| 60 |  | Vector3d pos3 = atom1_->getPos(); | 
| 61 |  | Vector3d pos4 = atom4_->getPos(); | 
| 62 |  |  | 
| 63 | < | Vector3d r21 = pos1 - pos2; | 
| 64 | < | Vector3d r32 = pos2 - pos3; | 
| 63 | > | /*std::ofstream myfile; | 
| 64 | > | myfile.open("Inversion", std::ios::app); | 
| 65 | > | myfile << atom1_->getType() << " - atom1; " | 
| 66 | > | << atom2_->getType() << " - atom2; " | 
| 67 | > | << atom3_->getType() << " - atom3; " | 
| 68 | > | << atom4_->getType() << " - atom4; " | 
| 69 | > | << std::endl; | 
| 70 | > | */ | 
| 71 | > | Vector3d r31 = pos1 - pos3; | 
| 72 | > | Vector3d r23 = pos3 - pos2; | 
| 73 |  | Vector3d r43 = pos3 - pos4; | 
| 74 |  |  | 
| 75 |  | //  Calculate the cross products and distances | 
| 76 | < | Vector3d A = cross(r21, r32); | 
| 76 | > | Vector3d A = cross(r31, r43); | 
| 77 |  | RealType rA = A.length(); | 
| 78 | < | Vector3d B = cross(r32, r43); | 
| 78 | > | Vector3d B = cross(r43, r23); | 
| 79 |  | RealType rB = B.length(); | 
| 80 | < | Vector3d C = cross(r32, A); | 
| 81 | < | RealType rC = C.length(); | 
| 80 | > | //Vector3d C = cross(r23, A); | 
| 81 | > | //RealType rC = C.length(); | 
| 82 |  |  | 
| 83 |  | A.normalize(); | 
| 84 |  | B.normalize(); | 
| 85 | < | C.normalize(); | 
| 85 | > | //C.normalize(); | 
| 86 |  |  | 
| 87 |  | //  Calculate the sin and cos | 
| 88 |  | RealType cos_phi = dot(A, B) ; | 
| 89 | < | if (cos_phi > 1.0) cos_phi = 1.0; | 
| 90 | < | if (cos_phi < -1.0) cos_phi = -1.0; | 
| 89 | > | if (cos_phi > 1.0) {cos_phi = 1.0; std::cout << "!!!! cos_phi is bigger than 1.0" | 
| 90 | > | << std::endl;} | 
| 91 | > | if (cos_phi < -1.0) {cos_phi = -1.0; std::cout << "!!!! cos_phi is less than -1.0" | 
| 92 | > | << std::endl;} | 
| 93 | > | //std::cout << "We actually use this inversion!!!!" << std::endl; | 
| 94 |  |  | 
| 84 | – |  | 
| 95 |  | RealType dVdcosPhi; | 
| 96 | + | //cos_phi = 2.0*cos_phi*cos_phi - 1.0; | 
| 97 |  | inversionType_->calcForce(cos_phi, potential_, dVdcosPhi); | 
| 98 | < | Vector3d f1; | 
| 99 | < | Vector3d f2; | 
| 100 | < | Vector3d f3; | 
| 98 | > | Vector3d f1 ; | 
| 99 | > | Vector3d f2 ; | 
| 100 | > | Vector3d f3 ; | 
| 101 |  |  | 
| 102 |  | Vector3d dcosdA = (cos_phi * A - B) /rA; | 
| 103 |  | Vector3d dcosdB = (cos_phi * B - A) /rB; | 
| 104 |  |  | 
| 105 | < | f1 = dVdcosPhi * cross(r32, dcosdA); | 
| 106 | < | f2 = dVdcosPhi * ( cross(r43, dcosdB) - cross(r21, dcosdA)); | 
| 107 | < | f3 = dVdcosPhi * cross(dcosdB, r32); | 
| 105 | > | f1 = dVdcosPhi * cross(r43, dcosdA); | 
| 106 | > | f2 = dVdcosPhi * ( cross(r23, dcosdB) - cross(r31, dcosdA)); | 
| 107 | > | f3 = dVdcosPhi * cross(dcosdB, r43); | 
| 108 |  |  | 
| 109 |  | // In OOPSE's version of an improper torsion, the central atom | 
| 110 |  | // comes first.  However, to get the planarity in a typical cosine | 
| 116 |  |  | 
| 117 |  | // Confusing enough?  Good. | 
| 118 |  |  | 
| 119 | < | atom3_->addFrc(f1); | 
| 120 | < | atom1_->addFrc(f2 - f1); | 
| 121 | < | atom2_->addFrc(f3 - f2); | 
| 122 | < | atom4_->addFrc(-f3); | 
| 119 | > | atom2_->addFrc(f1); | 
| 120 | > | atom1_->addFrc(f2 - f1 + f3); | 
| 121 | > | atom4_->addFrc(-f2); | 
| 122 | > | atom3_->addFrc(-f3); | 
| 123 | > |  | 
| 124 |  | angle = acos(cos_phi) /M_PI * 180.0; | 
| 125 |  | } | 
| 126 |  |  |