| 6 | 
  | 
 * redistribute this software in source and binary code form, provided | 
| 7 | 
  | 
 * that the following conditions are met: | 
| 8 | 
  | 
 * | 
| 9 | 
< | 
 * 1. Acknowledgement of the program authors must be made in any | 
| 10 | 
< | 
 *    publication of scientific results based in part on use of the | 
| 11 | 
< | 
 *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | 
< | 
 *    the article in which the program was described (Matthew | 
| 13 | 
< | 
 *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | 
< | 
 *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | 
< | 
 *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | 
< | 
 *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | 
< | 
 * | 
| 18 | 
< | 
 * 2. Redistributions of source code must retain the above copyright | 
| 9 | 
> | 
 * 1. Redistributions of source code must retain the above copyright | 
| 10 | 
  | 
 *    notice, this list of conditions and the following disclaimer. | 
| 11 | 
  | 
 * | 
| 12 | 
< | 
 * 3. Redistributions in binary form must reproduce the above copyright | 
| 12 | 
> | 
 * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | 
  | 
 *    notice, this list of conditions and the following disclaimer in the | 
| 14 | 
  | 
 *    documentation and/or other materials provided with the | 
| 15 | 
  | 
 *    distribution. | 
| 28 | 
  | 
 * arising out of the use of or inability to use software, even if the | 
| 29 | 
  | 
 * University of Notre Dame has been advised of the possibility of | 
| 30 | 
  | 
 * such damages. | 
| 31 | 
+ | 
 * | 
| 32 | 
+ | 
 * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | 
+ | 
 * research, please cite the appropriate papers when you publish your | 
| 34 | 
+ | 
 * work.  Good starting points are: | 
| 35 | 
+ | 
 *                                                                       | 
| 36 | 
+ | 
 * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).              | 
| 37 | 
+ | 
 * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).           | 
| 38 | 
+ | 
 * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).           | 
| 39 | 
+ | 
 * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | 
+ | 
 * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | 
  | 
 */ | 
| 42 | 
  | 
  | 
| 43 | 
+ | 
#include "config.h" | 
| 44 | 
+ | 
#include <cmath> | 
| 45 | 
+ | 
 | 
| 46 | 
  | 
#include "primitives/Inversion.hpp" | 
| 47 | 
  | 
 | 
| 48 | 
< | 
namespace oopse { | 
| 48 | 
> | 
namespace OpenMD { | 
| 49 | 
  | 
 | 
| 50 | 
  | 
  Inversion::Inversion(Atom *atom1, Atom *atom2, Atom *atom3,  | 
| 51 | 
  | 
                       Atom *atom4, InversionType *it) : | 
| 52 | 
  | 
    atom1_(atom1), atom2_(atom2), atom3_(atom3), atom4_(atom4),  | 
| 53 | 
  | 
    inversionType_(it) { } | 
| 54 | 
  | 
   | 
| 55 | 
< | 
  void Inversion::calcForce(RealType& angle) { | 
| 55 | 
> | 
  void Inversion::calcForce(RealType& angle, bool doParticlePot) { | 
| 56 | 
  | 
     | 
| 57 | 
< | 
    // In OOPSE's version of an inversion, the central atom | 
| 57 | 
> | 
    // In OpenMD's version of an inversion, the central atom | 
| 58 | 
  | 
    // comes first.  However, to get the planarity in a typical cosine | 
| 59 | 
  | 
    // version of this potential (i.e. Amber-style), the central atom | 
| 60 | 
  | 
    // is treated as atom *3* in a standard torsion form: | 
| 64 | 
  | 
    Vector3d pos3 = atom1_->getPos(); | 
| 65 | 
  | 
    Vector3d pos4 = atom4_->getPos(); | 
| 66 | 
  | 
 | 
| 67 | 
< | 
    Vector3d r21 = pos1 - pos2; | 
| 68 | 
< | 
    Vector3d r32 = pos2 - pos3; | 
| 67 | 
> | 
    Vector3d r31 = pos1 - pos3; | 
| 68 | 
> | 
    Vector3d r23 = pos3 - pos2; | 
| 69 | 
  | 
    Vector3d r43 = pos3 - pos4; | 
| 70 | 
  | 
 | 
| 71 | 
  | 
    //  Calculate the cross products and distances | 
| 72 | 
< | 
    Vector3d A = cross(r21, r32); | 
| 72 | 
> | 
    Vector3d A = cross(r31, r43); | 
| 73 | 
  | 
    RealType rA = A.length(); | 
| 74 | 
< | 
    Vector3d B = cross(r32, r43); | 
| 74 | 
> | 
    Vector3d B = cross(r43, r23); | 
| 75 | 
  | 
    RealType rB = B.length(); | 
| 76 | 
< | 
    Vector3d C = cross(r32, A); | 
| 77 | 
< | 
    RealType rC = C.length(); | 
| 76 | 
> | 
    //Vector3d C = cross(r23, A); | 
| 77 | 
> | 
    //RealType rC = C.length(); | 
| 78 | 
  | 
 | 
| 79 | 
  | 
    A.normalize(); | 
| 80 | 
  | 
    B.normalize(); | 
| 81 | 
< | 
    C.normalize(); | 
| 81 | 
> | 
    //C.normalize(); | 
| 82 | 
  | 
     | 
| 83 | 
  | 
    //  Calculate the sin and cos | 
| 84 | 
  | 
    RealType cos_phi = dot(A, B) ; | 
| 85 | 
  | 
    if (cos_phi > 1.0) cos_phi = 1.0; | 
| 86 | 
< | 
    if (cos_phi < -1.0) cos_phi = -1.0;  | 
| 86 | 
> | 
    if (cos_phi < -1.0) cos_phi = -1.0; | 
| 87 | 
  | 
 | 
| 88 | 
  | 
    RealType dVdcosPhi; | 
| 89 | 
  | 
    inversionType_->calcForce(cos_phi, potential_, dVdcosPhi); | 
| 90 | 
< | 
    Vector3d f1; | 
| 91 | 
< | 
    Vector3d f2; | 
| 92 | 
< | 
    Vector3d f3; | 
| 90 | 
> | 
    Vector3d f1 ; | 
| 91 | 
> | 
    Vector3d f2 ; | 
| 92 | 
> | 
    Vector3d f3 ; | 
| 93 | 
  | 
 | 
| 94 | 
  | 
    Vector3d dcosdA = (cos_phi * A - B) /rA; | 
| 95 | 
  | 
    Vector3d dcosdB = (cos_phi * B - A) /rB; | 
| 96 | 
  | 
 | 
| 97 | 
< | 
    f1 = dVdcosPhi * cross(r32, dcosdA); | 
| 98 | 
< | 
    f2 = dVdcosPhi * ( cross(r43, dcosdB) - cross(r21, dcosdA)); | 
| 99 | 
< | 
    f3 = dVdcosPhi * cross(dcosdB, r32); | 
| 97 | 
> | 
    f1 = dVdcosPhi * cross(r43, dcosdA); | 
| 98 | 
> | 
    f2 = dVdcosPhi * ( cross(r23, dcosdB) - cross(r31, dcosdA)); | 
| 99 | 
> | 
    f3 = dVdcosPhi * cross(dcosdB, r43); | 
| 100 | 
  | 
 | 
| 101 | 
< | 
    // In OOPSE's version of an improper torsion, the central atom | 
| 101 | 
> | 
    // In OpenMD's version of an improper torsion, the central atom | 
| 102 | 
  | 
    // comes first.  However, to get the planarity in a typical cosine | 
| 103 | 
  | 
    // version of this potential (i.e. Amber-style), the central atom | 
| 104 | 
  | 
    // is treated as atom *3* in a standard torsion form: | 
| 105 | 
  | 
 | 
| 106 | 
  | 
    //  AMBER:   I - J - K - L   (e.g. K is sp2 hybridized carbon) | 
| 107 | 
< | 
    //  OOPSE:   I - (J - K - L)  (e.g. I is sp2 hybridized carbon) | 
| 107 | 
> | 
    //  OpenMD:  I - (J - K - L)  (e.g. I is sp2 hybridized carbon) | 
| 108 | 
  | 
 | 
| 109 | 
  | 
    // Confusing enough?  Good. | 
| 110 | 
  | 
 | 
| 111 | 
< | 
    atom3_->addFrc(f1); | 
| 112 | 
< | 
    atom1_->addFrc(f2 - f1); | 
| 113 | 
< | 
    atom2_->addFrc(f3 - f2); | 
| 114 | 
< | 
    atom4_->addFrc(-f3); | 
| 111 | 
> | 
    atom2_->addFrc(f1); | 
| 112 | 
> | 
    atom1_->addFrc(f2 - f1 + f3); | 
| 113 | 
> | 
    atom4_->addFrc(-f2); | 
| 114 | 
> | 
    atom3_->addFrc(-f3); | 
| 115 | 
> | 
 | 
| 116 | 
> | 
    if (doParticlePot) {  | 
| 117 | 
> | 
      atom1_->addParticlePot(potential_); | 
| 118 | 
> | 
      atom2_->addParticlePot(potential_); | 
| 119 | 
> | 
      atom3_->addParticlePot(potential_); | 
| 120 | 
> | 
      atom4_->addParticlePot(potential_); | 
| 121 | 
> | 
    } | 
| 122 | 
> | 
     | 
| 123 | 
  | 
    angle = acos(cos_phi) /M_PI * 180.0; | 
| 124 | 
  | 
  } | 
| 125 | 
  | 
 |