| 6 |  | * redistribute this software in source and binary code form, provided | 
| 7 |  | * that the following conditions are met: | 
| 8 |  | * | 
| 9 | < | * 1. Acknowledgement of the program authors must be made in any | 
| 10 | < | *    publication of scientific results based in part on use of the | 
| 11 | < | *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | < | *    the article in which the program was described (Matthew | 
| 13 | < | *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | < | *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | < | *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | < | *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | < | * | 
| 18 | < | * 2. Redistributions of source code must retain the above copyright | 
| 9 | > | * 1. Redistributions of source code must retain the above copyright | 
| 10 |  | *    notice, this list of conditions and the following disclaimer. | 
| 11 |  | * | 
| 12 | < | * 3. Redistributions in binary form must reproduce the above copyright | 
| 12 | > | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 |  | *    notice, this list of conditions and the following disclaimer in the | 
| 14 |  | *    documentation and/or other materials provided with the | 
| 15 |  | *    distribution. | 
| 28 |  | * arising out of the use of or inability to use software, even if the | 
| 29 |  | * University of Notre Dame has been advised of the possibility of | 
| 30 |  | * such damages. | 
| 31 | + | * | 
| 32 | + | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | + | * research, please cite the appropriate papers when you publish your | 
| 34 | + | * work.  Good starting points are: | 
| 35 | + | * | 
| 36 | + | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 | + | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | + | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | 
| 39 | + | * [4]  Vardeman & Gezelter, in progress (2009). | 
| 40 |  | */ | 
| 41 |  |  | 
| 42 |  | #include "primitives/Bend.hpp" | 
| 43 |  |  | 
| 44 | < | namespace oopse { | 
| 45 | < |  | 
| 44 | > | namespace OpenMD { | 
| 45 | > |  | 
| 46 |  | /**@todo still a lot left to improve*/ | 
| 47 | < | void Bend::calcForce() { | 
| 47 | > | void Bend::calcForce(RealType& angle) { | 
| 48 |  | Vector3d pos1 = atom1_->getPos(); | 
| 49 |  | Vector3d pos2 = atom2_->getPos(); | 
| 50 |  | Vector3d pos3 = atom3_->getPos(); | 
| 51 | < |  | 
| 51 | > |  | 
| 52 |  | Vector3d r21 = pos1 - pos2; | 
| 53 | < | double d21 = r21.length(); | 
| 54 | < |  | 
| 55 | < | double d21inv = 1.0 / d21; | 
| 56 | < |  | 
| 53 | > | RealType d21 = r21.length(); | 
| 54 | > |  | 
| 55 | > | RealType d21inv = 1.0 / d21; | 
| 56 | > |  | 
| 57 |  | Vector3d r23 = pos3 - pos2; | 
| 58 | < | double d23 = r23.length(); | 
| 59 | < |  | 
| 60 | < | double d23inv = 1.0 / d23; | 
| 61 | < |  | 
| 62 | < | double cosTheta = dot(r21, r23) / (d21 * d23); | 
| 63 | < |  | 
| 58 | > | RealType d23 = r23.length(); | 
| 59 | > |  | 
| 60 | > | RealType d23inv = 1.0 / d23; | 
| 61 | > |  | 
| 62 | > | RealType cosTheta = dot(r21, r23) / (d21 * d23); | 
| 63 | > |  | 
| 64 |  | //check roundoff | 
| 65 |  | if (cosTheta > 1.0) { | 
| 66 |  | cosTheta = 1.0; | 
| 67 |  | } else if (cosTheta < -1.0) { | 
| 68 |  | cosTheta = -1.0; | 
| 69 |  | } | 
| 70 | + |  | 
| 71 | + | RealType theta = acos(cosTheta); | 
| 72 | + |  | 
| 73 | + | RealType dVdTheta; | 
| 74 |  |  | 
| 71 | – | double theta = acos(cosTheta); | 
| 72 | – |  | 
| 73 | – | double dVdTheta; | 
| 74 | – |  | 
| 75 |  | bendType_->calcForce(theta, potential_, dVdTheta); | 
| 76 | < |  | 
| 77 | < | double sinTheta = sqrt(1.0 - cosTheta * cosTheta); | 
| 78 | < |  | 
| 76 | > |  | 
| 77 | > | RealType sinTheta = sqrt(1.0 - cosTheta * cosTheta); | 
| 78 | > |  | 
| 79 |  | if (fabs(sinTheta) < 1.0E-6) { | 
| 80 |  | sinTheta = 1.0E-6; | 
| 81 |  | } | 
| 82 | < |  | 
| 83 | < | double commonFactor1 = dVdTheta / sinTheta * d21inv; | 
| 84 | < | double commonFactor2 = dVdTheta / sinTheta * d23inv; | 
| 85 | < |  | 
| 82 | > |  | 
| 83 | > | RealType commonFactor1 = dVdTheta / sinTheta * d21inv; | 
| 84 | > | RealType commonFactor2 = dVdTheta / sinTheta * d23inv; | 
| 85 | > |  | 
| 86 |  | Vector3d force1 = commonFactor1 * (r23 * d23inv - r21*d21inv*cosTheta); | 
| 87 |  | Vector3d force3 = commonFactor2 * (r21 * d21inv - r23*d23inv*cosTheta); | 
| 88 |  |  | 
| 89 | < | //total force in current bend is zero | 
| 89 | > | // Total force in current bend is zero | 
| 90 |  | Vector3d force2 = force1 + force3; | 
| 91 |  | force2 *= -1.0; | 
| 92 | < |  | 
| 92 | > |  | 
| 93 |  | atom1_->addFrc(force1); | 
| 94 |  | atom2_->addFrc(force2); | 
| 95 |  | atom3_->addFrc(force3); | 
| 96 | + |  | 
| 97 | + | atom1_->addParticlePot(potential_); | 
| 98 | + | atom2_->addParticlePot(potential_); | 
| 99 | + | atom3_->addParticlePot(potential_); | 
| 100 | + |  | 
| 101 | + | angle = theta /M_PI * 180.0; | 
| 102 |  | } | 
| 103 |  |  | 
| 104 | < | } //end namespace oopse | 
| 104 | > | } //end namespace OpenMD |