| 1 | + | /* | 
| 2 | + | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | + | * | 
| 4 | + | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | + | * non-exclusive, royalty free, license to use, modify and | 
| 6 | + | * redistribute this software in source and binary code form, provided | 
| 7 | + | * that the following conditions are met: | 
| 8 | + | * | 
| 9 | + | * 1. Acknowledgement of the program authors must be made in any | 
| 10 | + | *    publication of scientific results based in part on use of the | 
| 11 | + | *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | + | *    the article in which the program was described (Matthew | 
| 13 | + | *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | + | *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | + | *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | + | *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | + | * | 
| 18 | + | * 2. Redistributions of source code must retain the above copyright | 
| 19 | + | *    notice, this list of conditions and the following disclaimer. | 
| 20 | + | * | 
| 21 | + | * 3. Redistributions in binary form must reproduce the above copyright | 
| 22 | + | *    notice, this list of conditions and the following disclaimer in the | 
| 23 | + | *    documentation and/or other materials provided with the | 
| 24 | + | *    distribution. | 
| 25 | + | * | 
| 26 | + | * This software is provided "AS IS," without a warranty of any | 
| 27 | + | * kind. All express or implied conditions, representations and | 
| 28 | + | * warranties, including any implied warranty of merchantability, | 
| 29 | + | * fitness for a particular purpose or non-infringement, are hereby | 
| 30 | + | * excluded.  The University of Notre Dame and its licensors shall not | 
| 31 | + | * be liable for any damages suffered by licensee as a result of | 
| 32 | + | * using, modifying or distributing the software or its | 
| 33 | + | * derivatives. In no event will the University of Notre Dame or its | 
| 34 | + | * licensors be liable for any lost revenue, profit or data, or for | 
| 35 | + | * direct, indirect, special, consequential, incidental or punitive | 
| 36 | + | * damages, however caused and regardless of the theory of liability, | 
| 37 | + | * arising out of the use of or inability to use software, even if the | 
| 38 | + | * University of Notre Dame has been advised of the possibility of | 
| 39 | + | * such damages. | 
| 40 | + | */ | 
| 41 | + | #include <algorithm> | 
| 42 |  | #include <math.h> | 
| 43 | < | #include "RigidBody.hpp" | 
| 44 | < | #include "DirectionalAtom.hpp" | 
| 45 | < | #include "simError.h" | 
| 46 | < | #include "MatVec3.h" | 
| 43 | > | #include "primitives/RigidBody.hpp" | 
| 44 | > | #include "utils/simError.h" | 
| 45 | > | #include "utils/NumericConstant.hpp" | 
| 46 | > | namespace oopse { | 
| 47 |  |  | 
| 48 | < | RigidBody::RigidBody() : StuntDouble() { | 
| 8 | < | objType = OT_RIGIDBODY; | 
| 9 | < | is_linear = false; | 
| 10 | < | linear_axis =  -1; | 
| 11 | < | momIntTol = 1e-6; | 
| 12 | < | } | 
| 48 | > | RigidBody::RigidBody() : StuntDouble(otRigidBody, &Snapshot::rigidbodyData), inertiaTensor_(0.0){ | 
| 49 |  |  | 
| 50 | < | RigidBody::~RigidBody() { | 
| 15 | < | } | 
| 50 | > | } | 
| 51 |  |  | 
| 52 | < | void RigidBody::addAtom(Atom* at, AtomStamp* ats) { | 
| 52 | > | void RigidBody::setPrevA(const RotMat3x3d& a) { | 
| 53 | > | ((snapshotMan_->getPrevSnapshot())->*storage_).aMat[localIndex_] = a; | 
| 54 | > | //((snapshotMan_->getPrevSnapshot())->*storage_).electroFrame[localIndex_] = a.transpose() * sU_; | 
| 55 |  |  | 
| 56 | < | vec3 coords; | 
| 57 | < | vec3 euler; | 
| 58 | < | mat3x3 Atmp; | 
| 56 | > | for (int i =0 ; i < atoms_.size(); ++i){ | 
| 57 | > | if (atoms_[i]->isDirectional()) { | 
| 58 | > | atoms_[i]->setPrevA(a * refOrients_[i]); | 
| 59 | > | } | 
| 60 | > | } | 
| 61 |  |  | 
| 23 | – | myAtoms.push_back(at); | 
| 24 | – |  | 
| 25 | – | if( !ats->havePosition() ){ | 
| 26 | – | sprintf( painCave.errMsg, | 
| 27 | – | "RigidBody error.\n" | 
| 28 | – | "\tAtom %s does not have a position specified.\n" | 
| 29 | – | "\tThis means RigidBody cannot set up reference coordinates.\n", | 
| 30 | – | ats->getType() ); | 
| 31 | – | painCave.isFatal = 1; | 
| 32 | – | simError(); | 
| 62 |  | } | 
| 34 | – |  | 
| 35 | – | coords[0] = ats->getPosX(); | 
| 36 | – | coords[1] = ats->getPosY(); | 
| 37 | – | coords[2] = ats->getPosZ(); | 
| 63 |  |  | 
| 64 | < | refCoords.push_back(coords); | 
| 65 | < |  | 
| 66 | < | if (at->isDirectional()) { | 
| 64 | > |  | 
| 65 | > | void RigidBody::setA(const RotMat3x3d& a) { | 
| 66 | > | ((snapshotMan_->getCurrentSnapshot())->*storage_).aMat[localIndex_] = a; | 
| 67 | > | //((snapshotMan_->getCurrentSnapshot())->*storage_).electroFrame[localIndex_] = a.transpose() * sU_; | 
| 68 |  |  | 
| 69 | < | if( !ats->haveOrientation() ){ | 
| 70 | < | sprintf( painCave.errMsg, | 
| 71 | < | "RigidBody error.\n" | 
| 72 | < | "\tAtom %s does not have an orientation specified.\n" | 
| 73 | < | "\tThis means RigidBody cannot set up reference orientations.\n", | 
| 74 | < | ats->getType() ); | 
| 49 | < | painCave.isFatal = 1; | 
| 50 | < | simError(); | 
| 51 | < | } | 
| 69 | > | for (int i =0 ; i < atoms_.size(); ++i){ | 
| 70 | > | if (atoms_[i]->isDirectional()) { | 
| 71 | > | atoms_[i]->setA(a * refOrients_[i]); | 
| 72 | > | } | 
| 73 | > | } | 
| 74 | > | } | 
| 75 |  |  | 
| 76 | < | euler[0] = ats->getEulerPhi(); | 
| 77 | < | euler[1] = ats->getEulerTheta(); | 
| 78 | < | euler[2] = ats->getEulerPsi(); | 
| 56 | < |  | 
| 57 | < | doEulerToRotMat(euler, Atmp); | 
| 58 | < |  | 
| 59 | < | refOrients.push_back(Atmp); | 
| 60 | < |  | 
| 61 | < | } | 
| 62 | < | } | 
| 76 | > | void RigidBody::setA(const RotMat3x3d& a, int snapshotNo) { | 
| 77 | > | ((snapshotMan_->getSnapshot(snapshotNo))->*storage_).aMat[localIndex_] = a; | 
| 78 | > | //((snapshotMan_->getSnapshot(snapshotNo))->*storage_).electroFrame[localIndex_] = a.transpose() * sU_; | 
| 79 |  |  | 
| 80 | < | void RigidBody::getPos(double theP[3]){ | 
| 81 | < | for (int i = 0; i < 3 ; i++) | 
| 82 | < | theP[i] = pos[i]; | 
| 83 | < | } | 
| 80 | > | for (int i =0 ; i < atoms_.size(); ++i){ | 
| 81 | > | if (atoms_[i]->isDirectional()) { | 
| 82 | > | atoms_[i]->setA(a * refOrients_[i], snapshotNo); | 
| 83 | > | } | 
| 84 | > | } | 
| 85 |  |  | 
| 86 | < | void RigidBody::setPos(double theP[3]){ | 
| 70 | < | for (int i = 0; i < 3 ; i++) | 
| 71 | < | pos[i] = theP[i]; | 
| 72 | < | } | 
| 86 | > | } | 
| 87 |  |  | 
| 88 | < | void RigidBody::getVel(double theV[3]){ | 
| 89 | < | for (int i = 0; i < 3 ; i++) | 
| 90 | < | theV[i] = vel[i]; | 
| 77 | < | } | 
| 88 | > | Mat3x3d RigidBody::getI() { | 
| 89 | > | return inertiaTensor_; | 
| 90 | > | } | 
| 91 |  |  | 
| 92 | < | void RigidBody::setVel(double theV[3]){ | 
| 93 | < | for (int i = 0; i < 3 ; i++) | 
| 94 | < | vel[i] = theV[i]; | 
| 95 | < | } | 
| 92 | > | std::vector<double> RigidBody::getGrad() { | 
| 93 | > | std::vector<double> grad(6, 0.0); | 
| 94 | > | Vector3d force; | 
| 95 | > | Vector3d torque; | 
| 96 | > | Vector3d myEuler; | 
| 97 | > | double phi, theta, psi; | 
| 98 | > | double cphi, sphi, ctheta, stheta; | 
| 99 | > | Vector3d ephi; | 
| 100 | > | Vector3d etheta; | 
| 101 | > | Vector3d epsi; | 
| 102 |  |  | 
| 103 | < | void RigidBody::getFrc(double theF[3]){ | 
| 104 | < | for (int i = 0; i < 3 ; i++) | 
| 105 | < | theF[i] = frc[i]; | 
| 87 | < | } | 
| 103 | > | force = getFrc(); | 
| 104 | > | torque =getTrq(); | 
| 105 | > | myEuler = getA().toEulerAngles(); | 
| 106 |  |  | 
| 107 | < | void RigidBody::addFrc(double theF[3]){ | 
| 108 | < | for (int i = 0; i < 3 ; i++) | 
| 109 | < | frc[i] += theF[i]; | 
| 92 | < | } | 
| 107 | > | phi = myEuler[0]; | 
| 108 | > | theta = myEuler[1]; | 
| 109 | > | psi = myEuler[2]; | 
| 110 |  |  | 
| 111 | < | void RigidBody::zeroForces() { | 
| 111 | > | cphi = cos(phi); | 
| 112 | > | sphi = sin(phi); | 
| 113 | > | ctheta = cos(theta); | 
| 114 | > | stheta = sin(theta); | 
| 115 |  |  | 
| 116 | < | for (int i = 0; i < 3; i++) { | 
| 97 | < | frc[i] = 0.0; | 
| 98 | < | trq[i] = 0.0; | 
| 99 | < | } | 
| 116 | > | // get unit vectors along the phi, theta and psi rotation axes | 
| 117 |  |  | 
| 118 | < | } | 
| 118 | > | ephi[0] = 0.0; | 
| 119 | > | ephi[1] = 0.0; | 
| 120 | > | ephi[2] = 1.0; | 
| 121 |  |  | 
| 122 | < | void RigidBody::setEuler( double phi, double theta, double psi ){ | 
| 123 | < |  | 
| 124 | < | A[0][0] = (cos(phi) * cos(psi)) - (sin(phi) * cos(theta) * sin(psi)); | 
| 106 | < | A[0][1] = (sin(phi) * cos(psi)) + (cos(phi) * cos(theta) * sin(psi)); | 
| 107 | < | A[0][2] = sin(theta) * sin(psi); | 
| 108 | < |  | 
| 109 | < | A[1][0] = -(cos(phi) * sin(psi)) - (sin(phi) * cos(theta) * cos(psi)); | 
| 110 | < | A[1][1] = -(sin(phi) * sin(psi)) + (cos(phi) * cos(theta) * cos(psi)); | 
| 111 | < | A[1][2] = sin(theta) * cos(psi); | 
| 112 | < |  | 
| 113 | < | A[2][0] = sin(phi) * sin(theta); | 
| 114 | < | A[2][1] = -cos(phi) * sin(theta); | 
| 115 | < | A[2][2] = cos(theta); | 
| 122 | > | etheta[0] = cphi; | 
| 123 | > | etheta[1] = sphi; | 
| 124 | > | etheta[2] = 0.0; | 
| 125 |  |  | 
| 126 | < | } | 
| 126 | > | epsi[0] = stheta * cphi; | 
| 127 | > | epsi[1] = stheta * sphi; | 
| 128 | > | epsi[2] = ctheta; | 
| 129 |  |  | 
| 130 | < | void RigidBody::getQ( double q[4] ){ | 
| 131 | < |  | 
| 132 | < | double t, s; | 
| 133 | < | double ad1, ad2, ad3; | 
| 130 | > | //gradient is equal to -force | 
| 131 | > | for (int j = 0 ; j<3; j++) | 
| 132 | > | grad[j] = -force[j]; | 
| 133 | > |  | 
| 134 | > | for (int j = 0; j < 3; j++ ) { | 
| 135 | > |  | 
| 136 | > | grad[3] += torque[j]*ephi[j]; | 
| 137 | > | grad[4] += torque[j]*etheta[j]; | 
| 138 | > | grad[5] += torque[j]*epsi[j]; | 
| 139 | > |  | 
| 140 | > | } | 
| 141 |  |  | 
| 142 | < | t = A[0][0] + A[1][1] + A[2][2] + 1.0; | 
| 143 | < | if( t > 0.0 ){ | 
| 144 | < |  | 
| 145 | < | s = 0.5 / sqrt( t ); | 
| 146 | < | q[0] = 0.25 / s; | 
| 147 | < | q[1] = (A[1][2] - A[2][1]) * s; | 
| 148 | < | q[2] = (A[2][0] - A[0][2]) * s; | 
| 149 | < | q[3] = (A[0][1] - A[1][0]) * s; | 
| 150 | < | } | 
| 151 | < | else{ | 
| 152 | < |  | 
| 153 | < | ad1 = fabs( A[0][0] ); | 
| 154 | < | ad2 = fabs( A[1][1] ); | 
| 155 | < | ad3 = fabs( A[2][2] ); | 
| 156 | < |  | 
| 157 | < | if( ad1 >= ad2 && ad1 >= ad3 ){ | 
| 140 | < |  | 
| 141 | < | s = 2.0 * sqrt( 1.0 + A[0][0] - A[1][1] - A[2][2] ); | 
| 142 | < | q[0] = (A[1][2] + A[2][1]) / s; | 
| 143 | < | q[1] = 0.5 / s; | 
| 144 | < | q[2] = (A[0][1] + A[1][0]) / s; | 
| 145 | < | q[3] = (A[0][2] + A[2][0]) / s; | 
| 142 | > | return grad; | 
| 143 | > | } | 
| 144 | > |  | 
| 145 | > | void RigidBody::accept(BaseVisitor* v) { | 
| 146 | > | v->visit(this); | 
| 147 | > | } | 
| 148 | > |  | 
| 149 | > | /**@todo need modification */ | 
| 150 | > | void  RigidBody::calcRefCoords() { | 
| 151 | > | double mtmp; | 
| 152 | > | Vector3d refCOM(0.0); | 
| 153 | > | mass_ = 0.0; | 
| 154 | > | for (std::size_t i = 0; i < atoms_.size(); ++i) { | 
| 155 | > | mtmp = atoms_[i]->getMass(); | 
| 156 | > | mass_ += mtmp; | 
| 157 | > | refCOM += refCoords_[i]*mtmp; | 
| 158 |  | } | 
| 159 | < | else if( ad2 >= ad1 && ad2 >= ad3 ){ | 
| 160 | < |  | 
| 161 | < | s = sqrt( 1.0 + A[1][1] - A[0][0] - A[2][2] ) * 2.0; | 
| 162 | < | q[0] = (A[0][2] + A[2][0]) / s; | 
| 163 | < | q[1] = (A[0][1] + A[1][0]) / s; | 
| 152 | < | q[2] = 0.5 / s; | 
| 153 | < | q[3] = (A[1][2] + A[2][1]) / s; | 
| 159 | > | refCOM /= mass_; | 
| 160 | > |  | 
| 161 | > | // Next, move the origin of the reference coordinate system to the COM: | 
| 162 | > | for (std::size_t i = 0; i < atoms_.size(); ++i) { | 
| 163 | > | refCoords_[i] -= refCOM; | 
| 164 |  | } | 
| 165 | < | else{ | 
| 166 | < |  | 
| 167 | < | s = sqrt( 1.0 + A[2][2] - A[0][0] - A[1][1] ) * 2.0; | 
| 168 | < | q[0] = (A[0][1] + A[1][0]) / s; | 
| 169 | < | q[1] = (A[0][2] + A[2][0]) / s; | 
| 170 | < | q[2] = (A[1][2] + A[2][1]) / s; | 
| 171 | < | q[3] = 0.5 / s; | 
| 165 | > |  | 
| 166 | > | // Moment of Inertia calculation | 
| 167 | > | Mat3x3d Itmp(0.0); | 
| 168 | > | for (std::size_t i = 0; i < atoms_.size(); i++) { | 
| 169 | > | Mat3x3d IAtom(0.0); | 
| 170 | > | mtmp = atoms_[i]->getMass(); | 
| 171 | > | IAtom -= outProduct(refCoords_[i], refCoords_[i]) * mtmp; | 
| 172 | > | double r2 = refCoords_[i].lengthSquare(); | 
| 173 | > | IAtom(0, 0) += mtmp * r2; | 
| 174 | > | IAtom(1, 1) += mtmp * r2; | 
| 175 | > | IAtom(2, 2) += mtmp * r2; | 
| 176 | > | Itmp += IAtom; | 
| 177 | > |  | 
| 178 | > | //project the inertial moment of directional atoms into this rigid body | 
| 179 | > | if (atoms_[i]->isDirectional()) { | 
| 180 | > | Itmp += refOrients_[i].transpose() * atoms_[i]->getI() * refOrients_[i]; | 
| 181 | > | } | 
| 182 |  | } | 
| 163 | – | } | 
| 164 | – | } | 
| 183 |  |  | 
| 184 | < | void RigidBody::setQ( double the_q[4] ){ | 
| 184 | > | //    std::cout << Itmp << std::endl; | 
| 185 |  |  | 
| 186 | < | double q0Sqr, q1Sqr, q2Sqr, q3Sqr; | 
| 187 | < |  | 
| 188 | < | q0Sqr = the_q[0] * the_q[0]; | 
| 171 | < | q1Sqr = the_q[1] * the_q[1]; | 
| 172 | < | q2Sqr = the_q[2] * the_q[2]; | 
| 173 | < | q3Sqr = the_q[3] * the_q[3]; | 
| 174 | < |  | 
| 175 | < | A[0][0] = q0Sqr + q1Sqr - q2Sqr - q3Sqr; | 
| 176 | < | A[0][1] = 2.0 * ( the_q[1] * the_q[2] + the_q[0] * the_q[3] ); | 
| 177 | < | A[0][2] = 2.0 * ( the_q[1] * the_q[3] - the_q[0] * the_q[2] ); | 
| 178 | < |  | 
| 179 | < | A[1][0] = 2.0 * ( the_q[1] * the_q[2] - the_q[0] * the_q[3] ); | 
| 180 | < | A[1][1] = q0Sqr - q1Sqr + q2Sqr - q3Sqr; | 
| 181 | < | A[1][2] = 2.0 * ( the_q[2] * the_q[3] + the_q[0] * the_q[1] ); | 
| 182 | < |  | 
| 183 | < | A[2][0] = 2.0 * ( the_q[1] * the_q[3] + the_q[0] * the_q[2] ); | 
| 184 | < | A[2][1] = 2.0 * ( the_q[2] * the_q[3] - the_q[0] * the_q[1] ); | 
| 185 | < | A[2][2] = q0Sqr - q1Sqr -q2Sqr +q3Sqr; | 
| 186 | > | //diagonalize | 
| 187 | > | Vector3d evals; | 
| 188 | > | Mat3x3d::diagonalize(Itmp, evals, sU_); | 
| 189 |  |  | 
| 190 | < | } | 
| 190 | > | // zero out I and then fill the diagonals with the moments of inertia: | 
| 191 | > | inertiaTensor_(0, 0) = evals[0]; | 
| 192 | > | inertiaTensor_(1, 1) = evals[1]; | 
| 193 | > | inertiaTensor_(2, 2) = evals[2]; | 
| 194 | > |  | 
| 195 | > | int nLinearAxis = 0; | 
| 196 | > | for (int i = 0; i < 3; i++) { | 
| 197 | > | if (fabs(evals[i]) < oopse::epsilon) { | 
| 198 | > | linear_ = true; | 
| 199 | > | linearAxis_ = i; | 
| 200 | > | ++ nLinearAxis; | 
| 201 | > | } | 
| 202 | > | } | 
| 203 |  |  | 
| 204 | < | void RigidBody::getA( double the_A[3][3] ){ | 
| 204 | > | if (nLinearAxis > 1) { | 
| 205 | > | sprintf( painCave.errMsg, | 
| 206 | > | "RigidBody error.\n" | 
| 207 | > | "\tOOPSE found more than one axis in this rigid body with a vanishing \n" | 
| 208 | > | "\tmoment of inertia.  This can happen in one of three ways:\n" | 
| 209 | > | "\t 1) Only one atom was specified, or \n" | 
| 210 | > | "\t 2) All atoms were specified at the same location, or\n" | 
| 211 | > | "\t 3) The programmers did something stupid.\n" | 
| 212 | > | "\tIt is silly to use a rigid body to describe this situation.  Be smarter.\n" | 
| 213 | > | ); | 
| 214 | > | painCave.isFatal = 1; | 
| 215 | > | simError(); | 
| 216 | > | } | 
| 217 |  |  | 
| 218 | < | for (int i = 0; i < 3; i++) | 
| 192 | < | for (int j = 0; j < 3; j++) | 
| 193 | < | the_A[i][j] = A[i][j]; | 
| 218 | > | } | 
| 219 |  |  | 
| 220 | < | } | 
| 220 | > | void  RigidBody::calcForcesAndTorques() { | 
| 221 | > | Vector3d afrc; | 
| 222 | > | Vector3d atrq; | 
| 223 | > | Vector3d apos; | 
| 224 | > | Vector3d rpos; | 
| 225 | > | Vector3d frc(0.0); | 
| 226 | > | Vector3d trq(0.0); | 
| 227 | > | Vector3d pos = this->getPos(); | 
| 228 | > | for (int i = 0; i < atoms_.size(); i++) { | 
| 229 |  |  | 
| 230 | < | void RigidBody::setA( double the_A[3][3] ){ | 
| 230 | > | afrc = atoms_[i]->getFrc(); | 
| 231 | > | apos = atoms_[i]->getPos(); | 
| 232 | > | rpos = apos - pos; | 
| 233 | > |  | 
| 234 | > | frc += afrc; | 
| 235 |  |  | 
| 236 | < | for (int i = 0; i < 3; i++) | 
| 237 | < | for (int j = 0; j < 3; j++) | 
| 238 | < | A[i][j] = the_A[i][j]; | 
| 202 | < |  | 
| 203 | < | } | 
| 236 | > | trq[0] += rpos[1]*afrc[2] - rpos[2]*afrc[1]; | 
| 237 | > | trq[1] += rpos[2]*afrc[0] - rpos[0]*afrc[2]; | 
| 238 | > | trq[2] += rpos[0]*afrc[1] - rpos[1]*afrc[0]; | 
| 239 |  |  | 
| 240 | < | void RigidBody::getJ( double theJ[3] ){ | 
| 241 | < |  | 
| 207 | < | for (int i = 0; i < 3; i++) | 
| 208 | < | theJ[i] = ji[i]; | 
| 240 | > | // If the atom has a torque associated with it, then we also need to | 
| 241 | > | // migrate the torques onto the center of mass: | 
| 242 |  |  | 
| 243 | < | } | 
| 243 | > | if (atoms_[i]->isDirectional()) { | 
| 244 | > | atrq = atoms_[i]->getTrq(); | 
| 245 | > | trq += atrq; | 
| 246 | > | } | 
| 247 | > |  | 
| 248 | > | } | 
| 249 | > |  | 
| 250 | > | setFrc(frc); | 
| 251 | > | setTrq(trq); | 
| 252 | > |  | 
| 253 | > | } | 
| 254 |  |  | 
| 255 | < | void RigidBody::setJ( double theJ[3] ){ | 
| 256 | < |  | 
| 257 | < | for (int i = 0; i < 3; i++) | 
| 258 | < | ji[i] = theJ[i]; | 
| 255 | > | void  RigidBody::updateAtoms() { | 
| 256 | > | unsigned int i; | 
| 257 | > | Vector3d ref; | 
| 258 | > | Vector3d apos; | 
| 259 | > | DirectionalAtom* dAtom; | 
| 260 | > | Vector3d pos = getPos(); | 
| 261 | > | RotMat3x3d a = getA(); | 
| 262 | > |  | 
| 263 | > | for (i = 0; i < atoms_.size(); i++) { | 
| 264 | > |  | 
| 265 | > | ref = body2Lab(refCoords_[i]); | 
| 266 |  |  | 
| 267 | < | } | 
| 267 | > | apos = pos + ref; | 
| 268 |  |  | 
| 269 | < | void RigidBody::getTrq(double theT[3]){ | 
| 220 | < | for (int i = 0; i < 3 ; i++) | 
| 221 | < | theT[i] = trq[i]; | 
| 222 | < | } | 
| 269 | > | atoms_[i]->setPos(apos); | 
| 270 |  |  | 
| 271 | < | void RigidBody::addTrq(double theT[3]){ | 
| 272 | < | for (int i = 0; i < 3 ; i++) | 
| 273 | < | trq[i] += theT[i]; | 
| 274 | < | } | 
| 271 | > | if (atoms_[i]->isDirectional()) { | 
| 272 | > |  | 
| 273 | > | dAtom = (DirectionalAtom *) atoms_[i]; | 
| 274 | > | dAtom->setA(refOrients_[i] * a); | 
| 275 | > | } | 
| 276 |  |  | 
| 277 | < | void RigidBody::getI( double the_I[3][3] ){ | 
| 277 | > | } | 
| 278 | > |  | 
| 279 | > | } | 
| 280 |  |  | 
| 231 | – | for (int i = 0; i < 3; i++) | 
| 232 | – | for (int j = 0; j < 3; j++) | 
| 233 | – | the_I[i][j] = I[i][j]; | 
| 281 |  |  | 
| 282 | < | } | 
| 282 | > | void  RigidBody::updateAtoms(int frame) { | 
| 283 | > | unsigned int i; | 
| 284 | > | Vector3d ref; | 
| 285 | > | Vector3d apos; | 
| 286 | > | DirectionalAtom* dAtom; | 
| 287 | > | Vector3d pos = getPos(frame); | 
| 288 | > | RotMat3x3d a = getA(frame); | 
| 289 | > |  | 
| 290 | > | for (i = 0; i < atoms_.size(); i++) { | 
| 291 | > |  | 
| 292 | > | ref = body2Lab(refCoords_[i], frame); | 
| 293 |  |  | 
| 294 | < | void RigidBody::lab2Body( double r[3] ){ | 
| 294 | > | apos = pos + ref; | 
| 295 |  |  | 
| 296 | < | double rl[3]; // the lab frame vector | 
| 296 | > | atoms_[i]->setPos(apos, frame); | 
| 297 | > |  | 
| 298 | > | if (atoms_[i]->isDirectional()) { | 
| 299 | > |  | 
| 300 | > | dAtom = (DirectionalAtom *) atoms_[i]; | 
| 301 | > | dAtom->setA(refOrients_[i] * a, frame); | 
| 302 | > | } | 
| 303 | > |  | 
| 304 | > | } | 
| 305 |  |  | 
| 306 | < | rl[0] = r[0]; | 
| 242 | < | rl[1] = r[1]; | 
| 243 | < | rl[2] = r[2]; | 
| 244 | < |  | 
| 245 | < | r[0] = (A[0][0] * rl[0]) + (A[0][1] * rl[1]) + (A[0][2] * rl[2]); | 
| 246 | < | r[1] = (A[1][0] * rl[0]) + (A[1][1] * rl[1]) + (A[1][2] * rl[2]); | 
| 247 | < | r[2] = (A[2][0] * rl[0]) + (A[2][1] * rl[1]) + (A[2][2] * rl[2]); | 
| 306 | > | } | 
| 307 |  |  | 
| 308 | < | } | 
| 308 | > | void RigidBody::updateAtomVel() { | 
| 309 | > | Mat3x3d skewMat;; | 
| 310 |  |  | 
| 311 | < | void RigidBody::body2Lab( double r[3] ){ | 
| 311 | > | Vector3d ji = getJ(); | 
| 312 | > | Mat3x3d I =  getI(); | 
| 313 |  |  | 
| 314 | < | double rb[3]; // the body frame vector | 
| 315 | < |  | 
| 316 | < | rb[0] = r[0]; | 
| 256 | < | rb[1] = r[1]; | 
| 257 | < | rb[2] = r[2]; | 
| 258 | < |  | 
| 259 | < | r[0] = (A[0][0] * rb[0]) + (A[1][0] * rb[1]) + (A[2][0] * rb[2]); | 
| 260 | < | r[1] = (A[0][1] * rb[0]) + (A[1][1] * rb[1]) + (A[2][1] * rb[2]); | 
| 261 | < | r[2] = (A[0][2] * rb[0]) + (A[1][2] * rb[1]) + (A[2][2] * rb[2]); | 
| 314 | > | skewMat(0, 0) =0; | 
| 315 | > | skewMat(0, 1) = ji[2] /I(2, 2); | 
| 316 | > | skewMat(0, 2) = -ji[1] /I(1, 1); | 
| 317 |  |  | 
| 318 | < | } | 
| 318 | > | skewMat(1, 0) = -ji[2] /I(2, 2); | 
| 319 | > | skewMat(1, 1) = 0; | 
| 320 | > | skewMat(1, 2) = ji[0]/I(0, 0); | 
| 321 |  |  | 
| 322 | < | double RigidBody::getZangle( ){ | 
| 323 | < | return zAngle; | 
| 324 | < | } | 
| 322 | > | skewMat(2, 0) =ji[1] /I(1, 1); | 
| 323 | > | skewMat(2, 1) = -ji[0]/I(0, 0); | 
| 324 | > | skewMat(2, 2) = 0; | 
| 325 |  |  | 
| 326 | < | void RigidBody::setZangle( double zAng ){ | 
| 327 | < | zAngle = zAng; | 
| 271 | < | } | 
| 326 | > | Mat3x3d mat = (getA() * skewMat).transpose(); | 
| 327 | > | Vector3d rbVel = getVel(); | 
| 328 |  |  | 
| 273 | – | void RigidBody::addZangle( double zAng ){ | 
| 274 | – | zAngle += zAng; | 
| 275 | – | } | 
| 329 |  |  | 
| 330 | < | void RigidBody::calcRefCoords( ) { | 
| 330 | > | Vector3d velRot; | 
| 331 | > | for (int i =0 ; i < refCoords_.size(); ++i) { | 
| 332 | > | atoms_[i]->setVel(rbVel + mat * refCoords_[i]); | 
| 333 | > | } | 
| 334 |  |  | 
| 335 | < | int i,j,k, it, n_linear_coords; | 
| 280 | < | double mtmp; | 
| 281 | < | vec3 apos; | 
| 282 | < | double refCOM[3]; | 
| 283 | < | vec3 ptmp; | 
| 284 | < | double Itmp[3][3]; | 
| 285 | < | double evals[3]; | 
| 286 | < | double evects[3][3]; | 
| 287 | < | double r, r2, len; | 
| 335 | > | } | 
| 336 |  |  | 
| 337 | < | // First, find the center of mass: | 
| 338 | < |  | 
| 339 | < | mass = 0.0; | 
| 340 | < | for (j=0; j<3; j++) | 
| 341 | < | refCOM[j] = 0.0; | 
| 342 | < |  | 
| 343 | < | for (i = 0; i < myAtoms.size(); i++) { | 
| 344 | < | mtmp = myAtoms[i]->getMass(); | 
| 345 | < | mass += mtmp; | 
| 337 | > | void RigidBody::updateAtomVel(int frame) { | 
| 338 | > | Mat3x3d skewMat;; | 
| 339 | > |  | 
| 340 | > | Vector3d ji = getJ(frame); | 
| 341 | > | Mat3x3d I =  getI(); | 
| 342 | > |  | 
| 343 | > | skewMat(0, 0) =0; | 
| 344 | > | skewMat(0, 1) = ji[2] /I(2, 2); | 
| 345 | > | skewMat(0, 2) = -ji[1] /I(1, 1); | 
| 346 | > |  | 
| 347 | > | skewMat(1, 0) = -ji[2] /I(2, 2); | 
| 348 | > | skewMat(1, 1) = 0; | 
| 349 | > | skewMat(1, 2) = ji[0]/I(0, 0); | 
| 350 | > |  | 
| 351 | > | skewMat(2, 0) =ji[1] /I(1, 1); | 
| 352 | > | skewMat(2, 1) = -ji[0]/I(0, 0); | 
| 353 | > | skewMat(2, 2) = 0; | 
| 354 | > |  | 
| 355 | > | Mat3x3d mat = (getA(frame) * skewMat).transpose(); | 
| 356 | > | Vector3d rbVel = getVel(frame); | 
| 357 | > |  | 
| 358 | > |  | 
| 359 | > | Vector3d velRot; | 
| 360 | > | for (int i =0 ; i < refCoords_.size(); ++i) { | 
| 361 | > | atoms_[i]->setVel(rbVel + mat * refCoords_[i], frame); | 
| 362 | > | } | 
| 363 |  |  | 
| 299 | – | apos = refCoords[i]; | 
| 300 | – |  | 
| 301 | – | for(j = 0; j < 3; j++) { | 
| 302 | – | refCOM[j] += apos[j]*mtmp; | 
| 303 | – | } | 
| 364 |  | } | 
| 305 | – |  | 
| 306 | – | for(j = 0; j < 3; j++) | 
| 307 | – | refCOM[j] /= mass; | 
| 365 |  |  | 
| 309 | – | // Next, move the origin of the reference coordinate system to the COM: | 
| 310 | – |  | 
| 311 | – | for (i = 0; i < myAtoms.size(); i++) { | 
| 312 | – | apos = refCoords[i]; | 
| 313 | – | for (j=0; j < 3; j++) { | 
| 314 | – | apos[j] = apos[j] - refCOM[j]; | 
| 315 | – | } | 
| 316 | – | refCoords[i] = apos; | 
| 317 | – | } | 
| 318 | – |  | 
| 319 | – | // Moment of Inertia calculation | 
| 320 | – |  | 
| 321 | – | for (i = 0; i < 3; i++) | 
| 322 | – | for (j = 0; j < 3; j++) | 
| 323 | – | Itmp[i][j] = 0.0; | 
| 324 | – |  | 
| 325 | – | for (it = 0; it < myAtoms.size(); it++) { | 
| 326 | – |  | 
| 327 | – | mtmp = myAtoms[it]->getMass(); | 
| 328 | – | ptmp = refCoords[it]; | 
| 329 | – | r= norm3(ptmp.vec); | 
| 330 | – | r2 = r*r; | 
| 331 | – |  | 
| 332 | – | for (i = 0; i < 3; i++) { | 
| 333 | – | for (j = 0; j < 3; j++) { | 
| 366 |  |  | 
| 335 | – | if (i==j) Itmp[i][j] += mtmp * r2; | 
| 367 |  |  | 
| 368 | < | Itmp[i][j] -= mtmp * ptmp.vec[i]*ptmp.vec[j]; | 
| 369 | < | } | 
| 339 | < | } | 
| 340 | < | } | 
| 341 | < |  | 
| 342 | < | diagonalize3x3(Itmp, evals, sU); | 
| 343 | < |  | 
| 344 | < | // zero out I and then fill the diagonals with the moments of inertia: | 
| 368 | > | bool RigidBody::getAtomPos(Vector3d& pos, unsigned int index) { | 
| 369 | > | if (index < atoms_.size()) { | 
| 370 |  |  | 
| 371 | < | n_linear_coords = 0; | 
| 372 | < |  | 
| 373 | < | for (i = 0; i < 3; i++) { | 
| 374 | < | for (j = 0; j < 3; j++) { | 
| 375 | < | I[i][j] = 0.0; | 
| 376 | < | } | 
| 377 | < | I[i][i] = evals[i]; | 
| 378 | < |  | 
| 354 | < | if (fabs(evals[i]) < momIntTol) { | 
| 355 | < | is_linear = true; | 
| 356 | < | n_linear_coords++; | 
| 357 | < | linear_axis = i; | 
| 358 | < | } | 
| 371 | > | Vector3d ref = body2Lab(refCoords_[index]); | 
| 372 | > | pos = getPos() + ref; | 
| 373 | > | return true; | 
| 374 | > | } else { | 
| 375 | > | std::cerr << index << " is an invalid index, current rigid body contains " | 
| 376 | > | << atoms_.size() << "atoms" << std::endl; | 
| 377 | > | return false; | 
| 378 | > | } | 
| 379 |  | } | 
| 380 |  |  | 
| 381 | < | if (n_linear_coords > 1) { | 
| 382 | < | sprintf( painCave.errMsg, | 
| 383 | < | "RigidBody error.\n" | 
| 384 | < | "\tOOPSE found more than one axis in this rigid body with a vanishing \n" | 
| 385 | < | "\tmoment of inertia.  This can happen in one of three ways:\n" | 
| 386 | < | "\t 1) Only one atom was specified, or \n" | 
| 387 | < | "\t 2) All atoms were specified at the same location, or\n" | 
| 388 | < | "\t 3) The programmers did something stupid.\n" | 
| 389 | < | "\tIt is silly to use a rigid body to describe this situation.  Be smarter.\n" | 
| 390 | < | ); | 
| 391 | < | painCave.isFatal = 1; | 
| 392 | < | simError(); | 
| 373 | < | } | 
| 374 | < |  | 
| 375 | < | // renormalize column vectors: | 
| 376 | < |  | 
| 377 | < | for (i=0; i < 3; i++) { | 
| 378 | < | len = 0.0; | 
| 379 | < | for (j = 0; j < 3; j++) { | 
| 380 | < | len += sU[i][j]*sU[i][j]; | 
| 381 | > | bool RigidBody::getAtomPos(Vector3d& pos, Atom* atom) { | 
| 382 | > | std::vector<Atom*>::iterator i; | 
| 383 | > | i = std::find(atoms_.begin(), atoms_.end(), atom); | 
| 384 | > | if (i != atoms_.end()) { | 
| 385 | > | //RigidBody class makes sure refCoords_ and atoms_ match each other | 
| 386 | > | Vector3d ref = body2Lab(refCoords_[i - atoms_.begin()]); | 
| 387 | > | pos = getPos() + ref; | 
| 388 | > | return true; | 
| 389 | > | } else { | 
| 390 | > | std::cerr << "Atom " << atom->getGlobalIndex() | 
| 391 | > | <<" does not belong to Rigid body "<< getGlobalIndex() << std::endl; | 
| 392 | > | return false; | 
| 393 |  | } | 
| 382 | – | len = sqrt(len); | 
| 383 | – | for (j = 0; j < 3; j++) { | 
| 384 | – | sU[i][j] /= len; | 
| 385 | – | } | 
| 394 |  | } | 
| 395 | < | } | 
| 395 | > | bool RigidBody::getAtomVel(Vector3d& vel, unsigned int index) { | 
| 396 |  |  | 
| 397 | < | void RigidBody::doEulerToRotMat(vec3 &euler, mat3x3 &myA ){ | 
| 397 | > | //velRot = $(A\cdot skew(I^{-1}j))^{T}refCoor$ | 
| 398 |  |  | 
| 399 | < | double phi, theta, psi; | 
| 392 | < |  | 
| 393 | < | phi = euler[0]; | 
| 394 | < | theta = euler[1]; | 
| 395 | < | psi = euler[2]; | 
| 396 | < |  | 
| 397 | < | myA[0][0] = (cos(phi) * cos(psi)) - (sin(phi) * cos(theta) * sin(psi)); | 
| 398 | < | myA[0][1] = (sin(phi) * cos(psi)) + (cos(phi) * cos(theta) * sin(psi)); | 
| 399 | < | myA[0][2] = sin(theta) * sin(psi); | 
| 400 | < |  | 
| 401 | < | myA[1][0] = -(cos(phi) * sin(psi)) - (sin(phi) * cos(theta) * cos(psi)); | 
| 402 | < | myA[1][1] = -(sin(phi) * sin(psi)) + (cos(phi) * cos(theta) * cos(psi)); | 
| 403 | < | myA[1][2] = sin(theta) * cos(psi); | 
| 404 | < |  | 
| 405 | < | myA[2][0] = sin(phi) * sin(theta); | 
| 406 | < | myA[2][1] = -cos(phi) * sin(theta); | 
| 407 | < | myA[2][2] = cos(theta); | 
| 399 | > | if (index < atoms_.size()) { | 
| 400 |  |  | 
| 401 | < | } | 
| 401 | > | Vector3d velRot; | 
| 402 | > | Mat3x3d skewMat;; | 
| 403 | > | Vector3d ref = refCoords_[index]; | 
| 404 | > | Vector3d ji = getJ(); | 
| 405 | > | Mat3x3d I =  getI(); | 
| 406 |  |  | 
| 407 | < | void RigidBody::calcForcesAndTorques() { | 
| 407 | > | skewMat(0, 0) =0; | 
| 408 | > | skewMat(0, 1) = ji[2] /I(2, 2); | 
| 409 | > | skewMat(0, 2) = -ji[1] /I(1, 1); | 
| 410 |  |  | 
| 411 | < | // Convert Atomic forces and torques to total forces and torques: | 
| 412 | < | int i, j; | 
| 413 | < | double apos[3]; | 
| 416 | < | double afrc[3]; | 
| 417 | < | double atrq[3]; | 
| 418 | < | double rpos[3]; | 
| 411 | > | skewMat(1, 0) = -ji[2] /I(2, 2); | 
| 412 | > | skewMat(1, 1) = 0; | 
| 413 | > | skewMat(1, 2) = ji[0]/I(0, 0); | 
| 414 |  |  | 
| 415 | < | zeroForces(); | 
| 416 | < |  | 
| 417 | < | for (i = 0; i < myAtoms.size(); i++) { | 
| 415 | > | skewMat(2, 0) =ji[1] /I(1, 1); | 
| 416 | > | skewMat(2, 1) = -ji[0]/I(0, 0); | 
| 417 | > | skewMat(2, 2) = 0; | 
| 418 |  |  | 
| 419 | < | myAtoms[i]->getPos(apos); | 
| 425 | < | myAtoms[i]->getFrc(afrc); | 
| 419 | > | velRot = (getA() * skewMat).transpose() * ref; | 
| 420 |  |  | 
| 421 | < | for (j=0; j<3; j++) { | 
| 422 | < | rpos[j] = apos[j] - pos[j]; | 
| 423 | < | frc[j] += afrc[j]; | 
| 421 | > | vel =getVel() + velRot; | 
| 422 | > | return true; | 
| 423 | > |  | 
| 424 | > | } else { | 
| 425 | > | std::cerr << index << " is an invalid index, current rigid body contains " | 
| 426 | > | << atoms_.size() << "atoms" << std::endl; | 
| 427 | > | return false; | 
| 428 |  | } | 
| 429 | < |  | 
| 432 | < | trq[0] += rpos[1]*afrc[2] - rpos[2]*afrc[1]; | 
| 433 | < | trq[1] += rpos[2]*afrc[0] - rpos[0]*afrc[2]; | 
| 434 | < | trq[2] += rpos[0]*afrc[1] - rpos[1]*afrc[0]; | 
| 429 | > | } | 
| 430 |  |  | 
| 431 | < | // If the atom has a torque associated with it, then we also need to | 
| 437 | < | // migrate the torques onto the center of mass: | 
| 431 | > | bool RigidBody::getAtomVel(Vector3d& vel, Atom* atom) { | 
| 432 |  |  | 
| 433 | < | if (myAtoms[i]->isDirectional()) { | 
| 434 | < |  | 
| 435 | < | myAtoms[i]->getTrq(atrq); | 
| 436 | < |  | 
| 437 | < | for (j=0; j<3; j++) | 
| 438 | < | trq[j] += atrq[j]; | 
| 439 | < | } | 
| 433 | > | std::vector<Atom*>::iterator i; | 
| 434 | > | i = std::find(atoms_.begin(), atoms_.end(), atom); | 
| 435 | > | if (i != atoms_.end()) { | 
| 436 | > | return getAtomVel(vel, i - atoms_.begin()); | 
| 437 | > | } else { | 
| 438 | > | std::cerr << "Atom " << atom->getGlobalIndex() | 
| 439 | > | <<" does not belong to Rigid body "<< getGlobalIndex() << std::endl; | 
| 440 | > | return false; | 
| 441 | > | } | 
| 442 |  | } | 
| 443 |  |  | 
| 444 | < | // Convert Torque to Body-fixed coordinates: | 
| 445 | < | // (Actually, on second thought, don't.  Integrator does this now.) | 
| 450 | < | // lab2Body(trq); | 
| 444 | > | bool RigidBody::getAtomRefCoor(Vector3d& coor, unsigned int index) { | 
| 445 | > | if (index < atoms_.size()) { | 
| 446 |  |  | 
| 447 | < | } | 
| 447 | > | coor = refCoords_[index]; | 
| 448 | > | return true; | 
| 449 | > | } else { | 
| 450 | > | std::cerr << index << " is an invalid index, current rigid body contains " | 
| 451 | > | << atoms_.size() << "atoms" << std::endl; | 
| 452 | > | return false; | 
| 453 | > | } | 
| 454 |  |  | 
| 455 | < | void RigidBody::updateAtoms() { | 
| 455 | < | int i, j; | 
| 456 | < | vec3 ref; | 
| 457 | < | double apos[3]; | 
| 458 | < | DirectionalAtom* dAtom; | 
| 459 | < |  | 
| 460 | < | for (i = 0; i < myAtoms.size(); i++) { | 
| 461 | < |  | 
| 462 | < | ref = refCoords[i]; | 
| 455 | > | } | 
| 456 |  |  | 
| 457 | < | body2Lab(ref.vec); | 
| 458 | < |  | 
| 459 | < | for (j = 0; j<3; j++) | 
| 460 | < | apos[j] = pos[j] + ref.vec[j]; | 
| 461 | < |  | 
| 462 | < | myAtoms[i]->setPos(apos); | 
| 463 | < |  | 
| 464 | < | if (myAtoms[i]->isDirectional()) { | 
| 465 | < |  | 
| 466 | < | dAtom = (DirectionalAtom *) myAtoms[i]; | 
| 467 | < | dAtom->rotateBy( A ); | 
| 475 | < |  | 
| 457 | > | bool RigidBody::getAtomRefCoor(Vector3d& coor, Atom* atom) { | 
| 458 | > | std::vector<Atom*>::iterator i; | 
| 459 | > | i = std::find(atoms_.begin(), atoms_.end(), atom); | 
| 460 | > | if (i != atoms_.end()) { | 
| 461 | > | //RigidBody class makes sure refCoords_ and atoms_ match each other | 
| 462 | > | coor = refCoords_[i - atoms_.begin()]; | 
| 463 | > | return true; | 
| 464 | > | } else { | 
| 465 | > | std::cerr << "Atom " << atom->getGlobalIndex() | 
| 466 | > | <<" does not belong to Rigid body "<< getGlobalIndex() << std::endl; | 
| 467 | > | return false; | 
| 468 |  | } | 
| 477 | – | } | 
| 478 | – | } | 
| 469 |  |  | 
| 470 | < | void RigidBody::getGrad( double grad[6] ) { | 
| 470 | > | } | 
| 471 |  |  | 
| 482 | – | double myEuler[3]; | 
| 483 | – | double phi, theta, psi; | 
| 484 | – | double cphi, sphi, ctheta, stheta; | 
| 485 | – | double ephi[3]; | 
| 486 | – | double etheta[3]; | 
| 487 | – | double epsi[3]; | 
| 488 | – |  | 
| 489 | – | this->getEulerAngles(myEuler); | 
| 472 |  |  | 
| 473 | < | phi = myEuler[0]; | 
| 492 | < | theta = myEuler[1]; | 
| 493 | < | psi = myEuler[2]; | 
| 473 | > | void RigidBody::addAtom(Atom* at, AtomStamp* ats) { | 
| 474 |  |  | 
| 475 | < | cphi = cos(phi); | 
| 476 | < | sphi = sin(phi); | 
| 497 | < | ctheta = cos(theta); | 
| 498 | < | stheta = sin(theta); | 
| 499 | < |  | 
| 500 | < | // get unit vectors along the phi, theta and psi rotation axes | 
| 501 | < |  | 
| 502 | < | ephi[0] = 0.0; | 
| 503 | < | ephi[1] = 0.0; | 
| 504 | < | ephi[2] = 1.0; | 
| 505 | < |  | 
| 506 | < | etheta[0] = cphi; | 
| 507 | < | etheta[1] = sphi; | 
| 508 | < | etheta[2] = 0.0; | 
| 475 | > | Vector3d coords; | 
| 476 | > | Vector3d euler; | 
| 477 |  |  | 
| 510 | – | epsi[0] = stheta * cphi; | 
| 511 | – | epsi[1] = stheta * sphi; | 
| 512 | – | epsi[2] = ctheta; | 
| 513 | – |  | 
| 514 | – | for (int j = 0 ; j<3; j++) | 
| 515 | – | grad[j] = frc[j]; | 
| 478 |  |  | 
| 479 | < | grad[3] = 0.0; | 
| 480 | < | grad[4] = 0.0; | 
| 481 | < | grad[5] = 0.0; | 
| 479 | > | atoms_.push_back(at); | 
| 480 | > |  | 
| 481 | > | if( !ats->havePosition() ){ | 
| 482 | > | sprintf( painCave.errMsg, | 
| 483 | > | "RigidBody error.\n" | 
| 484 | > | "\tAtom %s does not have a position specified.\n" | 
| 485 | > | "\tThis means RigidBody cannot set up reference coordinates.\n", | 
| 486 | > | ats->getType() ); | 
| 487 | > | painCave.isFatal = 1; | 
| 488 | > | simError(); | 
| 489 | > | } | 
| 490 |  |  | 
| 491 | < | for (int j = 0; j < 3; j++ ) { | 
| 492 | < |  | 
| 493 | < | grad[3] += trq[j]*ephi[j]; | 
| 524 | < | grad[4] += trq[j]*etheta[j]; | 
| 525 | < | grad[5] += trq[j]*epsi[j]; | 
| 526 | < |  | 
| 527 | < | } | 
| 528 | < |  | 
| 529 | < | } | 
| 491 | > | coords[0] = ats->getPosX(); | 
| 492 | > | coords[1] = ats->getPosY(); | 
| 493 | > | coords[2] = ats->getPosZ(); | 
| 494 |  |  | 
| 495 | < | /** | 
| 532 | < | * getEulerAngles computes a set of Euler angle values consistent | 
| 533 | < | * with an input rotation matrix.  They are returned in the following | 
| 534 | < | * order: | 
| 535 | < | *  myEuler[0] = phi; | 
| 536 | < | *  myEuler[1] = theta; | 
| 537 | < | *  myEuler[2] = psi; | 
| 538 | < | */ | 
| 539 | < | void RigidBody::getEulerAngles(double myEuler[3]) { | 
| 495 | > | refCoords_.push_back(coords); | 
| 496 |  |  | 
| 497 | < | // We use so-called "x-convention", which is the most common | 
| 542 | < | // definition.  In this convention, the rotation given by Euler | 
| 543 | < | // angles (phi, theta, psi), where the first rotation is by an angle | 
| 544 | < | // phi about the z-axis, the second is by an angle theta (0 <= theta | 
| 545 | < | // <= 180) about the x-axis, and the third is by an angle psi about | 
| 546 | < | // the z-axis (again). | 
| 497 | > | RotMat3x3d identMat = RotMat3x3d::identity(); | 
| 498 |  |  | 
| 499 | < |  | 
| 549 | < | double phi,theta,psi,eps; | 
| 550 | < | double pi; | 
| 551 | < | double cphi,ctheta,cpsi; | 
| 552 | < | double sphi,stheta,spsi; | 
| 553 | < | double b[3]; | 
| 554 | < | int flip[3]; | 
| 555 | < |  | 
| 556 | < | // set the tolerance for Euler angles and rotation elements | 
| 557 | < |  | 
| 558 | < | eps = 1.0e-8; | 
| 499 | > | if (at->isDirectional()) { | 
| 500 |  |  | 
| 501 | < | theta = acos(min(1.0,max(-1.0,A[2][2]))); | 
| 502 | < | ctheta = A[2][2]; | 
| 503 | < | stheta = sqrt(1.0 - ctheta * ctheta); | 
| 501 | > | if( !ats->haveOrientation() ){ | 
| 502 | > | sprintf( painCave.errMsg, | 
| 503 | > | "RigidBody error.\n" | 
| 504 | > | "\tAtom %s does not have an orientation specified.\n" | 
| 505 | > | "\tThis means RigidBody cannot set up reference orientations.\n", | 
| 506 | > | ats->getType() ); | 
| 507 | > | painCave.isFatal = 1; | 
| 508 | > | simError(); | 
| 509 | > | } | 
| 510 | > |  | 
| 511 | > | euler[0] = ats->getEulerPhi() * NumericConstant::PI /180.0; | 
| 512 | > | euler[1] = ats->getEulerTheta() * NumericConstant::PI /180.0; | 
| 513 | > | euler[2] = ats->getEulerPsi() * NumericConstant::PI /180.0; | 
| 514 |  |  | 
| 515 | < | // when sin(theta) is close to 0, we need to consider the | 
| 516 | < | // possibility of a singularity. In this case, we can assign an | 
| 566 | < | // arbitary value to phi (or psi), and then determine the psi (or | 
| 567 | < | // phi) or vice-versa.  We'll assume that phi always gets the | 
| 568 | < | // rotation, and psi is 0 in cases of singularity.  we use atan2 | 
| 569 | < | // instead of atan, since atan2 will give us -Pi to Pi.  Since 0 <= | 
| 570 | < | // theta <= 180, sin(theta) will be always non-negative. Therefore, | 
| 571 | < | // it never changes the sign of both of the parameters passed to | 
| 572 | < | // atan2. | 
| 573 | < |  | 
| 574 | < | if (fabs(stheta) <= eps){ | 
| 575 | < | psi = 0.0; | 
| 576 | < | phi = atan2(-A[1][0], A[0][0]); | 
| 577 | < | } | 
| 578 | < | // we only have one unique solution | 
| 579 | < | else{ | 
| 580 | < | phi = atan2(A[2][0], -A[2][1]); | 
| 581 | < | psi = atan2(A[0][2], A[1][2]); | 
| 582 | < | } | 
| 583 | < |  | 
| 584 | < | //wrap phi and psi, make sure they are in the range from 0 to 2*Pi | 
| 585 | < | //if (phi < 0) | 
| 586 | < | //  phi += M_PI; | 
| 587 | < |  | 
| 588 | < | //if (psi < 0) | 
| 589 | < | //  psi += M_PI; | 
| 590 | < |  | 
| 591 | < | myEuler[0] = phi; | 
| 592 | < | myEuler[1] = theta; | 
| 593 | < | myEuler[2] = psi; | 
| 594 | < |  | 
| 595 | < | return; | 
| 596 | < | } | 
| 597 | < |  | 
| 598 | < | double RigidBody::max(double x, double  y) { | 
| 599 | < | return (x > y) ? x : y; | 
| 600 | < | } | 
| 601 | < |  | 
| 602 | < | double RigidBody::min(double x, double  y) { | 
| 603 | < | return (x > y) ? y : x; | 
| 604 | < | } | 
| 605 | < |  | 
| 606 | < | void RigidBody::findCOM() { | 
| 607 | < |  | 
| 608 | < | size_t i; | 
| 609 | < | int j; | 
| 610 | < | double mtmp; | 
| 611 | < | double ptmp[3]; | 
| 612 | < | double vtmp[3]; | 
| 613 | < |  | 
| 614 | < | for(j = 0; j < 3; j++) { | 
| 615 | < | pos[j] = 0.0; | 
| 616 | < | vel[j] = 0.0; | 
| 617 | < | } | 
| 618 | < | mass = 0.0; | 
| 619 | < |  | 
| 620 | < | for (i = 0; i < myAtoms.size(); i++) { | 
| 515 | > | RotMat3x3d Atmp(euler); | 
| 516 | > | refOrients_.push_back(Atmp); | 
| 517 |  |  | 
| 518 | < | mtmp = myAtoms[i]->getMass(); | 
| 519 | < | myAtoms[i]->getPos(ptmp); | 
| 624 | < | myAtoms[i]->getVel(vtmp); | 
| 625 | < |  | 
| 626 | < | mass += mtmp; | 
| 627 | < |  | 
| 628 | < | for(j = 0; j < 3; j++) { | 
| 629 | < | pos[j] += ptmp[j]*mtmp; | 
| 630 | < | vel[j] += vtmp[j]*mtmp; | 
| 518 | > | }else { | 
| 519 | > | refOrients_.push_back(identMat); | 
| 520 |  | } | 
| 632 | – |  | 
| 633 | – | } | 
| 521 |  |  | 
| 522 | < | for(j = 0; j < 3; j++) { | 
| 636 | < | pos[j] /= mass; | 
| 637 | < | vel[j] /= mass; | 
| 522 | > |  | 
| 523 |  | } | 
| 524 |  |  | 
| 525 |  | } | 
| 526 |  |  | 
| 642 | – | void RigidBody::accept(BaseVisitor* v){ | 
| 643 | – | vector<Atom*>::iterator atomIter; | 
| 644 | – | v->visit(this); | 
| 645 | – |  | 
| 646 | – | //for(atomIter = myAtoms.begin(); atomIter != myAtoms.end(); ++atomIter) | 
| 647 | – | //  (*atomIter)->accept(v); | 
| 648 | – | } | 
| 649 | – | void RigidBody::getAtomRefCoor(double pos[3], int index){ | 
| 650 | – | vec3 ref; | 
| 651 | – |  | 
| 652 | – | ref = refCoords[index]; | 
| 653 | – | pos[0] = ref[0]; | 
| 654 | – | pos[1] = ref[1]; | 
| 655 | – | pos[2] = ref[2]; | 
| 656 | – |  | 
| 657 | – | } | 
| 658 | – |  | 
| 659 | – |  | 
| 660 | – | void RigidBody::getAtomPos(double theP[3], int index){ | 
| 661 | – | vec3 ref; | 
| 662 | – |  | 
| 663 | – | if (index >= myAtoms.size()) | 
| 664 | – | cerr << index << " is an invalid index, current rigid body contains " << myAtoms.size() << "atoms" << endl; | 
| 665 | – |  | 
| 666 | – | ref = refCoords[index]; | 
| 667 | – | body2Lab(ref.vec); | 
| 668 | – |  | 
| 669 | – | theP[0] = pos[0] + ref[0]; | 
| 670 | – | theP[1] = pos[1] + ref[1]; | 
| 671 | – | theP[2] = pos[2] + ref[2]; | 
| 672 | – | } | 
| 673 | – |  | 
| 674 | – |  | 
| 675 | – | void RigidBody::getAtomVel(double theV[3], int index){ | 
| 676 | – | vec3 ref; | 
| 677 | – | double velRot[3]; | 
| 678 | – | double skewMat[3][3]; | 
| 679 | – | double aSkewMat[3][3]; | 
| 680 | – | double aSkewTransMat[3][3]; | 
| 681 | – |  | 
| 682 | – | //velRot = $(A\cdot skew(I^{-1}j))^{T}refCoor$ | 
| 683 | – |  | 
| 684 | – | if (index >= myAtoms.size()) | 
| 685 | – | cerr << index << " is an invalid index, current rigid body contains " << myAtoms.size() << "atoms" << endl; | 
| 686 | – |  | 
| 687 | – | ref = refCoords[index]; | 
| 688 | – |  | 
| 689 | – | skewMat[0][0] =0; | 
| 690 | – | skewMat[0][1] = ji[2] /I[2][2]; | 
| 691 | – | skewMat[0][2] = -ji[1] /I[1][1]; | 
| 692 | – |  | 
| 693 | – | skewMat[1][0] = -ji[2] /I[2][2]; | 
| 694 | – | skewMat[1][1] = 0; | 
| 695 | – | skewMat[1][2] = ji[0]/I[0][0]; | 
| 696 | – |  | 
| 697 | – | skewMat[2][0] =ji[1] /I[1][1]; | 
| 698 | – | skewMat[2][1] = -ji[0]/I[0][0]; | 
| 699 | – | skewMat[2][2] = 0; | 
| 700 | – |  | 
| 701 | – | matMul3(A, skewMat, aSkewMat); | 
| 702 | – |  | 
| 703 | – | transposeMat3(aSkewMat, aSkewTransMat); | 
| 704 | – |  | 
| 705 | – | matVecMul3(aSkewTransMat, ref.vec, velRot); | 
| 706 | – | theV[0] = vel[0] + velRot[0]; | 
| 707 | – | theV[1] = vel[1] + velRot[1]; | 
| 708 | – | theV[2] = vel[2] + velRot[2]; | 
| 709 | – | } | 
| 710 | – |  | 
| 711 | – |  |