ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/parallel/ForceMatrixDecomposition.cpp
(Generate patch)

Comparing branches/development/src/parallel/ForceMatrixDecomposition.cpp (file contents):
Revision 1713 by gezelter, Sat May 19 14:21:02 2012 UTC vs.
Revision 1850 by gezelter, Wed Feb 20 15:39:39 2013 UTC

# Line 35 | Line 35
35   *                                                                      
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 < * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39   * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40   * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
# Line 95 | Line 95 | namespace OpenMD {
95      storageLayout_ = sman_->getStorageLayout();
96      ff_ = info_->getForceField();
97      nLocal_ = snap_->getNumberOfAtoms();
98 <    
98 >  
99      nGroups_ = info_->getNLocalCutoffGroups();
100      // gather the information for atomtype IDs (atids):
101      idents = info_->getIdentArray();
# Line 109 | Line 109 | namespace OpenMD {
109      PairList* oneTwo = info_->getOneTwoInteractions();
110      PairList* oneThree = info_->getOneThreeInteractions();
111      PairList* oneFour = info_->getOneFourInteractions();
112 <
112 >    
113 >    if (needVelocities_)
114 >      snap_->cgData.setStorageLayout(DataStorage::dslPosition |
115 >                                     DataStorage::dslVelocity);
116 >    else
117 >      snap_->cgData.setStorageLayout(DataStorage::dslPosition);
118 >    
119   #ifdef IS_MPI
120  
121      MPI::Intracomm row = rowComm.getComm();
# Line 145 | Line 151 | namespace OpenMD {
151      cgRowData.resize(nGroupsInRow_);
152      cgRowData.setStorageLayout(DataStorage::dslPosition);
153      cgColData.resize(nGroupsInCol_);
154 <    cgColData.setStorageLayout(DataStorage::dslPosition);
155 <        
154 >    if (needVelocities_)
155 >      // we only need column velocities if we need them.
156 >      cgColData.setStorageLayout(DataStorage::dslPosition |
157 >                                 DataStorage::dslVelocity);
158 >    else    
159 >      cgColData.setStorageLayout(DataStorage::dslPosition);
160 >      
161      identsRow.resize(nAtomsInRow_);
162      identsCol.resize(nAtomsInCol_);
163      
# Line 164 | Line 175 | namespace OpenMD {
175  
176      pot_row.resize(nAtomsInRow_);
177      pot_col.resize(nAtomsInCol_);
178 +
179 +    expot_row.resize(nAtomsInRow_);
180 +    expot_col.resize(nAtomsInCol_);
181  
182      AtomRowToGlobal.resize(nAtomsInRow_);
183      AtomColToGlobal.resize(nAtomsInCol_);
# Line 296 | Line 310 | namespace OpenMD {
310      
311      RealType tol = 1e-6;
312      largestRcut_ = 0.0;
299    RealType rc;
313      int atid;
314      set<AtomType*> atypes = info_->getSimulatedAtomTypes();
315      
# Line 381 | Line 394 | namespace OpenMD {
394        }
395        
396        bool gTypeFound = false;
397 <      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
397 >      for (unsigned int gt = 0; gt < gTypeCutoffs.size(); gt++) {
398          if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
399            groupToGtype[cg1] = gt;
400            gTypeFound = true;
# Line 406 | Line 419 | namespace OpenMD {
419      
420      RealType tradRcut = groupMax;
421  
422 <    for (int i = 0; i < gTypeCutoffs.size();  i++) {
423 <      for (int j = 0; j < gTypeCutoffs.size();  j++) {      
422 >    for (unsigned int i = 0; i < gTypeCutoffs.size();  i++) {
423 >      for (unsigned int j = 0; j < gTypeCutoffs.size();  j++) {      
424          RealType thisRcut;
425          switch(cutoffPolicy_) {
426          case TRADITIONAL:
# Line 450 | Line 463 | namespace OpenMD {
463      }
464    }
465  
453
466    groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
467      int i, j;  
468   #ifdef IS_MPI
# Line 464 | Line 476 | namespace OpenMD {
476    }
477  
478    int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
479 <    for (int j = 0; j < toposForAtom[atom1].size(); j++) {
479 >    for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) {
480        if (toposForAtom[atom1][j] == atom2)
481          return topoDist[atom1][j];
482      }
# Line 474 | Line 486 | namespace OpenMD {
486    void ForceMatrixDecomposition::zeroWorkArrays() {
487      pairwisePot = 0.0;
488      embeddingPot = 0.0;
489 +    excludedPot = 0.0;
490 +    excludedSelfPot = 0.0;
491  
492   #ifdef IS_MPI
493      if (storageLayout_ & DataStorage::dslForce) {
# Line 492 | Line 506 | namespace OpenMD {
506      fill(pot_col.begin(), pot_col.end(),
507           Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
508  
509 +    fill(expot_row.begin(), expot_row.end(),
510 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
511 +
512 +    fill(expot_col.begin(), expot_col.end(),
513 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
514 +
515      if (storageLayout_ & DataStorage::dslParticlePot) {    
516        fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(),
517             0.0);
# Line 523 | Line 543 | namespace OpenMD {
543             atomRowData.skippedCharge.end(), 0.0);
544        fill(atomColData.skippedCharge.begin(),
545             atomColData.skippedCharge.end(), 0.0);
546 +    }
547 +
548 +    if (storageLayout_ & DataStorage::dslFlucQForce) {      
549 +      fill(atomRowData.flucQFrc.begin(),
550 +           atomRowData.flucQFrc.end(), 0.0);
551 +      fill(atomColData.flucQFrc.begin(),
552 +           atomColData.flucQFrc.end(), 0.0);
553      }
554  
555      if (storageLayout_ & DataStorage::dslElectricField) {    
# Line 531 | Line 558 | namespace OpenMD {
558        fill(atomColData.electricField.begin(),
559             atomColData.electricField.end(), V3Zero);
560      }
534    if (storageLayout_ & DataStorage::dslFlucQForce) {    
535      fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(),
536           0.0);
537      fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(),
538           0.0);
539    }
561  
562   #endif
563      // even in parallel, we need to zero out the local arrays:
# Line 592 | Line 613 | namespace OpenMD {
613      cgPlanVectorColumn->gather(snap_->cgData.position,
614                                 cgColData.position);
615  
616 +
617 +
618 +    if (needVelocities_) {
619 +      // gather up the atomic velocities
620 +      AtomPlanVectorColumn->gather(snap_->atomData.velocity,
621 +                                   atomColData.velocity);
622 +      
623 +      cgPlanVectorColumn->gather(snap_->cgData.velocity,
624 +                                 cgColData.velocity);
625 +    }
626 +
627      
628      // if needed, gather the atomic rotation matrices
629      if (storageLayout_ & DataStorage::dslAmat) {
# Line 600 | Line 632 | namespace OpenMD {
632        AtomPlanMatrixColumn->gather(snap_->atomData.aMat,
633                                     atomColData.aMat);
634      }
635 <    
636 <    // if needed, gather the atomic eletrostatic frames
637 <    if (storageLayout_ & DataStorage::dslElectroFrame) {
638 <      AtomPlanMatrixRow->gather(snap_->atomData.electroFrame,
639 <                                atomRowData.electroFrame);
640 <      AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame,
641 <                                   atomColData.electroFrame);
635 >
636 >    // if needed, gather the atomic eletrostatic information
637 >    if (storageLayout_ & DataStorage::dslDipole) {
638 >      AtomPlanVectorRow->gather(snap_->atomData.dipole,
639 >                                atomRowData.dipole);
640 >      AtomPlanVectorColumn->gather(snap_->atomData.dipole,
641 >                                   atomColData.dipole);
642      }
643  
644 +    if (storageLayout_ & DataStorage::dslQuadrupole) {
645 +      AtomPlanMatrixRow->gather(snap_->atomData.quadrupole,
646 +                                atomRowData.quadrupole);
647 +      AtomPlanMatrixColumn->gather(snap_->atomData.quadrupole,
648 +                                   atomColData.quadrupole);
649 +    }
650 +        
651      // if needed, gather the atomic fluctuating charge values
652      if (storageLayout_ & DataStorage::dslFlucQPosition) {
653        AtomPlanRealRow->gather(snap_->atomData.flucQPos,
# Line 640 | Line 679 | namespace OpenMD {
679          snap_->atomData.density[i] += rho_tmp[i];
680      }
681  
682 +    // this isn't necessary if we don't have polarizable atoms, but
683 +    // we'll leave it here for now.
684      if (storageLayout_ & DataStorage::dslElectricField) {
685        
686        AtomPlanVectorRow->scatter(atomRowData.electricField,
# Line 647 | Line 688 | namespace OpenMD {
688        
689        int n = snap_->atomData.electricField.size();
690        vector<Vector3d> field_tmp(n, V3Zero);
691 <      AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp);
691 >      AtomPlanVectorColumn->scatter(atomColData.electricField,
692 >                                    field_tmp);
693        for (int i = 0; i < n; i++)
694          snap_->atomData.electricField[i] += field_tmp[i];
695      }
# Line 747 | Line 789 | namespace OpenMD {
789              
790      }
791  
792 +    if (storageLayout_ & DataStorage::dslElectricField) {
793 +
794 +      int nef = snap_->atomData.electricField.size();
795 +      vector<Vector3d> efield_tmp(nef, V3Zero);
796 +
797 +      AtomPlanVectorRow->scatter(atomRowData.electricField, efield_tmp);
798 +      for (int i = 0; i < nef; i++) {
799 +        snap_->atomData.electricField[i] += efield_tmp[i];
800 +        efield_tmp[i] = 0.0;
801 +      }
802 +      
803 +      AtomPlanVectorColumn->scatter(atomColData.electricField, efield_tmp);
804 +      for (int i = 0; i < nef; i++)
805 +        snap_->atomData.electricField[i] += efield_tmp[i];
806 +    }
807 +
808 +
809      nLocal_ = snap_->getNumberOfAtoms();
810  
811      vector<potVec> pot_temp(nLocal_,
812                              Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
813 +    vector<potVec> expot_temp(nLocal_,
814 +                              Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
815  
816      // scatter/gather pot_row into the members of my column
817            
818      AtomPlanPotRow->scatter(pot_row, pot_temp);
819 +    AtomPlanPotRow->scatter(expot_row, expot_temp);
820  
821 <    for (int ii = 0;  ii < pot_temp.size(); ii++ )
821 >    for (int ii = 0;  ii < pot_temp.size(); ii++ )
822        pairwisePot += pot_temp[ii];
823 <    
823 >
824 >    for (int ii = 0;  ii < expot_temp.size(); ii++ )
825 >      excludedPot += expot_temp[ii];
826 >        
827 >    if (storageLayout_ & DataStorage::dslParticlePot) {
828 >      // This is the pairwise contribution to the particle pot.  The
829 >      // embedding contribution is added in each of the low level
830 >      // non-bonded routines.  In single processor, this is done in
831 >      // unpackInteractionData, not in collectData.
832 >      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
833 >        for (int i = 0; i < nLocal_; i++) {
834 >          // factor of two is because the total potential terms are divided
835 >          // by 2 in parallel due to row/ column scatter      
836 >          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
837 >        }
838 >      }
839 >    }
840 >
841      fill(pot_temp.begin(), pot_temp.end(),
842           Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
843 +    fill(expot_temp.begin(), expot_temp.end(),
844 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
845        
846      AtomPlanPotColumn->scatter(pot_col, pot_temp);    
847 +    AtomPlanPotColumn->scatter(expot_col, expot_temp);    
848      
849      for (int ii = 0;  ii < pot_temp.size(); ii++ )
850        pairwisePot += pot_temp[ii];    
851 +
852 +    for (int ii = 0;  ii < expot_temp.size(); ii++ )
853 +      excludedPot += expot_temp[ii];    
854 +
855 +    if (storageLayout_ & DataStorage::dslParticlePot) {
856 +      // This is the pairwise contribution to the particle pot.  The
857 +      // embedding contribution is added in each of the low level
858 +      // non-bonded routines.  In single processor, this is done in
859 +      // unpackInteractionData, not in collectData.
860 +      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
861 +        for (int i = 0; i < nLocal_; i++) {
862 +          // factor of two is because the total potential terms are divided
863 +          // by 2 in parallel due to row/ column scatter      
864 +          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
865 +        }
866 +      }
867 +    }
868      
869 +    if (storageLayout_ & DataStorage::dslParticlePot) {
870 +      int npp = snap_->atomData.particlePot.size();
871 +      vector<RealType> ppot_temp(npp, 0.0);
872 +
873 +      // This is the direct or embedding contribution to the particle
874 +      // pot.
875 +      
876 +      AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp);
877 +      for (int i = 0; i < npp; i++) {
878 +        snap_->atomData.particlePot[i] += ppot_temp[i];
879 +      }
880 +
881 +      fill(ppot_temp.begin(), ppot_temp.end(), 0.0);
882 +      
883 +      AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp);
884 +      for (int i = 0; i < npp; i++) {
885 +        snap_->atomData.particlePot[i] += ppot_temp[i];
886 +      }
887 +    }
888 +
889      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
890        RealType ploc1 = pairwisePot[ii];
891        RealType ploc2 = 0.0;
# Line 775 | Line 894 | namespace OpenMD {
894      }
895  
896      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
897 <      RealType ploc1 = embeddingPot[ii];
897 >      RealType ploc1 = excludedPot[ii];
898        RealType ploc2 = 0.0;
899        MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
900 <      embeddingPot[ii] = ploc2;
900 >      excludedPot[ii] = ploc2;
901      }
902  
903 +    // Here be dragons.
904 +    MPI::Intracomm col = colComm.getComm();
905 +
906 +    col.Allreduce(MPI::IN_PLACE,
907 +                  &snap_->frameData.conductiveHeatFlux[0], 3,
908 +                  MPI::REALTYPE, MPI::SUM);
909 +
910 +
911   #endif
912  
913    }
914  
915 +  /**
916 +   * Collects information obtained during the post-pair (and embedding
917 +   * functional) loops onto local data structures.
918 +   */
919 +  void ForceMatrixDecomposition::collectSelfData() {
920 +    snap_ = sman_->getCurrentSnapshot();
921 +    storageLayout_ = sman_->getStorageLayout();
922 +
923 + #ifdef IS_MPI
924 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
925 +      RealType ploc1 = embeddingPot[ii];
926 +      RealType ploc2 = 0.0;
927 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
928 +      embeddingPot[ii] = ploc2;
929 +    }    
930 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
931 +      RealType ploc1 = excludedSelfPot[ii];
932 +      RealType ploc2 = 0.0;
933 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
934 +      excludedSelfPot[ii] = ploc2;
935 +    }    
936 + #endif
937 +    
938 +  }
939 +
940 +
941 +
942    int ForceMatrixDecomposition::getNAtomsInRow() {  
943   #ifdef IS_MPI
944      return nAtomsInRow_;
# Line 825 | Line 979 | namespace OpenMD {
979      return d;    
980    }
981  
982 +  Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){
983 + #ifdef IS_MPI
984 +    return cgColData.velocity[cg2];
985 + #else
986 +    return snap_->cgData.velocity[cg2];
987 + #endif
988 +  }
989  
990 +  Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){
991 + #ifdef IS_MPI
992 +    return atomColData.velocity[atom2];
993 + #else
994 +    return snap_->atomData.velocity[atom2];
995 + #endif
996 +  }
997 +
998 +
999    Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
1000  
1001      Vector3d d;
# Line 891 | Line 1061 | namespace OpenMD {
1061     * We need to exclude some overcounted interactions that result from
1062     * the parallel decomposition.
1063     */
1064 <  bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) {
1064 >  bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) {
1065      int unique_id_1, unique_id_2;
1066          
1067   #ifdef IS_MPI
1068      // in MPI, we have to look up the unique IDs for each atom
1069      unique_id_1 = AtomRowToGlobal[atom1];
1070      unique_id_2 = AtomColToGlobal[atom2];
1071 +    // group1 = cgRowToGlobal[cg1];
1072 +    // group2 = cgColToGlobal[cg2];
1073   #else
1074      unique_id_1 = AtomLocalToGlobal[atom1];
1075      unique_id_2 = AtomLocalToGlobal[atom2];
1076 +    int group1 = cgLocalToGlobal[cg1];
1077 +    int group2 = cgLocalToGlobal[cg2];
1078   #endif  
1079  
1080      if (unique_id_1 == unique_id_2) return true;
# Line 912 | Line 1086 | namespace OpenMD {
1086      } else {
1087        if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
1088      }
1089 + #endif    
1090 +
1091 + #ifndef IS_MPI
1092 +    if (group1 == group2) {
1093 +      if (unique_id_1 < unique_id_2) return true;
1094 +    }
1095   #endif
1096      
1097      return false;
# Line 972 | Line 1152 | namespace OpenMD {
1152        idat.A2 = &(atomColData.aMat[atom2]);
1153      }
1154      
975    if (storageLayout_ & DataStorage::dslElectroFrame) {
976      idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
977      idat.eFrame2 = &(atomColData.electroFrame[atom2]);
978    }
979
1155      if (storageLayout_ & DataStorage::dslTorque) {
1156        idat.t1 = &(atomRowData.torque[atom1]);
1157        idat.t2 = &(atomColData.torque[atom2]);
1158 +    }
1159 +
1160 +    if (storageLayout_ & DataStorage::dslDipole) {
1161 +      idat.dipole1 = &(atomRowData.dipole[atom1]);
1162 +      idat.dipole2 = &(atomColData.dipole[atom2]);
1163 +    }
1164 +
1165 +    if (storageLayout_ & DataStorage::dslQuadrupole) {
1166 +      idat.quadrupole1 = &(atomRowData.quadrupole[atom1]);
1167 +      idat.quadrupole2 = &(atomColData.quadrupole[atom2]);
1168      }
1169  
1170      if (storageLayout_ & DataStorage::dslDensity) {
# Line 1007 | Line 1192 | namespace OpenMD {
1192        idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
1193      }
1194  
1195 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1196 +      idat.flucQ1 = &(atomRowData.flucQPos[atom1]);
1197 +      idat.flucQ2 = &(atomColData.flucQPos[atom2]);
1198 +    }
1199 +
1200   #else
1201      
1012
1013    // cerr << "atoms = " << atom1 << " " << atom2 << "\n";
1014    // cerr << "pos1 = " << snap_->atomData.position[atom1] << "\n";
1015    // cerr << "pos2 = " << snap_->atomData.position[atom2] << "\n";
1016
1202      idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]);
1018    //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]),
1019    //                         ff_->getAtomType(idents[atom2]) );
1203  
1204      if (storageLayout_ & DataStorage::dslAmat) {
1205        idat.A1 = &(snap_->atomData.aMat[atom1]);
1206        idat.A2 = &(snap_->atomData.aMat[atom2]);
1207      }
1208  
1209 <    if (storageLayout_ & DataStorage::dslElectroFrame) {
1027 <      idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
1028 <      idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
1029 <    }
1209 >    RealType ct = dot(idat.A1->getColumn(2), idat.A2->getColumn(2));
1210  
1211      if (storageLayout_ & DataStorage::dslTorque) {
1212        idat.t1 = &(snap_->atomData.torque[atom1]);
1213        idat.t2 = &(snap_->atomData.torque[atom2]);
1214      }
1215  
1216 +    if (storageLayout_ & DataStorage::dslDipole) {
1217 +      idat.dipole1 = &(snap_->atomData.dipole[atom1]);
1218 +      idat.dipole2 = &(snap_->atomData.dipole[atom2]);
1219 +    }
1220 +
1221 +    if (storageLayout_ & DataStorage::dslQuadrupole) {
1222 +      idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]);
1223 +      idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]);
1224 +    }
1225 +
1226      if (storageLayout_ & DataStorage::dslDensity) {    
1227        idat.rho1 = &(snap_->atomData.density[atom1]);
1228        idat.rho2 = &(snap_->atomData.density[atom2]);
# Line 1057 | Line 1247 | namespace OpenMD {
1247        idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
1248        idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1249      }
1250 +
1251 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1252 +      idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]);
1253 +      idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]);
1254 +    }
1255 +
1256   #endif
1257    }
1258  
# Line 1065 | Line 1261 | namespace OpenMD {
1261   #ifdef IS_MPI
1262      pot_row[atom1] += RealType(0.5) *  *(idat.pot);
1263      pot_col[atom2] += RealType(0.5) *  *(idat.pot);
1264 +    expot_row[atom1] += RealType(0.5) *  *(idat.excludedPot);
1265 +    expot_col[atom2] += RealType(0.5) *  *(idat.excludedPot);
1266  
1267      atomRowData.force[atom1] += *(idat.f1);
1268      atomColData.force[atom2] -= *(idat.f1);
1269  
1270 <    // should particle pot be done here also?
1270 >    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1271 >      atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1272 >      atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1273 >    }
1274 >
1275 >    if (storageLayout_ & DataStorage::dslElectricField) {              
1276 >      atomRowData.electricField[atom1] += *(idat.eField1);
1277 >      atomColData.electricField[atom2] += *(idat.eField2);
1278 >    }
1279 >
1280   #else
1281      pairwisePot += *(idat.pot);
1282 +    excludedPot += *(idat.excludedPot);
1283  
1284      snap_->atomData.force[atom1] += *(idat.f1);
1285      snap_->atomData.force[atom2] -= *(idat.f1);
1286  
1287      if (idat.doParticlePot) {
1288 +      // This is the pairwise contribution to the particle pot.  The
1289 +      // embedding contribution is added in each of the low level
1290 +      // non-bonded routines.  In parallel, this calculation is done
1291 +      // in collectData, not in unpackInteractionData.
1292        snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw);
1293 <      snap_->atomData.particlePot[atom2] -= *(idat.vpair) * *(idat.sw);
1293 >      snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw);
1294      }
1295 <      
1295 >    
1296 >    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1297 >      snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1298 >      snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1299 >    }
1300 >
1301 >    if (storageLayout_ & DataStorage::dslElectricField) {              
1302 >      snap_->atomData.electricField[atom1] += *(idat.eField1);
1303 >      snap_->atomData.electricField[atom2] += *(idat.eField2);
1304 >    }
1305 >
1306   #endif
1307      
1308    }
# Line 1105 | Line 1327 | namespace OpenMD {
1327   #endif
1328  
1329      RealType rList_ = (largestRcut_ + skinThickness_);
1108    RealType rl2 = rList_ * rList_;
1330      Snapshot* snap_ = sman_->getCurrentSnapshot();
1331      Mat3x3d Hmat = snap_->getHmat();
1332      Vector3d Hx = Hmat.getColumn(0);
# Line 1149 | Line 1370 | namespace OpenMD {
1370          for (int j = 0; j < 3; j++) {
1371            scaled[j] -= roundMe(scaled[j]);
1372            scaled[j] += 0.5;
1373 +          // Handle the special case when an object is exactly on the
1374 +          // boundary (a scaled coordinate of 1.0 is the same as
1375 +          // scaled coordinate of 0.0)
1376 +          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1377          }
1378          
1379          // find xyz-indices of cell that cutoffGroup is in.
# Line 1173 | Line 1398 | namespace OpenMD {
1398          for (int j = 0; j < 3; j++) {
1399            scaled[j] -= roundMe(scaled[j]);
1400            scaled[j] += 0.5;
1401 +          // Handle the special case when an object is exactly on the
1402 +          // boundary (a scaled coordinate of 1.0 is the same as
1403 +          // scaled coordinate of 0.0)
1404 +          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1405          }
1406          
1407          // find xyz-indices of cell that cutoffGroup is in.
# Line 1199 | Line 1428 | namespace OpenMD {
1428          for (int j = 0; j < 3; j++) {
1429            scaled[j] -= roundMe(scaled[j]);
1430            scaled[j] += 0.5;
1431 +          // Handle the special case when an object is exactly on the
1432 +          // boundary (a scaled coordinate of 1.0 is the same as
1433 +          // scaled coordinate of 0.0)
1434 +          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1435          }
1436          
1437          // find xyz-indices of cell that cutoffGroup is in.

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines