| 164 | 
  | 
    } | 
| 165 | 
  | 
 | 
| 166 | 
  | 
    // Moment of Inertia calculation | 
| 167 | 
< | 
    Mat3x3d Itmp(0.0); | 
| 168 | 
< | 
   | 
| 167 | 
> | 
    Mat3x3d Itmp(0.0);     | 
| 168 | 
  | 
    for (std::size_t i = 0; i < atoms_.size(); i++) { | 
| 169 | 
+ | 
      Mat3x3d IAtom(0.0);   | 
| 170 | 
  | 
      mtmp = atoms_[i]->getMass(); | 
| 171 | 
< | 
      Itmp -= outProduct(refCoords_[i], refCoords_[i]) * mtmp; | 
| 171 | 
> | 
      IAtom -= outProduct(refCoords_[i], refCoords_[i]) * mtmp; | 
| 172 | 
  | 
      double r2 = refCoords_[i].lengthSquare(); | 
| 173 | 
< | 
      Itmp(0, 0) += mtmp * r2; | 
| 174 | 
< | 
      Itmp(1, 1) += mtmp * r2; | 
| 175 | 
< | 
      Itmp(2, 2) += mtmp * r2; | 
| 176 | 
< | 
    } | 
| 173 | 
> | 
      IAtom(0, 0) += mtmp * r2; | 
| 174 | 
> | 
      IAtom(1, 1) += mtmp * r2; | 
| 175 | 
> | 
      IAtom(2, 2) += mtmp * r2; | 
| 176 | 
> | 
      Itmp += IAtom; | 
| 177 | 
  | 
 | 
| 178 | 
< | 
    //project the inertial moment of directional atoms into this rigid body | 
| 179 | 
< | 
    for (std::size_t i = 0; i < atoms_.size(); i++) { | 
| 180 | 
< | 
      if (atoms_[i]->isDirectional()) { | 
| 181 | 
< | 
            Itmp += refOrients_[i].transpose() * atoms_[i]->getI() * refOrients_[i]; | 
| 182 | 
< | 
      } | 
| 178 | 
> | 
      //project the inertial moment of directional atoms into this rigid body | 
| 179 | 
> | 
      if (atoms_[i]->isDirectional()) { | 
| 180 | 
> | 
        Itmp += refOrients_[i].transpose() * atoms_[i]->getI() * refOrients_[i]; | 
| 181 | 
> | 
      }  | 
| 182 | 
  | 
    } | 
| 183 | 
  | 
 | 
| 184 | 
+ | 
    //    std::cout << Itmp << std::endl; | 
| 185 | 
+ | 
 | 
| 186 | 
  | 
    //diagonalize  | 
| 187 | 
  | 
    Vector3d evals; | 
| 188 | 
  | 
    Mat3x3d::diagonalize(Itmp, evals, sU_); |