| 6 | 
  | 
 * redistribute this software in source and binary code form, provided | 
| 7 | 
  | 
 * that the following conditions are met: | 
| 8 | 
  | 
 * | 
| 9 | 
< | 
 * 1. Acknowledgement of the program authors must be made in any | 
| 10 | 
< | 
 *    publication of scientific results based in part on use of the | 
| 11 | 
< | 
 *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | 
< | 
 *    the article in which the program was described (Matthew | 
| 13 | 
< | 
 *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | 
< | 
 *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | 
< | 
 *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | 
< | 
 *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | 
< | 
 * | 
| 18 | 
< | 
 * 2. Redistributions of source code must retain the above copyright | 
| 9 | 
> | 
 * 1. Redistributions of source code must retain the above copyright | 
| 10 | 
  | 
 *    notice, this list of conditions and the following disclaimer. | 
| 11 | 
  | 
 * | 
| 12 | 
< | 
 * 3. Redistributions in binary form must reproduce the above copyright | 
| 12 | 
> | 
 * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | 
  | 
 *    notice, this list of conditions and the following disclaimer in the | 
| 14 | 
  | 
 *    documentation and/or other materials provided with the | 
| 15 | 
  | 
 *    distribution. | 
| 28 | 
  | 
 * arising out of the use of or inability to use software, even if the | 
| 29 | 
  | 
 * University of Notre Dame has been advised of the possibility of | 
| 30 | 
  | 
 * such damages. | 
| 31 | 
+ | 
 * | 
| 32 | 
+ | 
 * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | 
+ | 
 * research, please cite the appropriate papers when you publish your | 
| 34 | 
+ | 
 * work.  Good starting points are: | 
| 35 | 
+ | 
 *                                                                       | 
| 36 | 
+ | 
 * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).              | 
| 37 | 
+ | 
 * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).           | 
| 38 | 
+ | 
 * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).           | 
| 39 | 
+ | 
 * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | 
+ | 
 * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | 
  | 
 */ | 
| 42 | 
  | 
#include <algorithm> | 
| 43 | 
  | 
#include <math.h> | 
| 44 | 
  | 
#include "primitives/RigidBody.hpp" | 
| 45 | 
  | 
#include "utils/simError.h" | 
| 46 | 
  | 
#include "utils/NumericConstant.hpp" | 
| 47 | 
< | 
namespace oopse { | 
| 48 | 
< | 
 | 
| 49 | 
< | 
  RigidBody::RigidBody() : StuntDouble(otRigidBody, &Snapshot::rigidbodyData), inertiaTensor_(0.0){ | 
| 50 | 
< | 
 | 
| 47 | 
> | 
namespace OpenMD { | 
| 48 | 
> | 
   | 
| 49 | 
> | 
  RigidBody::RigidBody() : StuntDouble(otRigidBody, &Snapshot::rigidbodyData), | 
| 50 | 
> | 
                           inertiaTensor_(0.0){     | 
| 51 | 
  | 
  } | 
| 52 | 
< | 
 | 
| 52 | 
> | 
   | 
| 53 | 
  | 
  void RigidBody::setPrevA(const RotMat3x3d& a) { | 
| 54 | 
  | 
    ((snapshotMan_->getPrevSnapshot())->*storage_).aMat[localIndex_] = a; | 
| 55 | 
< | 
    //((snapshotMan_->getPrevSnapshot())->*storage_).electroFrame[localIndex_] = a.transpose() * sU_; | 
| 56 | 
< | 
 | 
| 56 | 
< | 
    for (int i =0 ; i < atoms_.size(); ++i){ | 
| 55 | 
> | 
     | 
| 56 | 
> | 
    for (unsigned int i = 0 ; i < atoms_.size(); ++i){ | 
| 57 | 
  | 
      if (atoms_[i]->isDirectional()) { | 
| 58 | 
< | 
        atoms_[i]->setPrevA(a * refOrients_[i]); | 
| 58 | 
> | 
        atoms_[i]->setPrevA(refOrients_[i].transpose() * a); | 
| 59 | 
  | 
      } | 
| 60 | 
  | 
    } | 
| 61 | 
< | 
 | 
| 61 | 
> | 
     | 
| 62 | 
  | 
  } | 
| 63 | 
< | 
 | 
| 64 | 
< | 
       | 
| 63 | 
> | 
   | 
| 64 | 
> | 
   | 
| 65 | 
  | 
  void RigidBody::setA(const RotMat3x3d& a) { | 
| 66 | 
  | 
    ((snapshotMan_->getCurrentSnapshot())->*storage_).aMat[localIndex_] = a; | 
| 67 | 
– | 
    //((snapshotMan_->getCurrentSnapshot())->*storage_).electroFrame[localIndex_] = a.transpose() * sU_; | 
| 67 | 
  | 
 | 
| 68 | 
< | 
    for (int i =0 ; i < atoms_.size(); ++i){ | 
| 68 | 
> | 
    for (unsigned int i = 0 ; i < atoms_.size(); ++i){ | 
| 69 | 
  | 
      if (atoms_[i]->isDirectional()) { | 
| 70 | 
< | 
        atoms_[i]->setA(a * refOrients_[i]); | 
| 70 | 
> | 
        atoms_[i]->setA(refOrients_[i].transpose() * a); | 
| 71 | 
  | 
      } | 
| 72 | 
  | 
    } | 
| 73 | 
  | 
  }     | 
| 74 | 
< | 
     | 
| 74 | 
> | 
   | 
| 75 | 
  | 
  void RigidBody::setA(const RotMat3x3d& a, int snapshotNo) { | 
| 76 | 
  | 
    ((snapshotMan_->getSnapshot(snapshotNo))->*storage_).aMat[localIndex_] = a; | 
| 77 | 
< | 
    //((snapshotMan_->getSnapshot(snapshotNo))->*storage_).electroFrame[localIndex_] = a.transpose() * sU_;     | 
| 78 | 
< | 
 | 
| 80 | 
< | 
    for (int i =0 ; i < atoms_.size(); ++i){ | 
| 77 | 
> | 
         | 
| 78 | 
> | 
    for (unsigned int i = 0 ; i < atoms_.size(); ++i){ | 
| 79 | 
  | 
      if (atoms_[i]->isDirectional()) { | 
| 80 | 
< | 
        atoms_[i]->setA(a * refOrients_[i], snapshotNo); | 
| 80 | 
> | 
        atoms_[i]->setA(refOrients_[i].transpose() * a, snapshotNo); | 
| 81 | 
  | 
      } | 
| 82 | 
  | 
    } | 
| 83 | 
< | 
 | 
| 83 | 
> | 
     | 
| 84 | 
  | 
  }    | 
| 85 | 
< | 
 | 
| 85 | 
> | 
   | 
| 86 | 
  | 
  Mat3x3d RigidBody::getI() { | 
| 87 | 
  | 
    return inertiaTensor_; | 
| 88 | 
  | 
  }     | 
| 89 | 
< | 
 | 
| 90 | 
< | 
  std::vector<double> RigidBody::getGrad() { | 
| 91 | 
< | 
    std::vector<double> grad(6, 0.0); | 
| 89 | 
> | 
   | 
| 90 | 
> | 
  std::vector<RealType> RigidBody::getGrad() { | 
| 91 | 
> | 
    std::vector<RealType> grad(6, 0.0); | 
| 92 | 
  | 
    Vector3d force; | 
| 93 | 
  | 
    Vector3d torque; | 
| 94 | 
  | 
    Vector3d myEuler; | 
| 95 | 
< | 
    double phi, theta, psi; | 
| 96 | 
< | 
    double cphi, sphi, ctheta, stheta; | 
| 95 | 
> | 
    RealType phi, theta; | 
| 96 | 
> | 
    // RealType psi; | 
| 97 | 
> | 
    RealType cphi, sphi, ctheta, stheta; | 
| 98 | 
  | 
    Vector3d ephi; | 
| 99 | 
  | 
    Vector3d etheta; | 
| 100 | 
  | 
    Vector3d epsi; | 
| 101 | 
< | 
 | 
| 101 | 
> | 
     | 
| 102 | 
  | 
    force = getFrc(); | 
| 103 | 
  | 
    torque =getTrq(); | 
| 104 | 
  | 
    myEuler = getA().toEulerAngles(); | 
| 105 | 
< | 
 | 
| 105 | 
> | 
     | 
| 106 | 
  | 
    phi = myEuler[0]; | 
| 107 | 
  | 
    theta = myEuler[1]; | 
| 108 | 
< | 
    psi = myEuler[2]; | 
| 109 | 
< | 
 | 
| 108 | 
> | 
    // psi = myEuler[2]; | 
| 109 | 
> | 
     | 
| 110 | 
  | 
    cphi = cos(phi); | 
| 111 | 
  | 
    sphi = sin(phi); | 
| 112 | 
  | 
    ctheta = cos(theta); | 
| 113 | 
  | 
    stheta = sin(theta); | 
| 114 | 
< | 
 | 
| 114 | 
> | 
     | 
| 115 | 
  | 
    // get unit vectors along the phi, theta and psi rotation axes | 
| 116 | 
< | 
 | 
| 116 | 
> | 
     | 
| 117 | 
  | 
    ephi[0] = 0.0; | 
| 118 | 
  | 
    ephi[1] = 0.0; | 
| 119 | 
  | 
    ephi[2] = 1.0; | 
| 120 | 
< | 
 | 
| 120 | 
> | 
     | 
| 121 | 
> | 
    //etheta[0] = -sphi; | 
| 122 | 
> | 
    //etheta[1] =  cphi; | 
| 123 | 
> | 
    //etheta[2] =  0.0; | 
| 124 | 
> | 
     | 
| 125 | 
  | 
    etheta[0] = cphi; | 
| 126 | 
  | 
    etheta[1] = sphi; | 
| 127 | 
< | 
    etheta[2] = 0.0; | 
| 128 | 
< | 
 | 
| 127 | 
> | 
    etheta[2] =  0.0; | 
| 128 | 
> | 
     | 
| 129 | 
  | 
    epsi[0] = stheta * cphi; | 
| 130 | 
  | 
    epsi[1] = stheta * sphi; | 
| 131 | 
  | 
    epsi[2] = ctheta; | 
| 132 | 
< | 
 | 
| 132 | 
> | 
     | 
| 133 | 
  | 
    //gradient is equal to -force | 
| 134 | 
  | 
    for (int j = 0 ; j<3; j++) | 
| 135 | 
  | 
      grad[j] = -force[j]; | 
| 136 | 
< | 
 | 
| 136 | 
> | 
     | 
| 137 | 
  | 
    for (int j = 0; j < 3; j++ ) { | 
| 138 | 
< | 
 | 
| 138 | 
> | 
       | 
| 139 | 
  | 
      grad[3] += torque[j]*ephi[j]; | 
| 140 | 
  | 
      grad[4] += torque[j]*etheta[j]; | 
| 141 | 
  | 
      grad[5] += torque[j]*epsi[j]; | 
| 142 | 
< | 
 | 
| 142 | 
> | 
       | 
| 143 | 
  | 
    } | 
| 144 | 
  | 
     | 
| 145 | 
  | 
    return grad; | 
| 146 | 
  | 
  }     | 
| 147 | 
< | 
 | 
| 147 | 
> | 
   | 
| 148 | 
  | 
  void RigidBody::accept(BaseVisitor* v) { | 
| 149 | 
  | 
    v->visit(this); | 
| 150 | 
  | 
  }     | 
| 151 | 
  | 
 | 
| 152 | 
  | 
  /**@todo need modification */ | 
| 153 | 
  | 
  void  RigidBody::calcRefCoords() { | 
| 154 | 
< | 
    double mtmp; | 
| 154 | 
> | 
    RealType mtmp; | 
| 155 | 
  | 
    Vector3d refCOM(0.0); | 
| 156 | 
  | 
    mass_ = 0.0; | 
| 157 | 
  | 
    for (std::size_t i = 0; i < atoms_.size(); ++i) { | 
| 160 | 
  | 
      refCOM += refCoords_[i]*mtmp; | 
| 161 | 
  | 
    } | 
| 162 | 
  | 
    refCOM /= mass_; | 
| 163 | 
< | 
 | 
| 163 | 
> | 
     | 
| 164 | 
  | 
    // Next, move the origin of the reference coordinate system to the COM: | 
| 165 | 
  | 
    for (std::size_t i = 0; i < atoms_.size(); ++i) { | 
| 166 | 
  | 
      refCoords_[i] -= refCOM; | 
| 172 | 
  | 
      Mat3x3d IAtom(0.0);   | 
| 173 | 
  | 
      mtmp = atoms_[i]->getMass(); | 
| 174 | 
  | 
      IAtom -= outProduct(refCoords_[i], refCoords_[i]) * mtmp; | 
| 175 | 
< | 
      double r2 = refCoords_[i].lengthSquare(); | 
| 175 | 
> | 
      RealType r2 = refCoords_[i].lengthSquare(); | 
| 176 | 
  | 
      IAtom(0, 0) += mtmp * r2; | 
| 177 | 
  | 
      IAtom(1, 1) += mtmp * r2; | 
| 178 | 
  | 
      IAtom(2, 2) += mtmp * r2; | 
| 179 | 
  | 
      Itmp += IAtom; | 
| 180 | 
< | 
 | 
| 180 | 
> | 
       | 
| 181 | 
  | 
      //project the inertial moment of directional atoms into this rigid body | 
| 182 | 
  | 
      if (atoms_[i]->isDirectional()) { | 
| 183 | 
  | 
        Itmp += refOrients_[i].transpose() * atoms_[i]->getI() * refOrients_[i]; | 
| 197 | 
  | 
         | 
| 198 | 
  | 
    int nLinearAxis = 0; | 
| 199 | 
  | 
    for (int i = 0; i < 3; i++) {     | 
| 200 | 
< | 
      if (fabs(evals[i]) < oopse::epsilon) { | 
| 200 | 
> | 
      if (fabs(evals[i]) < OpenMD::epsilon) { | 
| 201 | 
  | 
        linear_ = true; | 
| 202 | 
  | 
        linearAxis_ = i; | 
| 203 | 
  | 
        ++ nLinearAxis; | 
| 207 | 
  | 
    if (nLinearAxis > 1) { | 
| 208 | 
  | 
      sprintf( painCave.errMsg, | 
| 209 | 
  | 
               "RigidBody error.\n" | 
| 210 | 
< | 
               "\tOOPSE found more than one axis in this rigid body with a vanishing \n" | 
| 210 | 
> | 
               "\tOpenMD found more than one axis in this rigid body with a vanishing \n" | 
| 211 | 
  | 
               "\tmoment of inertia.  This can happen in one of three ways:\n" | 
| 212 | 
  | 
               "\t 1) Only one atom was specified, or \n" | 
| 213 | 
  | 
               "\t 2) All atoms were specified at the same location, or\n" | 
| 227 | 
  | 
    Vector3d rpos; | 
| 228 | 
  | 
    Vector3d frc(0.0); | 
| 229 | 
  | 
    Vector3d trq(0.0); | 
| 230 | 
+ | 
    Vector3d ef(0.0); | 
| 231 | 
  | 
    Vector3d pos = this->getPos(); | 
| 232 | 
< | 
    for (int i = 0; i < atoms_.size(); i++) { | 
| 232 | 
> | 
    AtomType* atype; | 
| 233 | 
> | 
    int eCount = 0; | 
| 234 | 
> | 
     | 
| 235 | 
> | 
    int sl = ((snapshotMan_->getCurrentSnapshot())->*storage_).getStorageLayout(); | 
| 236 | 
> | 
     | 
| 237 | 
> | 
    for (unsigned int i = 0; i < atoms_.size(); i++) { | 
| 238 | 
  | 
 | 
| 239 | 
+ | 
      atype = atoms_[i]->getAtomType(); | 
| 240 | 
+ | 
 | 
| 241 | 
  | 
      afrc = atoms_[i]->getFrc(); | 
| 242 | 
  | 
      apos = atoms_[i]->getPos(); | 
| 243 | 
  | 
      rpos = apos - pos; | 
| 255 | 
  | 
        atrq = atoms_[i]->getTrq(); | 
| 256 | 
  | 
        trq += atrq; | 
| 257 | 
  | 
      } | 
| 258 | 
+ | 
 | 
| 259 | 
+ | 
      if ((sl & DataStorage::dslElectricField) && (atype->isElectrostatic())) { | 
| 260 | 
+ | 
        ef += atoms_[i]->getElectricField(); | 
| 261 | 
+ | 
        eCount++; | 
| 262 | 
+ | 
      } | 
| 263 | 
+ | 
    }          | 
| 264 | 
+ | 
    addFrc(frc); | 
| 265 | 
+ | 
    addTrq(trq);     | 
| 266 | 
+ | 
 | 
| 267 | 
+ | 
    if (sl & DataStorage::dslElectricField)  { | 
| 268 | 
+ | 
      ef /= eCount; | 
| 269 | 
+ | 
      setElectricField(ef); | 
| 270 | 
+ | 
    } | 
| 271 | 
+ | 
 | 
| 272 | 
+ | 
  } | 
| 273 | 
+ | 
 | 
| 274 | 
+ | 
  Mat3x3d RigidBody::calcForcesAndTorquesAndVirial() { | 
| 275 | 
+ | 
    Vector3d afrc; | 
| 276 | 
+ | 
    Vector3d atrq; | 
| 277 | 
+ | 
    Vector3d apos; | 
| 278 | 
+ | 
    Vector3d rpos; | 
| 279 | 
+ | 
    Vector3d dfrc; | 
| 280 | 
+ | 
    Vector3d frc(0.0); | 
| 281 | 
+ | 
    Vector3d trq(0.0); | 
| 282 | 
+ | 
    Vector3d ef(0.0); | 
| 283 | 
+ | 
    AtomType* atype; | 
| 284 | 
+ | 
    int eCount = 0; | 
| 285 | 
+ | 
 | 
| 286 | 
+ | 
    Vector3d pos = this->getPos(); | 
| 287 | 
+ | 
    Mat3x3d tau_(0.0); | 
| 288 | 
+ | 
 | 
| 289 | 
+ | 
    int sl = ((snapshotMan_->getCurrentSnapshot())->*storage_).getStorageLayout(); | 
| 290 | 
+ | 
 | 
| 291 | 
+ | 
    for (unsigned int i = 0; i < atoms_.size(); i++) { | 
| 292 | 
+ | 
       | 
| 293 | 
+ | 
      atype = atoms_[i]->getAtomType(); | 
| 294 | 
+ | 
 | 
| 295 | 
+ | 
      afrc = atoms_[i]->getFrc(); | 
| 296 | 
+ | 
      apos = atoms_[i]->getPos(); | 
| 297 | 
+ | 
      rpos = apos - pos; | 
| 298 | 
  | 
         | 
| 299 | 
+ | 
      frc += afrc; | 
| 300 | 
+ | 
 | 
| 301 | 
+ | 
      trq[0] += rpos[1]*afrc[2] - rpos[2]*afrc[1]; | 
| 302 | 
+ | 
      trq[1] += rpos[2]*afrc[0] - rpos[0]*afrc[2]; | 
| 303 | 
+ | 
      trq[2] += rpos[0]*afrc[1] - rpos[1]*afrc[0]; | 
| 304 | 
+ | 
 | 
| 305 | 
+ | 
      // If the atom has a torque associated with it, then we also need to  | 
| 306 | 
+ | 
      // migrate the torques onto the center of mass: | 
| 307 | 
+ | 
 | 
| 308 | 
+ | 
      if (atoms_[i]->isDirectional()) { | 
| 309 | 
+ | 
        atrq = atoms_[i]->getTrq(); | 
| 310 | 
+ | 
        trq += atrq; | 
| 311 | 
+ | 
      } | 
| 312 | 
+ | 
 | 
| 313 | 
+ | 
      if ((sl & DataStorage::dslElectricField) && (atype->isElectrostatic())) { | 
| 314 | 
+ | 
        ef += atoms_[i]->getElectricField(); | 
| 315 | 
+ | 
        eCount++; | 
| 316 | 
+ | 
      } | 
| 317 | 
+ | 
       | 
| 318 | 
+ | 
      tau_(0,0) -= rpos[0]*afrc[0]; | 
| 319 | 
+ | 
      tau_(0,1) -= rpos[0]*afrc[1]; | 
| 320 | 
+ | 
      tau_(0,2) -= rpos[0]*afrc[2]; | 
| 321 | 
+ | 
      tau_(1,0) -= rpos[1]*afrc[0]; | 
| 322 | 
+ | 
      tau_(1,1) -= rpos[1]*afrc[1]; | 
| 323 | 
+ | 
      tau_(1,2) -= rpos[1]*afrc[2]; | 
| 324 | 
+ | 
      tau_(2,0) -= rpos[2]*afrc[0]; | 
| 325 | 
+ | 
      tau_(2,1) -= rpos[2]*afrc[1]; | 
| 326 | 
+ | 
      tau_(2,2) -= rpos[2]*afrc[2]; | 
| 327 | 
+ | 
 | 
| 328 | 
  | 
    } | 
| 329 | 
< | 
     | 
| 330 | 
< | 
    setFrc(frc); | 
| 331 | 
< | 
    setTrq(trq); | 
| 332 | 
< | 
     | 
| 329 | 
> | 
    addFrc(frc); | 
| 330 | 
> | 
    addTrq(trq); | 
| 331 | 
> | 
 | 
| 332 | 
> | 
    if (sl & DataStorage::dslElectricField) { | 
| 333 | 
> | 
      ef /= eCount; | 
| 334 | 
> | 
      setElectricField(ef); | 
| 335 | 
> | 
    } | 
| 336 | 
> | 
 | 
| 337 | 
> | 
    return tau_; | 
| 338 | 
  | 
  } | 
| 339 | 
  | 
 | 
| 340 | 
  | 
  void  RigidBody::updateAtoms() { | 
| 356 | 
  | 
      if (atoms_[i]->isDirectional()) { | 
| 357 | 
  | 
           | 
| 358 | 
  | 
        dAtom = (DirectionalAtom *) atoms_[i]; | 
| 359 | 
< | 
        dAtom->setA(refOrients_[i] * a); | 
| 359 | 
> | 
        dAtom->setA(refOrients_[i].transpose() * a); | 
| 360 | 
  | 
      } | 
| 361 | 
  | 
 | 
| 362 | 
  | 
    } | 
| 383 | 
  | 
      if (atoms_[i]->isDirectional()) { | 
| 384 | 
  | 
           | 
| 385 | 
  | 
        dAtom = (DirectionalAtom *) atoms_[i]; | 
| 386 | 
< | 
        dAtom->setA(refOrients_[i] * a, frame); | 
| 386 | 
> | 
        dAtom->setA(refOrients_[i].transpose() * a, frame); | 
| 387 | 
  | 
      } | 
| 388 | 
  | 
 | 
| 389 | 
  | 
    } | 
| 413 | 
  | 
 | 
| 414 | 
  | 
 | 
| 415 | 
  | 
    Vector3d velRot;         | 
| 416 | 
< | 
    for (int i =0 ; i < refCoords_.size(); ++i) { | 
| 416 | 
> | 
    for (unsigned int i = 0 ; i < refCoords_.size(); ++i) { | 
| 417 | 
  | 
      atoms_[i]->setVel(rbVel + mat * refCoords_[i]); | 
| 418 | 
  | 
    } | 
| 419 | 
  | 
 | 
| 442 | 
  | 
 | 
| 443 | 
  | 
 | 
| 444 | 
  | 
    Vector3d velRot;         | 
| 445 | 
< | 
    for (int i =0 ; i < refCoords_.size(); ++i) { | 
| 445 | 
> | 
    for (unsigned int i = 0 ; i < refCoords_.size(); ++i) { | 
| 446 | 
  | 
      atoms_[i]->setVel(rbVel + mat * refCoords_[i], frame); | 
| 447 | 
  | 
    } | 
| 448 | 
  | 
 |