| 6 | 
  | 
 * redistribute this software in source and binary code form, provided | 
| 7 | 
  | 
 * that the following conditions are met: | 
| 8 | 
  | 
 * | 
| 9 | 
< | 
 * 1. Acknowledgement of the program authors must be made in any | 
| 10 | 
< | 
 *    publication of scientific results based in part on use of the | 
| 11 | 
< | 
 *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | 
< | 
 *    the article in which the program was described (Matthew | 
| 13 | 
< | 
 *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | 
< | 
 *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | 
< | 
 *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | 
< | 
 *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | 
< | 
 * | 
| 18 | 
< | 
 * 2. Redistributions of source code must retain the above copyright | 
| 9 | 
> | 
 * 1. Redistributions of source code must retain the above copyright | 
| 10 | 
  | 
 *    notice, this list of conditions and the following disclaimer. | 
| 11 | 
  | 
 * | 
| 12 | 
< | 
 * 3. Redistributions in binary form must reproduce the above copyright | 
| 12 | 
> | 
 * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | 
  | 
 *    notice, this list of conditions and the following disclaimer in the | 
| 14 | 
  | 
 *    documentation and/or other materials provided with the | 
| 15 | 
  | 
 *    distribution. | 
| 28 | 
  | 
 * arising out of the use of or inability to use software, even if the | 
| 29 | 
  | 
 * University of Notre Dame has been advised of the possibility of | 
| 30 | 
  | 
 * such damages. | 
| 31 | 
+ | 
 * | 
| 32 | 
+ | 
 * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | 
+ | 
 * research, please cite the appropriate papers when you publish your | 
| 34 | 
+ | 
 * work.  Good starting points are: | 
| 35 | 
+ | 
 *                                                                       | 
| 36 | 
+ | 
 * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).              | 
| 37 | 
+ | 
 * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).           | 
| 38 | 
+ | 
 * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).           | 
| 39 | 
+ | 
 * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | 
+ | 
 * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | 
  | 
 */ | 
| 42 | 
  | 
  | 
| 43 | 
  | 
#include "primitives/GhostBend.hpp" | 
| 44 | 
  | 
#include "primitives/DirectionalAtom.hpp" | 
| 45 | 
< | 
namespace oopse { | 
| 45 | 
> | 
namespace OpenMD { | 
| 46 | 
  | 
 | 
| 47 | 
  | 
  /**@todo still a lot left to improve*/ | 
| 48 | 
< | 
  void GhostBend::calcForce() { | 
| 48 | 
> | 
  void GhostBend::calcForce(RealType& angle) { | 
| 49 | 
  | 
    DirectionalAtom* ghostAtom = static_cast<DirectionalAtom*>(atom2_); | 
| 50 | 
  | 
     | 
| 51 | 
  | 
    Vector3d pos1 = atom1_->getPos(); | 
| 52 | 
  | 
    Vector3d pos2 = ghostAtom->getPos(); | 
| 53 | 
  | 
 | 
| 54 | 
< | 
    Vector3d r12 = pos1 - pos2; | 
| 55 | 
< | 
    double d12 = r12.length(); | 
| 54 | 
> | 
    Vector3d r21 = pos1 - pos2;    | 
| 55 | 
> | 
    RealType d21 = r21.length(); | 
| 56 | 
> | 
     | 
| 57 | 
> | 
    RealType d21inv = 1.0 / d21; | 
| 58 | 
> | 
    | 
| 59 | 
> | 
    // we need the transpose of A to get the lab fixed vector: | 
| 60 | 
> | 
    Vector3d r23 = ghostAtom->getA().transpose().getColumn(2); | 
| 61 | 
> | 
    RealType d23 = r23.length(); | 
| 62 | 
> | 
     | 
| 63 | 
> | 
    RealType d23inv = 1.0 / d23; | 
| 64 | 
> | 
     | 
| 65 | 
> | 
    RealType cosTheta = dot(r21, r23) / (d21 * d23); | 
| 66 | 
  | 
 | 
| 56 | 
– | 
    double d12inv = 1.0 / d12; | 
| 57 | 
– | 
 | 
| 58 | 
– | 
    Vector3d r32 = ghostAtom->getElectroFrame().getColumn(2); | 
| 59 | 
– | 
    double d32 = r32.length(); | 
| 60 | 
– | 
 | 
| 61 | 
– | 
    double d32inv = 1.0 / d32; | 
| 62 | 
– | 
 | 
| 63 | 
– | 
    double cosTheta = dot(r12, r32) / (d12 * d32); | 
| 64 | 
– | 
 | 
| 67 | 
  | 
    //check roundoff      | 
| 68 | 
  | 
    if (cosTheta > 1.0) { | 
| 69 | 
  | 
      cosTheta = 1.0; | 
| 70 | 
  | 
    } else if (cosTheta < -1.0) { | 
| 71 | 
  | 
      cosTheta = -1.0; | 
| 72 | 
  | 
    } | 
| 73 | 
+ | 
     | 
| 74 | 
+ | 
    RealType theta = acos(cosTheta); | 
| 75 | 
  | 
 | 
| 76 | 
< | 
    double theta = acos(cosTheta); | 
| 77 | 
< | 
 | 
| 78 | 
< | 
    double firstDerivative; | 
| 79 | 
< | 
 | 
| 80 | 
< | 
    bendType_->calcForce(theta, firstDerivative, potential_); | 
| 81 | 
< | 
 | 
| 82 | 
< | 
    double sinTheta = sqrt(1.0 - cosTheta * cosTheta); | 
| 83 | 
< | 
 | 
| 80 | 
< | 
    if (fabs(sinTheta) < 1.0E-12) { | 
| 81 | 
< | 
      sinTheta = 1.0E-12; | 
| 76 | 
> | 
    RealType dVdTheta; | 
| 77 | 
> | 
     | 
| 78 | 
> | 
    bendType_->calcForce(theta, potential_, dVdTheta); | 
| 79 | 
> | 
     | 
| 80 | 
> | 
    RealType sinTheta = sqrt(1.0 - cosTheta * cosTheta); | 
| 81 | 
> | 
     | 
| 82 | 
> | 
    if (fabs(sinTheta) < 1.0E-6) { | 
| 83 | 
> | 
      sinTheta = 1.0E-6; | 
| 84 | 
  | 
    } | 
| 85 | 
+ | 
     | 
| 86 | 
+ | 
    RealType commonFactor1 = dVdTheta / sinTheta * d21inv; | 
| 87 | 
+ | 
    RealType commonFactor2 = dVdTheta / sinTheta * d23inv; | 
| 88 | 
+ | 
     | 
| 89 | 
+ | 
    Vector3d force1 = commonFactor1 * (r23 * d23inv - r21*d21inv*cosTheta); | 
| 90 | 
+ | 
    Vector3d force3 = commonFactor2 * (r21 * d21inv - r23*d23inv*cosTheta); | 
| 91 | 
  | 
 | 
| 92 | 
< | 
    double commonFactor1 = -firstDerivative / sinTheta * d12inv; | 
| 85 | 
< | 
    double commonFactor2 = -firstDerivative / sinTheta * d32inv; | 
| 92 | 
> | 
    // Total force in current bend is zero | 
| 93 | 
  | 
 | 
| 87 | 
– | 
    Vector3d force1 = commonFactor1*(r12*(d12inv*cosTheta) - r32*d32inv); | 
| 88 | 
– | 
    Vector3d force3 = commonFactor2*(r32*(d32inv*cosTheta) - r12*d12inv); | 
| 94 | 
  | 
    atom1_->addFrc(force1); | 
| 95 | 
  | 
    ghostAtom->addFrc(-force1); | 
| 91 | 
– | 
    /**@todo test correctness */ | 
| 92 | 
– | 
    ghostAtom->addTrq(cross(r32, force3) ); | 
| 96 | 
  | 
 | 
| 97 | 
< | 
  } | 
| 97 | 
> | 
    ghostAtom->addTrq( cross(r23, force3) );     | 
| 98 | 
  | 
 | 
| 99 | 
< | 
} //end namespace oopse | 
| 99 | 
> | 
    atom1_->addParticlePot(potential_); | 
| 100 | 
> | 
    ghostAtom->addParticlePot(potential_); | 
| 101 | 
  | 
 | 
| 102 | 
+ | 
    angle = theta /M_PI * 180.0; | 
| 103 | 
+ | 
    | 
| 104 | 
+ | 
  }   | 
| 105 | 
+ | 
} //end namespace OpenMD | 
| 106 | 
+ | 
 |