >    cellOffsets_.push_back( Vector3i(-1, 0, 1) );
80 >    cellOffsets_.push_back( Vector3i( 0, 0, 1) );
81 >    cellOffsets_.push_back( Vector3i( 1, 0, 1) );
82 >    cellOffsets_.push_back( Vector3i(-1, 1, 1) );
83 >    cellOffsets_.push_back( Vector3i( 0, 1, 1) );
84 >    cellOffsets_.push_back( Vector3i( 1, 1, 1) );
85 > #endif    
86 >  }
87  
58 #include <iostream>
59 #include <vector>
60 #include <algorithm>
61 #include <cmath>
62 #include "parallel/ForceDecomposition.hpp"
88  
89 +  /**
90 +   * distributeInitialData is essentially a copy of the older fortran
91 +   * SimulationSetup
92 +   */
93 +  void ForceMatrixDecomposition::distributeInitialData() {
94 +    snap_ = sman_->getCurrentSnapshot();
95 +    storageLayout_ = sman_->getStorageLayout();
96 +    ff_ = info_->getForceField();
97 +    nLocal_ = snap_->getNumberOfAtoms();
98 +  
99 +    nGroups_ = info_->getNLocalCutoffGroups();
100 +    // gather the information for atomtype IDs (atids):
101 +    idents = info_->getIdentArray();
102 +    AtomLocalToGlobal = info_->getGlobalAtomIndices();
103 +    cgLocalToGlobal = info_->getGlobalGroupIndices();
104 +    vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
105  
106 < using namespace std;
66 < using namespace OpenMD;
106 >    massFactors = info_->getMassFactors();
107  
108 < //__static
108 >    PairList* excludes = info_->getExcludedInteractions();
109 >    PairList* oneTwo = info_->getOneTwoInteractions();
110 >    PairList* oneThree = info_->getOneThreeInteractions();
111 >    PairList* oneFour = info_->getOneFourInteractions();
112 >    
113 >    if (needVelocities_)
114 >      snap_->cgData.setStorageLayout(DataStorage::dslPosition |
115 >                                     DataStorage::dslVelocity);
116 >    else
117 >      snap_->cgData.setStorageLayout(DataStorage::dslPosition);
118 >    
119   #ifdef IS_MPI
120 < static vector<MPI:Comm> communictors;
121 < #endif
120 >
121 >    MPI::Intracomm row = rowComm.getComm();
122 >    MPI::Intracomm col = colComm.getComm();
123  
124 < //____ MPITypeTraits
125 < template<typename T>
126 < struct MPITypeTraits;
124 >    AtomPlanIntRow = new Plan<int>(row, nLocal_);
125 >    AtomPlanRealRow = new Plan<RealType>(row, nLocal_);
126 >    AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_);
127 >    AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_);
128 >    AtomPlanPotRow = new Plan<potVec>(row, nLocal_);
129  
130 < #ifdef IS_MPI
131 < template<>
132 < struct MPITypeTraits<RealType> {
133 <  static const MPI::Datatype datatype;
134 < };
82 < const MPI_Datatype MPITypeTraits<RealType>::datatype = MY_MPI_REAL;
130 >    AtomPlanIntColumn = new Plan<int>(col, nLocal_);
131 >    AtomPlanRealColumn = new Plan<RealType>(col, nLocal_);
132 >    AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_);
133 >    AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_);
134 >    AtomPlanPotColumn = new Plan<potVec>(col, nLocal_);
135  
136 < template<>
137 < struct MPITypeTraits<int> {
138 <  static const MPI::Datatype datatype;
139 < };
88 < const MPI::Datatype MPITypeTraits<int>::datatype = MPI_INT;
89 < #endif
136 >    cgPlanIntRow = new Plan<int>(row, nGroups_);
137 >    cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_);
138 >    cgPlanIntColumn = new Plan<int>(col, nGroups_);
139 >    cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_);
140  
141 < /**
142 < * Constructor for ForceDecomposition Parallel Decomposition Method
143 < * Will try to construct a symmetric grid of processors. Ideally, the
144 < * number of processors will be a square ex: 4, 9, 16, 25.
95 < *
96 < */
141 >    nAtomsInRow_ = AtomPlanIntRow->getSize();
142 >    nAtomsInCol_ = AtomPlanIntColumn->getSize();
143 >    nGroupsInRow_ = cgPlanIntRow->getSize();
144 >    nGroupsInCol_ = cgPlanIntColumn->getSize();
145  
146 < ForceDecomposition::ForceDecomposition() {
146 >    // Modify the data storage objects with the correct layouts and sizes:
147 >    atomRowData.resize(nAtomsInRow_);
148 >    atomRowData.setStorageLayout(storageLayout_);
149 >    atomColData.resize(nAtomsInCol_);
150 >    atomColData.setStorageLayout(storageLayout_);
151 >    cgRowData.resize(nGroupsInRow_);
152 >    cgRowData.setStorageLayout(DataStorage::dslPosition);
153 >    cgColData.resize(nGroupsInCol_);
154 >    if (needVelocities_)
155 >      // we only need column velocities if we need them.
156 >      cgColData.setStorageLayout(DataStorage::dslPosition |
157 >                                 DataStorage::dslVelocity);
158 >    else    
159 >      cgColData.setStorageLayout(DataStorage::dslPosition);
160 >      
161 >    identsRow.resize(nAtomsInRow_);
162 >    identsCol.resize(nAtomsInCol_);
163 >    
164 >    AtomPlanIntRow->gather(idents, identsRow);
165 >    AtomPlanIntColumn->gather(idents, identsCol);
166 >    
167 >    // allocate memory for the parallel objects
168 >    atypesRow.resize(nAtomsInRow_);
169 >    atypesCol.resize(nAtomsInCol_);
170  
171 < #ifdef IS_MPI
172 <  int nProcs = MPI::COMM_WORLD.Get_size();
173 <  int worldRank = MPI::COMM_WORLD.Get_rank();
171 >    for (int i = 0; i < nAtomsInRow_; i++)
172 >      atypesRow[i] = ff_->getAtomType(identsRow[i]);
173 >    for (int i = 0; i < nAtomsInCol_; i++)
174 >      atypesCol[i] = ff_->getAtomType(identsCol[i]);        
175 >
176 >    pot_row.resize(nAtomsInRow_);
177 >    pot_col.resize(nAtomsInCol_);
178 >
179 >    expot_row.resize(nAtomsInRow_);
180 >    expot_col.resize(nAtomsInCol_);
181 >
182 >    AtomRowToGlobal.resize(nAtomsInRow_);
183 >    AtomColToGlobal.resize(nAtomsInCol_);
184 >    AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
185 >    AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
186 >
187 >    cgRowToGlobal.resize(nGroupsInRow_);
188 >    cgColToGlobal.resize(nGroupsInCol_);
189 >    cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
190 >    cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
191 >
192 >    massFactorsRow.resize(nAtomsInRow_);
193 >    massFactorsCol.resize(nAtomsInCol_);
194 >    AtomPlanRealRow->gather(massFactors, massFactorsRow);
195 >    AtomPlanRealColumn->gather(massFactors, massFactorsCol);
196 >
197 >    groupListRow_.clear();
198 >    groupListRow_.resize(nGroupsInRow_);
199 >    for (int i = 0; i < nGroupsInRow_; i++) {
200 >      int gid = cgRowToGlobal[i];
201 >      for (int j = 0; j < nAtomsInRow_; j++) {
202 >        int aid = AtomRowToGlobal[j];
203 >        if (globalGroupMembership[aid] == gid)
204 >          groupListRow_[i].push_back(j);
205 >      }      
206 >    }
207 >
208 >    groupListCol_.clear();
209 >    groupListCol_.resize(nGroupsInCol_);
210 >    for (int i = 0; i < nGroupsInCol_; i++) {
211 >      int gid = cgColToGlobal[i];
212 >      for (int j = 0; j < nAtomsInCol_; j++) {
213 >        int aid = AtomColToGlobal[j];
214 >        if (globalGroupMembership[aid] == gid)
215 >          groupListCol_[i].push_back(j);
216 >      }      
217 >    }
218 >
219 >    excludesForAtom.clear();
220 >    excludesForAtom.resize(nAtomsInRow_);
221 >    toposForAtom.clear();
222 >    toposForAtom.resize(nAtomsInRow_);
223 >    topoDist.clear();
224 >    topoDist.resize(nAtomsInRow_);
225 >    for (int i = 0; i < nAtomsInRow_; i++) {
226 >      int iglob = AtomRowToGlobal[i];
227 >
228 >      for (int j = 0; j < nAtomsInCol_; j++) {
229 >        int jglob = AtomColToGlobal[j];
230 >
231 >        if (excludes->hasPair(iglob, jglob))
232 >          excludesForAtom[i].push_back(j);      
233 >        
234 >        if (oneTwo->hasPair(iglob, jglob)) {
235 >          toposForAtom[i].push_back(j);
236 >          topoDist[i].push_back(1);
237 >        } else {
238 >          if (oneThree->hasPair(iglob, jglob)) {
239 >            toposForAtom[i].push_back(j);
240 >            topoDist[i].push_back(2);
241 >          } else {
242 >            if (oneFour->hasPair(iglob, jglob)) {
243 >              toposForAtom[i].push_back(j);
244 >              topoDist[i].push_back(3);
245 >            }
246 >          }
247 >        }
248 >      }      
249 >    }
250 >
251 > #else
252 >    excludesForAtom.clear();
253 >    excludesForAtom.resize(nLocal_);
254 >    toposForAtom.clear();
255 >    toposForAtom.resize(nLocal_);
256 >    topoDist.clear();
257 >    topoDist.resize(nLocal_);
258 >
259 >    for (int i = 0; i < nLocal_; i++) {
260 >      int iglob = AtomLocalToGlobal[i];
261 >
262 >      for (int j = 0; j < nLocal_; j++) {
263 >        int jglob = AtomLocalToGlobal[j];
264 >
265 >        if (excludes->hasPair(iglob, jglob))
266 >          excludesForAtom[i].push_back(j);              
267 >        
268 >        if (oneTwo->hasPair(iglob, jglob)) {
269 >          toposForAtom[i].push_back(j);
270 >          topoDist[i].push_back(1);
271 >        } else {
272 >          if (oneThree->hasPair(iglob, jglob)) {
273 >            toposForAtom[i].push_back(j);
274 >            topoDist[i].push_back(2);
275 >          } else {
276 >            if (oneFour->hasPair(iglob, jglob)) {
277 >              toposForAtom[i].push_back(j);
278 >              topoDist[i].push_back(3);
279 >            }
280 >          }
281 >        }
282 >      }      
283 >    }
284   #endif
285  
286 <  // First time through, construct column stride.
287 <  if (communicators.size() == 0)
288 <  {
289 <    int nColumnsMax = (int) round(sqrt((float) nProcs));
290 <    for (int i = 0; i < nProcs; ++i)
291 <    {
292 <      if (nProcs%i==0) nColumns=i;
286 >    // allocate memory for the parallel objects
287 >    atypesLocal.resize(nLocal_);
288 >
289 >    for (int i = 0; i < nLocal_; i++)
290 >      atypesLocal[i] = ff_->getAtomType(idents[i]);
291 >
292 >    groupList_.clear();
293 >    groupList_.resize(nGroups_);
294 >    for (int i = 0; i < nGroups_; i++) {
295 >      int gid = cgLocalToGlobal[i];
296 >      for (int j = 0; j < nLocal_; j++) {
297 >        int aid = AtomLocalToGlobal[j];
298 >        if (globalGroupMembership[aid] == gid) {
299 >          groupList_[i].push_back(j);
300 >        }
301 >      }      
302      }
303  
304 <    int nRows = nProcs/nColumns;    
305 <    myRank_ = (int) worldRank%nColumns;
304 >
305 >    createGtypeCutoffMap();
306 >
307    }
308 <  else
309 <  {
310 <    myRank_ = myRank/nColumns;
311 <  }
312 <  MPI::Comm newComm = MPI:COMM_WORLD.Split(myRank_,0);
313 <  
314 <  isColumn_ = false;
315 <  
316 < }
308 >  
309 >  void ForceMatrixDecomposition::createGtypeCutoffMap() {
310 >    
311 >    RealType tol = 1e-6;
312 >    largestRcut_ = 0.0;
313 >    int atid;
314 >    set<AtomType*> atypes = info_->getSimulatedAtomTypes();
315 >    
316 >    map<int, RealType> atypeCutoff;
317 >      
318 >    for (set<AtomType*>::iterator at = atypes.begin();
319 >         at != atypes.end(); ++at){
320 >      atid = (*at)->getIdent();
321 >      if (userChoseCutoff_)
322 >        atypeCutoff[atid] = userCutoff_;
323 >      else
324 >        atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
325 >    }
326 >    
327 >    vector<RealType> gTypeCutoffs;
328 >    // first we do a single loop over the cutoff groups to find the
329 >    // largest cutoff for any atypes present in this group.
330 > #ifdef IS_MPI
331 >    vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
332 >    groupRowToGtype.resize(nGroupsInRow_);
333 >    for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) {
334 >      vector<int> atomListRow = getAtomsInGroupRow(cg1);
335 >      for (vector<int>::iterator ia = atomListRow.begin();
336 >           ia != atomListRow.end(); ++ia) {            
337 >        int atom1 = (*ia);
338 >        atid = identsRow[atom1];
339 >        if (atypeCutoff[atid] > groupCutoffRow[cg1]) {
340 >          groupCutoffRow[cg1] = atypeCutoff[atid];
341 >        }
342 >      }
343  
344 < ForceDecomposition::gather(sendbuf, receivebuf){
345 <  communicators(myIndex_).Allgatherv();
346 < }
344 >      bool gTypeFound = false;
345 >      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
346 >        if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) {
347 >          groupRowToGtype[cg1] = gt;
348 >          gTypeFound = true;
349 >        }
350 >      }
351 >      if (!gTypeFound) {
352 >        gTypeCutoffs.push_back( groupCutoffRow[cg1] );
353 >        groupRowToGtype[cg1] = gTypeCutoffs.size() - 1;
354 >      }
355 >      
356 >    }
357 >    vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
358 >    groupColToGtype.resize(nGroupsInCol_);
359 >    for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) {
360 >      vector<int> atomListCol = getAtomsInGroupColumn(cg2);
361 >      for (vector<int>::iterator jb = atomListCol.begin();
362 >           jb != atomListCol.end(); ++jb) {            
363 >        int atom2 = (*jb);
364 >        atid = identsCol[atom2];
365 >        if (atypeCutoff[atid] > groupCutoffCol[cg2]) {
366 >          groupCutoffCol[cg2] = atypeCutoff[atid];
367 >        }
368 >      }
369 >      bool gTypeFound = false;
370 >      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
371 >        if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) {
372 >          groupColToGtype[cg2] = gt;
373 >          gTypeFound = true;
374 >        }
375 >      }
376 >      if (!gTypeFound) {
377 >        gTypeCutoffs.push_back( groupCutoffCol[cg2] );
378 >        groupColToGtype[cg2] = gTypeCutoffs.size() - 1;
379 >      }
380 >    }
381 > #else
382  
383 +    vector<RealType> groupCutoff(nGroups_, 0.0);
384 +    groupToGtype.resize(nGroups_);
385 +    for (int cg1 = 0; cg1 < nGroups_; cg1++) {
386 +      groupCutoff[cg1] = 0.0;
387 +      vector<int> atomList = getAtomsInGroupRow(cg1);
388 +      for (vector<int>::iterator ia = atomList.begin();
389 +           ia != atomList.end(); ++ia) {            
390 +        int atom1 = (*ia);
391 +        atid = idents[atom1];
392 +        if (atypeCutoff[atid] > groupCutoff[cg1])
393 +          groupCutoff[cg1] = atypeCutoff[atid];
394 +      }
395 +      
396 +      bool gTypeFound = false;
397 +      for (unsigned int gt = 0; gt < gTypeCutoffs.size(); gt++) {
398 +        if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
399 +          groupToGtype[cg1] = gt;
400 +          gTypeFound = true;
401 +        }
402 +      }
403 +      if (!gTypeFound) {      
404 +        gTypeCutoffs.push_back( groupCutoff[cg1] );
405 +        groupToGtype[cg1] = gTypeCutoffs.size() - 1;
406 +      }      
407 +    }
408 + #endif
409  
410 +    // Now we find the maximum group cutoff value present in the simulation
411  
412 < ForceDecomposition::scatter(sbuffer, rbuffer){
413 <  communicators(myIndex_).Reduce_scatter(sbuffer, recevbuf. recvcounts, MPI::DOUBLE, MPI::SUM);
414 < }
412 >    RealType groupMax = *max_element(gTypeCutoffs.begin(),
413 >                                     gTypeCutoffs.end());
414 >
415 > #ifdef IS_MPI
416 >    MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE,
417 >                              MPI::MAX);
418 > #endif
419 >    
420 >    RealType tradRcut = groupMax;
421 >
422 >    for (unsigned int i = 0; i < gTypeCutoffs.size();  i++) {
423 >      for (unsigned int j = 0; j < gTypeCutoffs.size();  j++) {      
424 >        RealType thisRcut;
425 >        switch(cutoffPolicy_) {
426 >        case TRADITIONAL:
427 >          thisRcut = tradRcut;
428 >          break;
429 >        case MIX:
430 >          thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
431 >          break;
432 >        case MAX:
433 >          thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
434 >          break;
435 >        default:
436 >          sprintf(painCave.errMsg,
437 >                  "ForceMatrixDecomposition::createGtypeCutoffMap "
438 >                  "hit an unknown cutoff policy!\n");
439 >          painCave.severity = OPENMD_ERROR;
440 >          painCave.isFatal = 1;
441 >          simError();
442 >          break;
443 >        }
444 >
445 >        pair<int,int> key = make_pair(i,j);
446 >        gTypeCutoffMap[key].first = thisRcut;
447 >        if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
448 >        gTypeCutoffMap[key].second = thisRcut*thisRcut;
449 >        gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
450 >        // sanity check
451 >        
452 >        if (userChoseCutoff_) {
453 >          if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) {
454 >            sprintf(painCave.errMsg,
455 >                    "ForceMatrixDecomposition::createGtypeCutoffMap "
456 >                    "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_);
457 >            painCave.severity = OPENMD_ERROR;
458 >            painCave.isFatal = 1;
459 >            simError();            
460 >          }
461 >        }
462 >      }
463 >    }
464 >  }
465 >
466 >  groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
467 >    int i, j;  
468 > #ifdef IS_MPI
469 >    i = groupRowToGtype[cg1];
470 >    j = groupColToGtype[cg2];
471 > #else
472 >    i = groupToGtype[cg1];
473 >    j = groupToGtype[cg2];
474 > #endif    
475 >    return gTypeCutoffMap[make_pair(i,j)];
476 >  }
477 >
478 >  int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
479 >    for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) {
480 >      if (toposForAtom[atom1][j] == atom2)
481 >        return topoDist[atom1][j];
482 >    }
483 >    return 0;
484 >  }
485 >
486 >  void ForceMatrixDecomposition::zeroWorkArrays() {
487 >    pairwisePot = 0.0;
488 >    embeddingPot = 0.0;
489 >    excludedPot = 0.0;
490 >    excludedSelfPot = 0.0;
491 >
492 > #ifdef IS_MPI
493 >    if (storageLayout_ & DataStorage::dslForce) {
494 >      fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
495 >      fill(atomColData.force.begin(), atomColData.force.end(), V3Zero);
496 >    }
497 >
498 >    if (storageLayout_ & DataStorage::dslTorque) {
499 >      fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero);
500 >      fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero);
501 >    }
502 >    
503 >    fill(pot_row.begin(), pot_row.end(),
504 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
505 >
506 >    fill(pot_col.begin(), pot_col.end(),
507 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
508 >
509 >    fill(expot_row.begin(), expot_row.end(),
510 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
511 >
512 >    fill(expot_col.begin(), expot_col.end(),
513 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
514 >
515 >    if (storageLayout_ & DataStorage::dslParticlePot) {    
516 >      fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(),
517 >           0.0);
518 >      fill(atomColData.particlePot.begin(), atomColData.particlePot.end(),
519 >           0.0);
520 >    }
521 >
522 >    if (storageLayout_ & DataStorage::dslDensity) {      
523 >      fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0);
524 >      fill(atomColData.density.begin(), atomColData.density.end(), 0.0);
525 >    }
526 >
527 >    if (storageLayout_ & DataStorage::dslFunctional) {  
528 >      fill(atomRowData.functional.begin(), atomRowData.functional.end(),
529 >           0.0);
530 >      fill(atomColData.functional.begin(), atomColData.functional.end(),
531 >           0.0);
532 >    }
533 >
534 >    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
535 >      fill(atomRowData.functionalDerivative.begin(),
536 >           atomRowData.functionalDerivative.end(), 0.0);
537 >      fill(atomColData.functionalDerivative.begin(),
538 >           atomColData.functionalDerivative.end(), 0.0);
539 >    }
540 >
541 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
542 >      fill(atomRowData.skippedCharge.begin(),
543 >           atomRowData.skippedCharge.end(), 0.0);
544 >      fill(atomColData.skippedCharge.begin(),
545 >           atomColData.skippedCharge.end(), 0.0);
546 >    }
547 >
548 >    if (storageLayout_ & DataStorage::dslFlucQForce) {      
549 >      fill(atomRowData.flucQFrc.begin(),
550 >           atomRowData.flucQFrc.end(), 0.0);
551 >      fill(atomColData.flucQFrc.begin(),
552 >           atomColData.flucQFrc.end(), 0.0);
553 >    }
554 >
555 >    if (storageLayout_ & DataStorage::dslElectricField) {    
556 >      fill(atomRowData.electricField.begin(),
557 >           atomRowData.electricField.end(), V3Zero);
558 >      fill(atomColData.electricField.begin(),
559 >           atomColData.electricField.end(), V3Zero);
560 >    }
561 >
562 > #endif
563 >    // even in parallel, we need to zero out the local arrays:
564 >
565 >    if (storageLayout_ & DataStorage::dslParticlePot) {      
566 >      fill(snap_->atomData.particlePot.begin(),
567 >           snap_->atomData.particlePot.end(), 0.0);
568 >    }
569 >    
570 >    if (storageLayout_ & DataStorage::dslDensity) {      
571 >      fill(snap_->atomData.density.begin(),
572 >           snap_->atomData.density.end(), 0.0);
573 >    }
574 >
575 >    if (storageLayout_ & DataStorage::dslFunctional) {
576 >      fill(snap_->atomData.functional.begin(),
577 >           snap_->atomData.functional.end(), 0.0);
578 >    }
579 >
580 >    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
581 >      fill(snap_->atomData.functionalDerivative.begin(),
582 >           snap_->atomData.functionalDerivative.end(), 0.0);
583 >    }
584 >
585 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
586 >      fill(snap_->atomData.skippedCharge.begin(),
587 >           snap_->atomData.skippedCharge.end(), 0.0);
588 >    }
589 >
590 >    if (storageLayout_ & DataStorage::dslElectricField) {      
591 >      fill(snap_->atomData.electricField.begin(),
592 >           snap_->atomData.electricField.end(), V3Zero);
593 >    }
594 >  }
595 >
596 >
597 >  void ForceMatrixDecomposition::distributeData()  {
598 >    snap_ = sman_->getCurrentSnapshot();
599 >    storageLayout_ = sman_->getStorageLayout();
600 > #ifdef IS_MPI
601 >    
602 >    // gather up the atomic positions
603 >    AtomPlanVectorRow->gather(snap_->atomData.position,
604 >                              atomRowData.position);
605 >    AtomPlanVectorColumn->gather(snap_->atomData.position,
606 >                                 atomColData.position);
607 >    
608 >    // gather up the cutoff group positions
609 >
610 >    cgPlanVectorRow->gather(snap_->cgData.position,
611 >                            cgRowData.position);
612 >
613 >    cgPlanVectorColumn->gather(snap_->cgData.position,
614 >                               cgColData.position);
615 >
616 >
617 >
618 >    if (needVelocities_) {
619 >      // gather up the atomic velocities
620 >      AtomPlanVectorColumn->gather(snap_->atomData.velocity,
621 >                                   atomColData.velocity);
622 >      
623 >      cgPlanVectorColumn->gather(snap_->cgData.velocity,
624 >                                 cgColData.velocity);
625 >    }
626 >
627 >    
628 >    // if needed, gather the atomic rotation matrices
629 >    if (storageLayout_ & DataStorage::dslAmat) {
630 >      AtomPlanMatrixRow->gather(snap_->atomData.aMat,
631 >                                atomRowData.aMat);
632 >      AtomPlanMatrixColumn->gather(snap_->atomData.aMat,
633 >                                   atomColData.aMat);
634 >    }
635 >
636 >    // if needed, gather the atomic eletrostatic information
637 >    if (storageLayout_ & DataStorage::dslDipole) {
638 >      AtomPlanVectorRow->gather(snap_->atomData.dipole,
639 >                                atomRowData.dipole);
640 >      AtomPlanVectorColumn->gather(snap_->atomData.dipole,
641 >                                   atomColData.dipole);
642 >    }
643 >
644 >    if (storageLayout_ & DataStorage::dslQuadrupole) {
645 >      AtomPlanMatrixRow->gather(snap_->atomData.quadrupole,
646 >                                atomRowData.quadrupole);
647 >      AtomPlanMatrixColumn->gather(snap_->atomData.quadrupole,
648 >                                   atomColData.quadrupole);
649 >    }
650 >        
651 >    // if needed, gather the atomic fluctuating charge values
652 >    if (storageLayout_ & DataStorage::dslFlucQPosition) {
653 >      AtomPlanRealRow->gather(snap_->atomData.flucQPos,
654 >                              atomRowData.flucQPos);
655 >      AtomPlanRealColumn->gather(snap_->atomData.flucQPos,
656 >                                 atomColData.flucQPos);
657 >    }
658 >
659 > #endif      
660 >  }
661 >  
662 >  /* collects information obtained during the pre-pair loop onto local
663 >   * data structures.
664 >   */
665 >  void ForceMatrixDecomposition::collectIntermediateData() {
666 >    snap_ = sman_->getCurrentSnapshot();
667 >    storageLayout_ = sman_->getStorageLayout();
668 > #ifdef IS_MPI
669 >    
670 >    if (storageLayout_ & DataStorage::dslDensity) {
671 >      
672 >      AtomPlanRealRow->scatter(atomRowData.density,
673 >                               snap_->atomData.density);
674 >      
675 >      int n = snap_->atomData.density.size();
676 >      vector<RealType> rho_tmp(n, 0.0);
677 >      AtomPlanRealColumn->scatter(atomColData.density, rho_tmp);
678 >      for (int i = 0; i < n; i++)
679 >        snap_->atomData.density[i] += rho_tmp[i];
680 >    }
681 >
682 >    if (storageLayout_ & DataStorage::dslElectricField) {
683 >      
684 >      AtomPlanVectorRow->scatter(atomRowData.electricField,
685 >                                 snap_->atomData.electricField);
686 >      
687 >      int n = snap_->atomData.electricField.size();
688 >      vector<Vector3d> field_tmp(n, V3Zero);
689 >      AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp);
690 >      for (int i = 0; i < n; i++)
691 >        snap_->atomData.electricField[i] += field_tmp[i];
692 >    }
693 > #endif
694 >  }
695 >
696 >  /*
697 >   * redistributes information obtained during the pre-pair loop out to
698 >   * row and column-indexed data structures
699 >   */
700 >  void ForceMatrixDecomposition::distributeIntermediateData() {
701 >    snap_ = sman_->getCurrentSnapshot();
702 >    storageLayout_ = sman_->getStorageLayout();
703 > #ifdef IS_MPI
704 >    if (storageLayout_ & DataStorage::dslFunctional) {
705 >      AtomPlanRealRow->gather(snap_->atomData.functional,
706 >                              atomRowData.functional);
707 >      AtomPlanRealColumn->gather(snap_->atomData.functional,
708 >                                 atomColData.functional);
709 >    }
710 >    
711 >    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
712 >      AtomPlanRealRow->gather(snap_->atomData.functionalDerivative,
713 >                              atomRowData.functionalDerivative);
714 >      AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative,
715 >                                 atomColData.functionalDerivative);
716 >    }
717 > #endif
718 >  }
719 >  
720 >  
721 >  void ForceMatrixDecomposition::collectData() {
722 >    snap_ = sman_->getCurrentSnapshot();
723 >    storageLayout_ = sman_->getStorageLayout();
724 > #ifdef IS_MPI    
725 >    int n = snap_->atomData.force.size();
726 >    vector<Vector3d> frc_tmp(n, V3Zero);
727 >    
728 >    AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp);
729 >    for (int i = 0; i < n; i++) {
730 >      snap_->atomData.force[i] += frc_tmp[i];
731 >      frc_tmp[i] = 0.0;
732 >    }
733 >    
734 >    AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp);
735 >    for (int i = 0; i < n; i++) {
736 >      snap_->atomData.force[i] += frc_tmp[i];
737 >    }
738 >        
739 >    if (storageLayout_ & DataStorage::dslTorque) {
740 >
741 >      int nt = snap_->atomData.torque.size();
742 >      vector<Vector3d> trq_tmp(nt, V3Zero);
743 >
744 >      AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp);
745 >      for (int i = 0; i < nt; i++) {
746 >        snap_->atomData.torque[i] += trq_tmp[i];
747 >        trq_tmp[i] = 0.0;
748 >      }
749 >      
750 >      AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp);
751 >      for (int i = 0; i < nt; i++)
752 >        snap_->atomData.torque[i] += trq_tmp[i];
753 >    }
754 >
755 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {
756 >
757 >      int ns = snap_->atomData.skippedCharge.size();
758 >      vector<RealType> skch_tmp(ns, 0.0);
759 >
760 >      AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
761 >      for (int i = 0; i < ns; i++) {
762 >        snap_->atomData.skippedCharge[i] += skch_tmp[i];
763 >        skch_tmp[i] = 0.0;
764 >      }
765 >      
766 >      AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
767 >      for (int i = 0; i < ns; i++)
768 >        snap_->atomData.skippedCharge[i] += skch_tmp[i];
769 >            
770 >    }
771 >    
772 >    if (storageLayout_ & DataStorage::dslFlucQForce) {
773 >
774 >      int nq = snap_->atomData.flucQFrc.size();
775 >      vector<RealType> fqfrc_tmp(nq, 0.0);
776 >
777 >      AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp);
778 >      for (int i = 0; i < nq; i++) {
779 >        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
780 >        fqfrc_tmp[i] = 0.0;
781 >      }
782 >      
783 >      AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp);
784 >      for (int i = 0; i < nq; i++)
785 >        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
786 >            
787 >    }
788 >
789 >    nLocal_ = snap_->getNumberOfAtoms();
790 >
791 >    vector<potVec> pot_temp(nLocal_,
792 >                            Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
793 >    vector<potVec> expot_temp(nLocal_,
794 >                              Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
795 >
796 >    // scatter/gather pot_row into the members of my column
797 >          
798 >    AtomPlanPotRow->scatter(pot_row, pot_temp);
799 >    AtomPlanPotRow->scatter(expot_row, expot_temp);
800 >
801 >    for (int ii = 0;  ii < pot_temp.size(); ii++ )
802 >      pairwisePot += pot_temp[ii];
803 >
804 >    for (int ii = 0;  ii < expot_temp.size(); ii++ )
805 >      excludedPot += expot_temp[ii];
806 >        
807 >    if (storageLayout_ & DataStorage::dslParticlePot) {
808 >      // This is the pairwise contribution to the particle pot.  The
809 >      // embedding contribution is added in each of the low level
810 >      // non-bonded routines.  In single processor, this is done in
811 >      // unpackInteractionData, not in collectData.
812 >      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
813 >        for (int i = 0; i < nLocal_; i++) {
814 >          // factor of two is because the total potential terms are divided
815 >          // by 2 in parallel due to row/ column scatter      
816 >          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
817 >        }
818 >      }
819 >    }
820 >
821 >    fill(pot_temp.begin(), pot_temp.end(),
822 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
823 >    fill(expot_temp.begin(), expot_temp.end(),
824 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
825 >      
826 >    AtomPlanPotColumn->scatter(pot_col, pot_temp);    
827 >    AtomPlanPotColumn->scatter(expot_col, expot_temp);    
828 >    
829 >    for (int ii = 0;  ii < pot_temp.size(); ii++ )
830 >      pairwisePot += pot_temp[ii];    
831 >
832 >    for (int ii = 0;  ii < expot_temp.size(); ii++ )
833 >      excludedPot += expot_temp[ii];    
834 >
835 >    if (storageLayout_ & DataStorage::dslParticlePot) {
836 >      // This is the pairwise contribution to the particle pot.  The
837 >      // embedding contribution is added in each of the low level
838 >      // non-bonded routines.  In single processor, this is done in
839 >      // unpackInteractionData, not in collectData.
840 >      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
841 >        for (int i = 0; i < nLocal_; i++) {
842 >          // factor of two is because the total potential terms are divided
843 >          // by 2 in parallel due to row/ column scatter      
844 >          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
845 >        }
846 >      }
847 >    }
848 >    
849 >    if (storageLayout_ & DataStorage::dslParticlePot) {
850 >      int npp = snap_->atomData.particlePot.size();
851 >      vector<RealType> ppot_temp(npp, 0.0);
852 >
853 >      // This is the direct or embedding contribution to the particle
854 >      // pot.
855 >      
856 >      AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp);
857 >      for (int i = 0; i < npp; i++) {
858 >        snap_->atomData.particlePot[i] += ppot_temp[i];
859 >      }
860 >
861 >      fill(ppot_temp.begin(), ppot_temp.end(), 0.0);
862 >      
863 >      AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp);
864 >      for (int i = 0; i < npp; i++) {
865 >        snap_->atomData.particlePot[i] += ppot_temp[i];
866 >      }
867 >    }
868 >
869 >    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
870 >      RealType ploc1 = pairwisePot[ii];
871 >      RealType ploc2 = 0.0;
872 >      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
873 >      pairwisePot[ii] = ploc2;
874 >    }
875 >
876 >    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
877 >      RealType ploc1 = excludedPot[ii];
878 >      RealType ploc2 = 0.0;
879 >      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
880 >      excludedPot[ii] = ploc2;
881 >    }
882 >
883 >    // Here be dragons.
884 >    MPI::Intracomm col = colComm.getComm();
885 >
886 >    col.Allreduce(MPI::IN_PLACE,
887 >                  &snap_->frameData.conductiveHeatFlux[0], 3,
888 >                  MPI::REALTYPE, MPI::SUM);
889 >
890 >
891 > #endif
892 >
893 >  }
894 >
895 >  /**
896 >   * Collects information obtained during the post-pair (and embedding
897 >   * functional) loops onto local data structures.
898 >   */
899 >  void ForceMatrixDecomposition::collectSelfData() {
900 >    snap_ = sman_->getCurrentSnapshot();
901 >    storageLayout_ = sman_->getStorageLayout();
902 >
903 > #ifdef IS_MPI
904 >    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
905 >      RealType ploc1 = embeddingPot[ii];
906 >      RealType ploc2 = 0.0;
907 >      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
908 >      embeddingPot[ii] = ploc2;
909 >    }    
910 >    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
911 >      RealType ploc1 = excludedSelfPot[ii];
912 >      RealType ploc2 = 0.0;
913 >      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
914 >      excludedSelfPot[ii] = ploc2;
915 >    }    
916 > #endif
917 >    
918 >  }
919 >
920 >
921 >
922 >  int ForceMatrixDecomposition::getNAtomsInRow() {  
923 > #ifdef IS_MPI
924 >    return nAtomsInRow_;
925 > #else
926 >    return nLocal_;
927 > #endif
928 >  }
929 >
930 >  /**
931 >   * returns the list of atoms belonging to this group.  
932 >   */
933 >  vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
934 > #ifdef IS_MPI
935 >    return groupListRow_[cg1];
936 > #else
937 >    return groupList_[cg1];
938 > #endif
939 >  }
940 >
941 >  vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
942 > #ifdef IS_MPI
943 >    return groupListCol_[cg2];
944 > #else
945 >    return groupList_[cg2];
946 > #endif
947 >  }
948 >  
949 >  Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){
950 >    Vector3d d;
951 >    
952 > #ifdef IS_MPI
953 >    d = cgColData.position[cg2] - cgRowData.position[cg1];
954 > #else
955 >    d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
956 > #endif
957 >    
958 >    snap_->wrapVector(d);
959 >    return d;    
960 >  }
961 >
962 >  Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){
963 > #ifdef IS_MPI
964 >    return cgColData.velocity[cg2];
965 > #else
966 >    return snap_->cgData.velocity[cg2];
967 > #endif
968 >  }
969 >
970 >  Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){
971 > #ifdef IS_MPI
972 >    return atomColData.velocity[atom2];
973 > #else
974 >    return snap_->atomData.velocity[atom2];
975 > #endif
976 >  }
977 >
978 >
979 >  Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
980 >
981 >    Vector3d d;
982 >    
983 > #ifdef IS_MPI
984 >    d = cgRowData.position[cg1] - atomRowData.position[atom1];
985 > #else
986 >    d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
987 > #endif
988 >
989 >    snap_->wrapVector(d);
990 >    return d;    
991 >  }
992 >  
993 >  Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){
994 >    Vector3d d;
995 >    
996 > #ifdef IS_MPI
997 >    d = cgColData.position[cg2] - atomColData.position[atom2];
998 > #else
999 >    d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
1000 > #endif
1001 >    
1002 >    snap_->wrapVector(d);
1003 >    return d;    
1004 >  }
1005 >
1006 >  RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) {
1007 > #ifdef IS_MPI
1008 >    return massFactorsRow[atom1];
1009 > #else
1010 >    return massFactors[atom1];
1011 > #endif
1012 >  }
1013 >
1014 >  RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
1015 > #ifdef IS_MPI
1016 >    return massFactorsCol[atom2];
1017 > #else
1018 >    return massFactors[atom2];
1019 > #endif
1020 >
1021 >  }
1022 >    
1023 >  Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){
1024 >    Vector3d d;
1025 >    
1026 > #ifdef IS_MPI
1027 >    d = atomColData.position[atom2] - atomRowData.position[atom1];
1028 > #else
1029 >    d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
1030 > #endif
1031 >
1032 >    snap_->wrapVector(d);
1033 >    return d;    
1034 >  }
1035 >
1036 >  vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
1037 >    return excludesForAtom[atom1];
1038 >  }
1039 >
1040 >  /**
1041 >   * We need to exclude some overcounted interactions that result from
1042 >   * the parallel decomposition.
1043 >   */
1044 >  bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) {
1045 >    int unique_id_1, unique_id_2;
1046 >        
1047 > #ifdef IS_MPI
1048 >    // in MPI, we have to look up the unique IDs for each atom
1049 >    unique_id_1 = AtomRowToGlobal[atom1];
1050 >    unique_id_2 = AtomColToGlobal[atom2];
1051 >    // group1 = cgRowToGlobal[cg1];
1052 >    // group2 = cgColToGlobal[cg2];
1053 > #else
1054 >    unique_id_1 = AtomLocalToGlobal[atom1];
1055 >    unique_id_2 = AtomLocalToGlobal[atom2];
1056 >    int group1 = cgLocalToGlobal[cg1];
1057 >    int group2 = cgLocalToGlobal[cg2];
1058 > #endif  
1059 >
1060 >    if (unique_id_1 == unique_id_2) return true;
1061 >
1062 > #ifdef IS_MPI
1063 >    // this prevents us from doing the pair on multiple processors
1064 >    if (unique_id_1 < unique_id_2) {
1065 >      if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
1066 >    } else {
1067 >      if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
1068 >    }
1069 > #endif    
1070 >
1071 > #ifndef IS_MPI
1072 >    if (group1 == group2) {
1073 >      if (unique_id_1 < unique_id_2) return true;
1074 >    }
1075 > #endif
1076 >    
1077 >    return false;
1078 >  }
1079 >
1080 >  /**
1081 >   * We need to handle the interactions for atoms who are involved in
1082 >   * the same rigid body as well as some short range interactions
1083 >   * (bonds, bends, torsions) differently from other interactions.
1084 >   * We'll still visit the pairwise routines, but with a flag that
1085 >   * tells those routines to exclude the pair from direct long range
1086 >   * interactions.  Some indirect interactions (notably reaction
1087 >   * field) must still be handled for these pairs.
1088 >   */
1089 >  bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
1090 >
1091 >    // excludesForAtom was constructed to use row/column indices in the MPI
1092 >    // version, and to use local IDs in the non-MPI version:
1093 >    
1094 >    for (vector<int>::iterator i = excludesForAtom[atom1].begin();
1095 >         i != excludesForAtom[atom1].end(); ++i) {
1096 >      if ( (*i) == atom2 ) return true;
1097 >    }
1098 >
1099 >    return false;
1100 >  }
1101 >
1102 >
1103 >  void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
1104 > #ifdef IS_MPI
1105 >    atomRowData.force[atom1] += fg;
1106 > #else
1107 >    snap_->atomData.force[atom1] += fg;
1108 > #endif
1109 >  }
1110 >
1111 >  void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){
1112 > #ifdef IS_MPI
1113 >    atomColData.force[atom2] += fg;
1114 > #else
1115 >    snap_->atomData.force[atom2] += fg;
1116 > #endif
1117 >  }
1118 >
1119 >    // filling interaction blocks with pointers
1120 >  void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
1121 >                                                     int atom1, int atom2) {
1122 >
1123 >    idat.excluded = excludeAtomPair(atom1, atom2);
1124 >  
1125 > #ifdef IS_MPI
1126 >    idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]);
1127 >    //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
1128 >    //                         ff_->getAtomType(identsCol[atom2]) );
1129 >    
1130 >    if (storageLayout_ & DataStorage::dslAmat) {
1131 >      idat.A1 = &(atomRowData.aMat[atom1]);
1132 >      idat.A2 = &(atomColData.aMat[atom2]);
1133 >    }
1134 >    
1135 >    if (storageLayout_ & DataStorage::dslTorque) {
1136 >      idat.t1 = &(atomRowData.torque[atom1]);
1137 >      idat.t2 = &(atomColData.torque[atom2]);
1138 >    }
1139 >
1140 >    if (storageLayout_ & DataStorage::dslDipole) {
1141 >      idat.dipole1 = &(atomRowData.dipole[atom1]);
1142 >      idat.dipole2 = &(atomColData.dipole[atom2]);
1143 >    }
1144 >
1145 >    if (storageLayout_ & DataStorage::dslQuadrupole) {
1146 >      idat.quadrupole1 = &(atomRowData.quadrupole[atom1]);
1147 >      idat.quadrupole2 = &(atomColData.quadrupole[atom2]);
1148 >    }
1149 >
1150 >    if (storageLayout_ & DataStorage::dslDensity) {
1151 >      idat.rho1 = &(atomRowData.density[atom1]);
1152 >      idat.rho2 = &(atomColData.density[atom2]);
1153 >    }
1154 >
1155 >    if (storageLayout_ & DataStorage::dslFunctional) {
1156 >      idat.frho1 = &(atomRowData.functional[atom1]);
1157 >      idat.frho2 = &(atomColData.functional[atom2]);
1158 >    }
1159 >
1160 >    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1161 >      idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
1162 >      idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
1163 >    }
1164  
1165 +    if (storageLayout_ & DataStorage::dslParticlePot) {
1166 +      idat.particlePot1 = &(atomRowData.particlePot[atom1]);
1167 +      idat.particlePot2 = &(atomColData.particlePot[atom2]);
1168 +    }
1169  
1170 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {              
1171 +      idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
1172 +      idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
1173 +    }
1174 +
1175 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1176 +      idat.flucQ1 = &(atomRowData.flucQPos[atom1]);
1177 +      idat.flucQ2 = &(atomColData.flucQPos[atom2]);
1178 +    }
1179 +
1180 + #else
1181 +    
1182 +    idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]);
1183 +
1184 +    if (storageLayout_ & DataStorage::dslAmat) {
1185 +      idat.A1 = &(snap_->atomData.aMat[atom1]);
1186 +      idat.A2 = &(snap_->atomData.aMat[atom2]);
1187 +    }
1188 +
1189 +    if (storageLayout_ & DataStorage::dslTorque) {
1190 +      idat.t1 = &(snap_->atomData.torque[atom1]);
1191 +      idat.t2 = &(snap_->atomData.torque[atom2]);
1192 +    }
1193 +
1194 +    if (storageLayout_ & DataStorage::dslDipole) {
1195 +      idat.dipole1 = &(snap_->atomData.dipole[atom1]);
1196 +      idat.dipole2 = &(snap_->atomData.dipole[atom2]);
1197 +    }
1198 +
1199 +    if (storageLayout_ & DataStorage::dslQuadrupole) {
1200 +      idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]);
1201 +      idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]);
1202 +    }
1203 +
1204 +    if (storageLayout_ & DataStorage::dslDensity) {    
1205 +      idat.rho1 = &(snap_->atomData.density[atom1]);
1206 +      idat.rho2 = &(snap_->atomData.density[atom2]);
1207 +    }
1208 +
1209 +    if (storageLayout_ & DataStorage::dslFunctional) {
1210 +      idat.frho1 = &(snap_->atomData.functional[atom1]);
1211 +      idat.frho2 = &(snap_->atomData.functional[atom2]);
1212 +    }
1213 +
1214 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1215 +      idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
1216 +      idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
1217 +    }
1218 +
1219 +    if (storageLayout_ & DataStorage::dslParticlePot) {
1220 +      idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
1221 +      idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
1222 +    }
1223 +
1224 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
1225 +      idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
1226 +      idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1227 +    }
1228 +
1229 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1230 +      idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]);
1231 +      idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]);
1232 +    }
1233 +
1234 + #endif
1235 +  }
1236 +
1237 +  
1238 +  void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {    
1239 + #ifdef IS_MPI
1240 +    pot_row[atom1] += RealType(0.5) *  *(idat.pot);
1241 +    pot_col[atom2] += RealType(0.5) *  *(idat.pot);
1242 +    expot_row[atom1] += RealType(0.5) *  *(idat.excludedPot);
1243 +    expot_col[atom2] += RealType(0.5) *  *(idat.excludedPot);
1244 +
1245 +    atomRowData.force[atom1] += *(idat.f1);
1246 +    atomColData.force[atom2] -= *(idat.f1);
1247 +
1248 +    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1249 +      atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1250 +      atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1251 +    }
1252 +
1253 +    if (storageLayout_ & DataStorage::dslElectricField) {              
1254 +      atomRowData.electricField[atom1] += *(idat.eField1);
1255 +      atomColData.electricField[atom2] += *(idat.eField2);
1256 +    }
1257 +
1258 + #else
1259 +    pairwisePot += *(idat.pot);
1260 +    excludedPot += *(idat.excludedPot);
1261 +
1262 +    snap_->atomData.force[atom1] += *(idat.f1);
1263 +    snap_->atomData.force[atom2] -= *(idat.f1);
1264 +
1265 +    if (idat.doParticlePot) {
1266 +      // This is the pairwise contribution to the particle pot.  The
1267 +      // embedding contribution is added in each of the low level
1268 +      // non-bonded routines.  In parallel, this calculation is done
1269 +      // in collectData, not in unpackInteractionData.
1270 +      snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw);
1271 +      snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw);
1272 +    }
1273 +    
1274 +    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1275 +      snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1276 +      snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1277 +    }
1278 +
1279 +    if (storageLayout_ & DataStorage::dslElectricField) {              
1280 +      snap_->atomData.electricField[atom1] += *(idat.eField1);
1281 +      snap_->atomData.electricField[atom2] += *(idat.eField2);
1282 +    }
1283 +
1284 + #endif
1285 +    
1286 +  }
1287 +
1288 +  /*
1289 +   * buildNeighborList
1290 +   *
1291 +   * first element of pair is row-indexed CutoffGroup
1292 +   * second element of pair is column-indexed CutoffGroup
1293 +   */
1294 +  vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
1295 +      
1296 +    vector<pair<int, int> > neighborList;
1297 +    groupCutoffs cuts;
1298 +    bool doAllPairs = false;
1299 +
1300 + #ifdef IS_MPI
1301 +    cellListRow_.clear();
1302 +    cellListCol_.clear();
1303 + #else
1304 +    cellList_.clear();
1305 + #endif
1306 +
1307 +    RealType rList_ = (largestRcut_ + skinThickness_);
1308 +    RealType rl2 = rList_ * rList_;
1309 +    Snapshot* snap_ = sman_->getCurrentSnapshot();
1310 +    Mat3x3d Hmat = snap_->getHmat();
1311 +    Vector3d Hx = Hmat.getColumn(0);
1312 +    Vector3d Hy = Hmat.getColumn(1);
1313 +    Vector3d Hz = Hmat.getColumn(2);
1314 +
1315 +    nCells_.x() = (int) ( Hx.length() )/ rList_;
1316 +    nCells_.y() = (int) ( Hy.length() )/ rList_;
1317 +    nCells_.z() = (int) ( Hz.length() )/ rList_;
1318 +
1319 +    // handle small boxes where the cell offsets can end up repeating cells
1320 +    
1321 +    if (nCells_.x() < 3) doAllPairs = true;
1322 +    if (nCells_.y() < 3) doAllPairs = true;
1323 +    if (nCells_.z() < 3) doAllPairs = true;
1324 +
1325 +    Mat3x3d invHmat = snap_->getInvHmat();
1326 +    Vector3d rs, scaled, dr;
1327 +    Vector3i whichCell;
1328 +    int cellIndex;
1329 +    int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1330 +
1331 + #ifdef IS_MPI
1332 +    cellListRow_.resize(nCtot);
1333 +    cellListCol_.resize(nCtot);
1334 + #else
1335 +    cellList_.resize(nCtot);
1336 + #endif
1337 +
1338 +    if (!doAllPairs) {
1339 + #ifdef IS_MPI
1340 +
1341 +      for (int i = 0; i < nGroupsInRow_; i++) {
1342 +        rs = cgRowData.position[i];
1343 +        
1344 +        // scaled positions relative to the box vectors
1345 +        scaled = invHmat * rs;
1346 +        
1347 +        // wrap the vector back into the unit box by subtracting integer box
1348 +        // numbers
1349 +        for (int j = 0; j < 3; j++) {
1350 +          scaled[j] -= roundMe(scaled[j]);
1351 +          scaled[j] += 0.5;
1352 +          // Handle the special case when an object is exactly on the
1353 +          // boundary (a scaled coordinate of 1.0 is the same as
1354 +          // scaled coordinate of 0.0)
1355 +          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1356 +        }
1357 +        
1358 +        // find xyz-indices of cell that cutoffGroup is in.
1359 +        whichCell.x() = nCells_.x() * scaled.x();
1360 +        whichCell.y() = nCells_.y() * scaled.y();
1361 +        whichCell.z() = nCells_.z() * scaled.z();
1362 +        
1363 +        // find single index of this cell:
1364 +        cellIndex = Vlinear(whichCell, nCells_);
1365 +        
1366 +        // add this cutoff group to the list of groups in this cell;
1367 +        cellListRow_[cellIndex].push_back(i);
1368 +      }
1369 +      for (int i = 0; i < nGroupsInCol_; i++) {
1370 +        rs = cgColData.position[i];
1371 +        
1372 +        // scaled positions relative to the box vectors
1373 +        scaled = invHmat * rs;
1374 +        
1375 +        // wrap the vector back into the unit box by subtracting integer box
1376 +        // numbers
1377 +        for (int j = 0; j < 3; j++) {
1378 +          scaled[j] -= roundMe(scaled[j]);
1379 +          scaled[j] += 0.5;
1380 +          // Handle the special case when an object is exactly on the
1381 +          // boundary (a scaled coordinate of 1.0 is the same as
1382 +          // scaled coordinate of 0.0)
1383 +          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1384 +        }
1385 +        
1386 +        // find xyz-indices of cell that cutoffGroup is in.
1387 +        whichCell.x() = nCells_.x() * scaled.x();
1388 +        whichCell.y() = nCells_.y() * scaled.y();
1389 +        whichCell.z() = nCells_.z() * scaled.z();
1390 +        
1391 +        // find single index of this cell:
1392 +        cellIndex = Vlinear(whichCell, nCells_);
1393 +        
1394 +        // add this cutoff group to the list of groups in this cell;
1395 +        cellListCol_[cellIndex].push_back(i);
1396 +      }
1397 +    
1398 + #else
1399 +      for (int i = 0; i < nGroups_; i++) {
1400 +        rs = snap_->cgData.position[i];
1401 +        
1402 +        // scaled positions relative to the box vectors
1403 +        scaled = invHmat * rs;
1404 +        
1405 +        // wrap the vector back into the unit box by subtracting integer box
1406 +        // numbers
1407 +        for (int j = 0; j < 3; j++) {
1408 +          scaled[j] -= roundMe(scaled[j]);
1409 +          scaled[j] += 0.5;
1410 +          // Handle the special case when an object is exactly on the
1411 +          // boundary (a scaled coordinate of 1.0 is the same as
1412 +          // scaled coordinate of 0.0)
1413 +          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1414 +        }
1415 +        
1416 +        // find xyz-indices of cell that cutoffGroup is in.
1417 +        whichCell.x() = nCells_.x() * scaled.x();
1418 +        whichCell.y() = nCells_.y() * scaled.y();
1419 +        whichCell.z() = nCells_.z() * scaled.z();
1420 +        
1421 +        // find single index of this cell:
1422 +        cellIndex = Vlinear(whichCell, nCells_);
1423 +        
1424 +        // add this cutoff group to the list of groups in this cell;
1425 +        cellList_[cellIndex].push_back(i);
1426 +      }
1427 +
1428 + #endif
1429 +
1430 +      for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1431 +        for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1432 +          for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1433 +            Vector3i m1v(m1x, m1y, m1z);
1434 +            int m1 = Vlinear(m1v, nCells_);
1435 +            
1436 +            for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1437 +                 os != cellOffsets_.end(); ++os) {
1438 +              
1439 +              Vector3i m2v = m1v + (*os);
1440 +            
1441 +
1442 +              if (m2v.x() >= nCells_.x()) {
1443 +                m2v.x() = 0;          
1444 +              } else if (m2v.x() < 0) {
1445 +                m2v.x() = nCells_.x() - 1;
1446 +              }
1447 +              
1448 +              if (m2v.y() >= nCells_.y()) {
1449 +                m2v.y() = 0;          
1450 +              } else if (m2v.y() < 0) {
1451 +                m2v.y() = nCells_.y() - 1;
1452 +              }
1453 +              
1454 +              if (m2v.z() >= nCells_.z()) {
1455 +                m2v.z() = 0;          
1456 +              } else if (m2v.z() < 0) {
1457 +                m2v.z() = nCells_.z() - 1;
1458 +              }
1459 +
1460 +              int m2 = Vlinear (m2v, nCells_);
1461 +              
1462 + #ifdef IS_MPI
1463 +              for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1464 +                   j1 != cellListRow_[m1].end(); ++j1) {
1465 +                for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1466 +                     j2 != cellListCol_[m2].end(); ++j2) {
1467 +                  
1468 +                  // In parallel, we need to visit *all* pairs of row
1469 +                  // & column indicies and will divide labor in the
1470 +                  // force evaluation later.
1471 +                  dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1472 +                  snap_->wrapVector(dr);
1473 +                  cuts = getGroupCutoffs( (*j1), (*j2) );
1474 +                  if (dr.lengthSquare() < cuts.third) {
1475 +                    neighborList.push_back(make_pair((*j1), (*j2)));
1476 +                  }                  
1477 +                }
1478 +              }
1479 + #else
1480 +              for (vector<int>::iterator j1 = cellList_[m1].begin();
1481 +                   j1 != cellList_[m1].end(); ++j1) {
1482 +                for (vector<int>::iterator j2 = cellList_[m2].begin();
1483 +                     j2 != cellList_[m2].end(); ++j2) {
1484 +    
1485 +                  // Always do this if we're in different cells or if
1486 +                  // we're in the same cell and the global index of
1487 +                  // the j2 cutoff group is greater than or equal to
1488 +                  // the j1 cutoff group.  Note that Rappaport's code
1489 +                  // has a "less than" conditional here, but that
1490 +                  // deals with atom-by-atom computation.  OpenMD
1491 +                  // allows atoms within a single cutoff group to
1492 +                  // interact with each other.
1493 +
1494 +
1495 +
1496 +                  if (m2 != m1 || (*j2) >= (*j1) ) {
1497 +
1498 +                    dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1499 +                    snap_->wrapVector(dr);
1500 +                    cuts = getGroupCutoffs( (*j1), (*j2) );
1501 +                    if (dr.lengthSquare() < cuts.third) {
1502 +                      neighborList.push_back(make_pair((*j1), (*j2)));
1503 +                    }
1504 +                  }
1505 +                }
1506 +              }
1507 + #endif
1508 +            }
1509 +          }
1510 +        }
1511 +      }
1512 +    } else {
1513 +      // branch to do all cutoff group pairs
1514 + #ifdef IS_MPI
1515 +      for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1516 +        for (int j2 = 0; j2 < nGroupsInCol_; j2++) {    
1517 +          dr = cgColData.position[j2] - cgRowData.position[j1];
1518 +          snap_->wrapVector(dr);
1519 +          cuts = getGroupCutoffs( j1, j2 );
1520 +          if (dr.lengthSquare() < cuts.third) {
1521 +            neighborList.push_back(make_pair(j1, j2));
1522 +          }
1523 +        }
1524 +      }      
1525 + #else
1526 +      // include all groups here.
1527 +      for (int j1 = 0; j1 < nGroups_; j1++) {
1528 +        // include self group interactions j2 == j1
1529 +        for (int j2 = j1; j2 < nGroups_; j2++) {
1530 +          dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1531 +          snap_->wrapVector(dr);
1532 +          cuts = getGroupCutoffs( j1, j2 );
1533 +          if (dr.lengthSquare() < cuts.third) {
1534 +            neighborList.push_back(make_pair(j1, j2));
1535 +          }
1536 +        }    
1537 +      }
1538 + #endif
1539 +    }
1540 +      
1541 +    // save the local cutoff group positions for the check that is
1542 +    // done on each loop:
1543 +    saved_CG_positions_.clear();
1544 +    for (int i = 0; i < nGroups_; i++)
1545 +      saved_CG_positions_.push_back(snap_->cgData.position[i]);
1546 +    
1547 +    return neighborList;
1548 +  }
1549 + } //end namespace OpenMD

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines