| 40 |  | */ | 
| 41 |  |  | 
| 42 |  | #include <cmath> | 
| 43 | + | #include <sstream> | 
| 44 | + | #include <string> | 
| 45 | + |  | 
| 46 |  | #include "rnemd/RNEMD.hpp" | 
| 47 |  | #include "math/Vector3.hpp" | 
| 48 |  | #include "math/Vector.hpp" | 
| 52 |  | #include "primitives/StuntDouble.hpp" | 
| 53 |  | #include "utils/PhysicalConstants.hpp" | 
| 54 |  | #include "utils/Tuple.hpp" | 
| 55 | + | #include "brains/Thermo.hpp" | 
| 56 | + | #include "math/ConvexHull.hpp" | 
| 57 |  | #ifdef IS_MPI | 
| 58 |  | #include <mpi.h> | 
| 59 |  | #endif | 
| 69 |  | namespace OpenMD { | 
| 70 |  |  | 
| 71 |  | RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info), | 
| 72 | + | evaluatorA_(info), seleManA_(info), | 
| 73 | + | commonA_(info), evaluatorB_(info), | 
| 74 | + | seleManB_(info), commonB_(info), | 
| 75 |  | usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) { | 
| 76 |  |  | 
| 77 |  | trialCount_ = 0; | 
| 78 |  | failTrialCount_ = 0; | 
| 79 |  | failRootCount_ = 0; | 
| 80 |  |  | 
| 81 | < | Globals * simParams = info->getSimParams(); | 
| 81 | > | Globals* simParams = info->getSimParams(); | 
| 82 |  | RNEMDParameters* rnemdParams = simParams->getRNEMDParameters(); | 
| 83 |  |  | 
| 84 |  | doRNEMD_ = rnemdParams->getUseRNEMD(); | 
| 93 |  | stringToFluxType_["Py"]  = rnemdPy; | 
| 94 |  | stringToFluxType_["Pz"]  = rnemdPz; | 
| 95 |  | stringToFluxType_["Pvector"]  = rnemdPvector; | 
| 96 | + | stringToFluxType_["Lx"]  = rnemdLx; | 
| 97 | + | stringToFluxType_["Ly"]  = rnemdLy; | 
| 98 | + | stringToFluxType_["Lz"]  = rnemdLz; | 
| 99 | + | stringToFluxType_["Lvector"]  = rnemdLvector; | 
| 100 |  | stringToFluxType_["KE+Px"]  = rnemdKePx; | 
| 101 |  | stringToFluxType_["KE+Py"]  = rnemdKePy; | 
| 102 |  | stringToFluxType_["KE+Pvector"]  = rnemdKePvector; | 
| 103 | + | stringToFluxType_["KE+Lx"]  = rnemdKeLx; | 
| 104 | + | stringToFluxType_["KE+Ly"]  = rnemdKeLy; | 
| 105 | + | stringToFluxType_["KE+Lz"]  = rnemdKeLz; | 
| 106 | + | stringToFluxType_["KE+Lvector"]  = rnemdKeLvector; | 
| 107 |  |  | 
| 108 |  | runTime_ = simParams->getRunTime(); | 
| 109 |  | statusTime_ = simParams->getStatusTime(); | 
| 110 |  |  | 
| 95 | – | rnemdObjectSelection_ = rnemdParams->getObjectSelection(); | 
| 96 | – | evaluator_.loadScriptString(rnemdObjectSelection_); | 
| 97 | – | seleMan_.setSelectionSet(evaluator_.evaluate()); | 
| 98 | – |  | 
| 111 |  | const string methStr = rnemdParams->getMethod(); | 
| 112 |  | bool hasFluxType = rnemdParams->haveFluxType(); | 
| 113 |  |  | 
| 114 | + | rnemdObjectSelection_ = rnemdParams->getObjectSelection(); | 
| 115 | + |  | 
| 116 |  | string fluxStr; | 
| 117 |  | if (hasFluxType) { | 
| 118 |  | fluxStr = rnemdParams->getFluxType(); | 
| 120 |  | sprintf(painCave.errMsg, | 
| 121 |  | "RNEMD: No fluxType was set in the md file.  This parameter,\n" | 
| 122 |  | "\twhich must be one of the following values:\n" | 
| 123 | < | "\tKE, Px, Py, Pz, Pvector, KE+Px, KE+Py, KE+Pvector\n" | 
| 123 | > | "\tKE, Px, Py, Pz, Pvector, Lx, Ly, Lz, Lvector,\n" | 
| 124 | > | "\tKE+Px, KE+Py, KE+Pvector, KE+Lx, KE+Ly, KE+Lz, KE+Lvector\n" | 
| 125 |  | "\tmust be set to use RNEMD\n"); | 
| 126 |  | painCave.isFatal = 1; | 
| 127 |  | painCave.severity = OPENMD_ERROR; | 
| 131 |  | bool hasKineticFlux = rnemdParams->haveKineticFlux(); | 
| 132 |  | bool hasMomentumFlux = rnemdParams->haveMomentumFlux(); | 
| 133 |  | bool hasMomentumFluxVector = rnemdParams->haveMomentumFluxVector(); | 
| 134 | + | bool hasAngularMomentumFlux = rnemdParams->haveAngularMomentumFlux(); | 
| 135 | + | bool hasAngularMomentumFluxVector = rnemdParams->haveAngularMomentumFluxVector(); | 
| 136 | + | hasSelectionA_ = rnemdParams->haveSelectionA(); | 
| 137 | + | hasSelectionB_ = rnemdParams->haveSelectionB(); | 
| 138 |  | bool hasSlabWidth = rnemdParams->haveSlabWidth(); | 
| 139 |  | bool hasSlabACenter = rnemdParams->haveSlabACenter(); | 
| 140 |  | bool hasSlabBCenter = rnemdParams->haveSlabBCenter(); | 
| 141 | + | bool hasSphereARadius = rnemdParams->haveSphereARadius(); | 
| 142 | + | hasSphereBRadius_ = rnemdParams->haveSphereBRadius(); | 
| 143 | + | bool hasCoordinateOrigin = rnemdParams->haveCoordinateOrigin(); | 
| 144 |  | bool hasOutputFileName = rnemdParams->haveOutputFileName(); | 
| 145 |  | bool hasOutputFields = rnemdParams->haveOutputFields(); | 
| 146 |  |  | 
| 225 |  | case rnemdPz: | 
| 226 |  | hasCorrectFlux = hasMomentumFlux; | 
| 227 |  | break; | 
| 228 | + | case rnemdLx: | 
| 229 | + | case rnemdLy: | 
| 230 | + | case rnemdLz: | 
| 231 | + | hasCorrectFlux = hasAngularMomentumFlux; | 
| 232 | + | break; | 
| 233 |  | case rnemdPvector: | 
| 234 |  | hasCorrectFlux = hasMomentumFluxVector; | 
| 235 |  | break; | 
| 236 | + | case rnemdLvector: | 
| 237 | + | hasCorrectFlux = hasAngularMomentumFluxVector; | 
| 238 | + | break; | 
| 239 |  | case rnemdKePx: | 
| 240 |  | case rnemdKePy: | 
| 241 |  | hasCorrectFlux = hasMomentumFlux && hasKineticFlux; | 
| 242 |  | break; | 
| 243 | + | case rnemdKeLx: | 
| 244 | + | case rnemdKeLy: | 
| 245 | + | case rnemdKeLz: | 
| 246 | + | hasCorrectFlux = hasAngularMomentumFlux && hasKineticFlux; | 
| 247 | + | break; | 
| 248 |  | case rnemdKePvector: | 
| 249 |  | hasCorrectFlux = hasMomentumFluxVector && hasKineticFlux; | 
| 250 |  | break; | 
| 251 | + | case rnemdKeLvector: | 
| 252 | + | hasCorrectFlux = hasAngularMomentumFluxVector && hasKineticFlux; | 
| 253 | + | break; | 
| 254 |  | default: | 
| 255 |  | methodFluxMismatch = true; | 
| 256 |  | break; | 
| 273 |  | sprintf(painCave.errMsg, | 
| 274 |  | "RNEMD: The current method, %s, and flux type, %s,\n" | 
| 275 |  | "\tdid not have the correct flux value specified. Options\n" | 
| 276 | < | "\tinclude: kineticFlux, momentumFlux, and momentumFluxVector\n", | 
| 276 | > | "\tinclude: kineticFlux, momentumFlux, angularMomentumFlux,\n" | 
| 277 | > | "\tmomentumFluxVector, and angularMomentumFluxVector.\n", | 
| 278 |  | methStr.c_str(), fluxStr.c_str()); | 
| 279 |  | painCave.isFatal = 1; | 
| 280 |  | painCave.severity = OPENMD_ERROR; | 
| 314 |  | default: | 
| 315 |  | break; | 
| 316 |  | } | 
| 317 | < | } | 
| 318 | < | } | 
| 317 | > | } | 
| 318 | > | if (hasAngularMomentumFluxVector) { | 
| 319 | > | angularMomentumFluxVector_ = rnemdParams->getAngularMomentumFluxVector(); | 
| 320 | > | } else { | 
| 321 | > | angularMomentumFluxVector_ = V3Zero; | 
| 322 | > | if (hasAngularMomentumFlux) { | 
| 323 | > | RealType angularMomentumFlux = rnemdParams->getAngularMomentumFlux(); | 
| 324 | > | switch (rnemdFluxType_) { | 
| 325 | > | case rnemdLx: | 
| 326 | > | angularMomentumFluxVector_.x() = angularMomentumFlux; | 
| 327 | > | break; | 
| 328 | > | case rnemdLy: | 
| 329 | > | angularMomentumFluxVector_.y() = angularMomentumFlux; | 
| 330 | > | break; | 
| 331 | > | case rnemdLz: | 
| 332 | > | angularMomentumFluxVector_.z() = angularMomentumFlux; | 
| 333 | > | break; | 
| 334 | > | case rnemdKeLx: | 
| 335 | > | angularMomentumFluxVector_.x() = angularMomentumFlux; | 
| 336 | > | break; | 
| 337 | > | case rnemdKeLy: | 
| 338 | > | angularMomentumFluxVector_.y() = angularMomentumFlux; | 
| 339 | > | break; | 
| 340 | > | case rnemdKeLz: | 
| 341 | > | angularMomentumFluxVector_.z() = angularMomentumFlux; | 
| 342 | > | break; | 
| 343 | > | default: | 
| 344 | > | break; | 
| 345 | > | } | 
| 346 | > | } | 
| 347 | > | } | 
| 348 |  |  | 
| 349 | < | // do some sanity checking | 
| 350 | < |  | 
| 351 | < | int selectionCount = seleMan_.getSelectionCount(); | 
| 349 | > | if (hasCoordinateOrigin) { | 
| 350 | > | coordinateOrigin_ = rnemdParams->getCoordinateOrigin(); | 
| 351 | > | } else { | 
| 352 | > | coordinateOrigin_ = V3Zero; | 
| 353 | > | } | 
| 354 |  |  | 
| 355 | < | int nIntegrable = info->getNGlobalIntegrableObjects(); | 
| 355 | > | // do some sanity checking | 
| 356 |  |  | 
| 357 | < | if (selectionCount > nIntegrable) { | 
| 288 | < | sprintf(painCave.errMsg, | 
| 289 | < | "RNEMD: The current objectSelection,\n" | 
| 290 | < | "\t\t%s\n" | 
| 291 | < | "\thas resulted in %d selected objects.  However,\n" | 
| 292 | < | "\tthe total number of integrable objects in the system\n" | 
| 293 | < | "\tis only %d.  This is almost certainly not what you want\n" | 
| 294 | < | "\tto do.  A likely cause of this is forgetting the _RB_0\n" | 
| 295 | < | "\tselector in the selection script!\n", | 
| 296 | < | rnemdObjectSelection_.c_str(), | 
| 297 | < | selectionCount, nIntegrable); | 
| 298 | < | painCave.isFatal = 0; | 
| 299 | < | painCave.severity = OPENMD_WARNING; | 
| 300 | < | simError(); | 
| 301 | < | } | 
| 357 | > | int selectionCount = seleMan_.getSelectionCount(); | 
| 358 |  |  | 
| 359 | < | areaAccumulator_ = new Accumulator(); | 
| 359 | > | int nIntegrable = info->getNGlobalIntegrableObjects(); | 
| 360 |  |  | 
| 361 | < | nBins_ = rnemdParams->getOutputBins(); | 
| 361 | > | if (selectionCount > nIntegrable) { | 
| 362 | > | sprintf(painCave.errMsg, | 
| 363 | > | "RNEMD: The current objectSelection,\n" | 
| 364 | > | "\t\t%s\n" | 
| 365 | > | "\thas resulted in %d selected objects.  However,\n" | 
| 366 | > | "\tthe total number of integrable objects in the system\n" | 
| 367 | > | "\tis only %d.  This is almost certainly not what you want\n" | 
| 368 | > | "\tto do.  A likely cause of this is forgetting the _RB_0\n" | 
| 369 | > | "\tselector in the selection script!\n", | 
| 370 | > | rnemdObjectSelection_.c_str(), | 
| 371 | > | selectionCount, nIntegrable); | 
| 372 | > | painCave.isFatal = 0; | 
| 373 | > | painCave.severity = OPENMD_WARNING; | 
| 374 | > | simError(); | 
| 375 | > | } | 
| 376 |  |  | 
| 377 | < | data_.resize(RNEMD::ENDINDEX); | 
| 308 | < | OutputData z; | 
| 309 | < | z.units =  "Angstroms"; | 
| 310 | < | z.title =  "Z"; | 
| 311 | < | z.dataType = "RealType"; | 
| 312 | < | z.accumulator.reserve(nBins_); | 
| 313 | < | for (int i = 0; i < nBins_; i++) | 
| 314 | < | z.accumulator.push_back( new Accumulator() ); | 
| 315 | < | data_[Z] = z; | 
| 316 | < | outputMap_["Z"] =  Z; | 
| 377 | > | areaAccumulator_ = new Accumulator(); | 
| 378 |  |  | 
| 379 | < | OutputData temperature; | 
| 380 | < | temperature.units =  "K"; | 
| 320 | < | temperature.title =  "Temperature"; | 
| 321 | < | temperature.dataType = "RealType"; | 
| 322 | < | temperature.accumulator.reserve(nBins_); | 
| 323 | < | for (int i = 0; i < nBins_; i++) | 
| 324 | < | temperature.accumulator.push_back( new Accumulator() ); | 
| 325 | < | data_[TEMPERATURE] = temperature; | 
| 326 | < | outputMap_["TEMPERATURE"] =  TEMPERATURE; | 
| 379 | > | nBins_ = rnemdParams->getOutputBins(); | 
| 380 | > | binWidth_ = rnemdParams->getOutputBinWidth(); | 
| 381 |  |  | 
| 382 | < | OutputData velocity; | 
| 383 | < | velocity.units = "angstroms/fs"; | 
| 384 | < | velocity.title =  "Velocity"; | 
| 385 | < | velocity.dataType = "Vector3d"; | 
| 386 | < | velocity.accumulator.reserve(nBins_); | 
| 387 | < | for (int i = 0; i < nBins_; i++) | 
| 388 | < | velocity.accumulator.push_back( new VectorAccumulator() ); | 
| 389 | < | data_[VELOCITY] = velocity; | 
| 390 | < | outputMap_["VELOCITY"] = VELOCITY; | 
| 382 | > | data_.resize(RNEMD::ENDINDEX); | 
| 383 | > | OutputData z; | 
| 384 | > | z.units =  "Angstroms"; | 
| 385 | > | z.title =  "Z"; | 
| 386 | > | z.dataType = "RealType"; | 
| 387 | > | z.accumulator.reserve(nBins_); | 
| 388 | > | for (int i = 0; i < nBins_; i++) | 
| 389 | > | z.accumulator.push_back( new Accumulator() ); | 
| 390 | > | data_[Z] = z; | 
| 391 | > | outputMap_["Z"] =  Z; | 
| 392 |  |  | 
| 393 | < | OutputData density; | 
| 394 | < | density.units =  "g cm^-3"; | 
| 395 | < | density.title =  "Density"; | 
| 396 | < | density.dataType = "RealType"; | 
| 397 | < | density.accumulator.reserve(nBins_); | 
| 398 | < | for (int i = 0; i < nBins_; i++) | 
| 399 | < | density.accumulator.push_back( new Accumulator() ); | 
| 400 | < | data_[DENSITY] = density; | 
| 401 | < | outputMap_["DENSITY"] =  DENSITY; | 
| 393 | > | OutputData r; | 
| 394 | > | r.units =  "Angstroms"; | 
| 395 | > | r.title =  "R"; | 
| 396 | > | r.dataType = "RealType"; | 
| 397 | > | r.accumulator.reserve(nBins_); | 
| 398 | > | for (int i = 0; i < nBins_; i++) | 
| 399 | > | r.accumulator.push_back( new Accumulator() ); | 
| 400 | > | data_[R] = r; | 
| 401 | > | outputMap_["R"] =  R; | 
| 402 |  |  | 
| 403 | < | if (hasOutputFields) { | 
| 404 | < | parseOutputFileFormat(rnemdParams->getOutputFields()); | 
| 405 | < | } else { | 
| 406 | < | outputMask_.set(Z); | 
| 407 | < | switch (rnemdFluxType_) { | 
| 408 | < | case rnemdKE: | 
| 409 | < | case rnemdRotKE: | 
| 410 | < | case rnemdFullKE: | 
| 411 | < | outputMask_.set(TEMPERATURE); | 
| 412 | < | break; | 
| 413 | < | case rnemdPx: | 
| 414 | < | case rnemdPy: | 
| 415 | < | outputMask_.set(VELOCITY); | 
| 416 | < | break; | 
| 417 | < | case rnemdPz: | 
| 418 | < | case rnemdPvector: | 
| 419 | < | outputMask_.set(VELOCITY); | 
| 420 | < | outputMask_.set(DENSITY); | 
| 421 | < | break; | 
| 422 | < | case rnemdKePx: | 
| 423 | < | case rnemdKePy: | 
| 424 | < | outputMask_.set(TEMPERATURE); | 
| 425 | < | outputMask_.set(VELOCITY); | 
| 426 | < | break; | 
| 427 | < | case rnemdKePvector: | 
| 428 | < | outputMask_.set(TEMPERATURE); | 
| 429 | < | outputMask_.set(VELOCITY); | 
| 430 | < | outputMask_.set(DENSITY); | 
| 431 | < | break; | 
| 432 | < | default: | 
| 433 | < | break; | 
| 403 | > | OutputData temperature; | 
| 404 | > | temperature.units =  "K"; | 
| 405 | > | temperature.title =  "Temperature"; | 
| 406 | > | temperature.dataType = "RealType"; | 
| 407 | > | temperature.accumulator.reserve(nBins_); | 
| 408 | > | for (int i = 0; i < nBins_; i++) | 
| 409 | > | temperature.accumulator.push_back( new Accumulator() ); | 
| 410 | > | data_[TEMPERATURE] = temperature; | 
| 411 | > | outputMap_["TEMPERATURE"] =  TEMPERATURE; | 
| 412 | > |  | 
| 413 | > | OutputData velocity; | 
| 414 | > | velocity.units = "angstroms/fs"; | 
| 415 | > | velocity.title =  "Velocity"; | 
| 416 | > | velocity.dataType = "Vector3d"; | 
| 417 | > | velocity.accumulator.reserve(nBins_); | 
| 418 | > | for (int i = 0; i < nBins_; i++) | 
| 419 | > | velocity.accumulator.push_back( new VectorAccumulator() ); | 
| 420 | > | data_[VELOCITY] = velocity; | 
| 421 | > | outputMap_["VELOCITY"] = VELOCITY; | 
| 422 | > |  | 
| 423 | > | OutputData density; | 
| 424 | > | density.units =  "g cm^-3"; | 
| 425 | > | density.title =  "Density"; | 
| 426 | > | density.dataType = "RealType"; | 
| 427 | > | density.accumulator.reserve(nBins_); | 
| 428 | > | for (int i = 0; i < nBins_; i++) | 
| 429 | > | density.accumulator.push_back( new Accumulator() ); | 
| 430 | > | data_[DENSITY] = density; | 
| 431 | > | outputMap_["DENSITY"] =  DENSITY; | 
| 432 | > |  | 
| 433 | > | if (hasOutputFields) { | 
| 434 | > | parseOutputFileFormat(rnemdParams->getOutputFields()); | 
| 435 | > | } else { | 
| 436 | > | if (usePeriodicBoundaryConditions_) | 
| 437 | > | outputMask_.set(Z); | 
| 438 | > | else | 
| 439 | > | outputMask_.set(R); | 
| 440 | > | switch (rnemdFluxType_) { | 
| 441 | > | case rnemdKE: | 
| 442 | > | case rnemdRotKE: | 
| 443 | > | case rnemdFullKE: | 
| 444 | > | outputMask_.set(TEMPERATURE); | 
| 445 | > | break; | 
| 446 | > | case rnemdPx: | 
| 447 | > | case rnemdPy: | 
| 448 | > | outputMask_.set(VELOCITY); | 
| 449 | > | break; | 
| 450 | > | case rnemdPz: | 
| 451 | > | case rnemdPvector: | 
| 452 | > | outputMask_.set(VELOCITY); | 
| 453 | > | outputMask_.set(DENSITY); | 
| 454 | > | break; | 
| 455 | > | case rnemdLx: | 
| 456 | > | case rnemdLy: | 
| 457 | > | case rnemdLz: | 
| 458 | > | case rnemdLvector: | 
| 459 | > | outputMask_.set(ANGULARVELOCITY); | 
| 460 | > | break; | 
| 461 | > | case rnemdKeLx: | 
| 462 | > | case rnemdKeLy: | 
| 463 | > | case rnemdKeLz: | 
| 464 | > | case rnemdKeLvector: | 
| 465 | > | outputMask_.set(TEMPERATURE); | 
| 466 | > | outputMask_.set(ANGULARVELOCITY); | 
| 467 | > | break; | 
| 468 | > | case rnemdKePx: | 
| 469 | > | case rnemdKePy: | 
| 470 | > | outputMask_.set(TEMPERATURE); | 
| 471 | > | outputMask_.set(VELOCITY); | 
| 472 | > | break; | 
| 473 | > | case rnemdKePvector: | 
| 474 | > | outputMask_.set(TEMPERATURE); | 
| 475 | > | outputMask_.set(VELOCITY); | 
| 476 | > | outputMask_.set(DENSITY); | 
| 477 | > | break; | 
| 478 | > | default: | 
| 479 | > | break; | 
| 480 | > | } | 
| 481 |  | } | 
| 380 | – | } | 
| 482 |  |  | 
| 483 | < | if (hasOutputFileName) { | 
| 484 | < | rnemdFileName_ = rnemdParams->getOutputFileName(); | 
| 485 | < | } else { | 
| 486 | < | rnemdFileName_ = getPrefix(info->getFinalConfigFileName()) + ".rnemd"; | 
| 487 | < | } | 
| 483 | > | if (hasOutputFileName) { | 
| 484 | > | rnemdFileName_ = rnemdParams->getOutputFileName(); | 
| 485 | > | } else { | 
| 486 | > | rnemdFileName_ = getPrefix(info->getFinalConfigFileName()) + ".rnemd"; | 
| 487 | > | } | 
| 488 |  |  | 
| 489 | < | exchangeTime_ = rnemdParams->getExchangeTime(); | 
| 489 | > | exchangeTime_ = rnemdParams->getExchangeTime(); | 
| 490 |  |  | 
| 491 | < | Snapshot* currentSnap_ = info->getSnapshotManager()->getCurrentSnapshot(); | 
| 492 | < | Mat3x3d hmat = currentSnap_->getHmat(); | 
| 392 | < |  | 
| 393 | < | // Target exchange quantities (in each exchange) =  2 Lx Ly dt flux | 
| 394 | < | // Lx, Ly = box dimensions in x & y | 
| 395 | < | // dt = exchange time interval | 
| 396 | < | // flux = target flux | 
| 491 | > | Snapshot* currentSnap_ = info->getSnapshotManager()->getCurrentSnapshot(); | 
| 492 | > | // total exchange sums are zeroed out at the beginning: | 
| 493 |  |  | 
| 494 | < | RealType area = currentSnap_->getXYarea(); | 
| 495 | < | kineticTarget_ = 2.0 * kineticFlux_ * exchangeTime_ * area; | 
| 496 | < | momentumTarget_ = 2.0 * momentumFluxVector_ * exchangeTime_ * area; | 
| 401 | < |  | 
| 402 | < | // total exchange sums are zeroed out at the beginning: | 
| 494 | > | kineticExchange_ = 0.0; | 
| 495 | > | momentumExchange_ = V3Zero; | 
| 496 | > | angularMomentumExchange_ = V3Zero; | 
| 497 |  |  | 
| 498 | < | kineticExchange_ = 0.0; | 
| 499 | < | momentumExchange_ = V3Zero; | 
| 406 | < |  | 
| 407 | < | if (hasSlabWidth) | 
| 408 | < | slabWidth_ = rnemdParams->getSlabWidth(); | 
| 409 | < | else | 
| 410 | < | slabWidth_ = hmat(2,2) / 10.0; | 
| 411 | < |  | 
| 412 | < | if (hasSlabACenter) | 
| 413 | < | slabACenter_ = rnemdParams->getSlabACenter(); | 
| 414 | < | else | 
| 415 | < | slabACenter_ = 0.0; | 
| 498 | > | std::ostringstream selectionAstream; | 
| 499 | > | std::ostringstream selectionBstream; | 
| 500 |  |  | 
| 501 | < | if (hasSlabBCenter) | 
| 502 | < | slabBCenter_ = rnemdParams->getSlabBCenter(); | 
| 503 | < | else | 
| 504 | < | slabBCenter_ = hmat(2,2) / 2.0; | 
| 501 | > | if (hasSelectionA_) { | 
| 502 | > | selectionA_ = rnemdParams->getSelectionA(); | 
| 503 | > | } else { | 
| 504 | > | if (usePeriodicBoundaryConditions_) { | 
| 505 | > | Mat3x3d hmat = currentSnap_->getHmat(); | 
| 506 | > |  | 
| 507 | > | if (hasSlabWidth) | 
| 508 | > | slabWidth_ = rnemdParams->getSlabWidth(); | 
| 509 | > | else | 
| 510 | > | slabWidth_ = hmat(2,2) / 10.0; | 
| 511 | > |  | 
| 512 | > | if (hasSlabACenter) | 
| 513 | > | slabACenter_ = rnemdParams->getSlabACenter(); | 
| 514 | > | else | 
| 515 | > | slabACenter_ = 0.0; | 
| 516 | > |  | 
| 517 | > | selectionAstream << "select wrappedz > " | 
| 518 | > | << slabACenter_ - 0.5*slabWidth_ | 
| 519 | > | <<  " && wrappedz < " | 
| 520 | > | << slabACenter_ + 0.5*slabWidth_; | 
| 521 | > | selectionA_ = selectionAstream.str(); | 
| 522 | > | } else { | 
| 523 | > | if (hasSphereARadius) | 
| 524 | > | sphereARadius_ = rnemdParams->getSphereARadius(); | 
| 525 | > | else { | 
| 526 | > | // use an initial guess to the size of the inner slab to be 1/10 the | 
| 527 | > | // radius of an approximately spherical hull: | 
| 528 | > | Thermo thermo(info); | 
| 529 | > | RealType hVol = thermo.getHullVolume(); | 
| 530 | > | sphereARadius_ = 0.1 * pow((3.0 * hVol / (4.0 * M_PI)), 1.0/3.0); | 
| 531 | > | } | 
| 532 | > | selectionAstream << "select r < " << sphereARadius_; | 
| 533 | > | selectionA_ = selectionAstream.str(); | 
| 534 | > | } | 
| 535 | > | } | 
| 536 |  |  | 
| 537 | + | if (hasSelectionB_) { | 
| 538 | + | selectionB_ = rnemdParams->getSelectionB(); | 
| 539 | + | } else { | 
| 540 | + | if (usePeriodicBoundaryConditions_) { | 
| 541 | + | Mat3x3d hmat = currentSnap_->getHmat(); | 
| 542 | + |  | 
| 543 | + | if (hasSlabWidth) | 
| 544 | + | slabWidth_ = rnemdParams->getSlabWidth(); | 
| 545 | + | else | 
| 546 | + | slabWidth_ = hmat(2,2) / 10.0; | 
| 547 | + |  | 
| 548 | + | if (hasSlabBCenter) | 
| 549 | + | slabBCenter_ = rnemdParams->getSlabACenter(); | 
| 550 | + | else | 
| 551 | + | slabBCenter_ = hmat(2,2) / 2.0; | 
| 552 | + |  | 
| 553 | + | selectionBstream << "select wrappedz > " | 
| 554 | + | << slabBCenter_ - 0.5*slabWidth_ | 
| 555 | + | <<  " && wrappedz < " | 
| 556 | + | << slabBCenter_ + 0.5*slabWidth_; | 
| 557 | + | selectionB_ = selectionBstream.str(); | 
| 558 | + | } else { | 
| 559 | + | if (hasSphereBRadius_) { | 
| 560 | + | sphereBRadius_ = rnemdParams->getSphereBRadius(); | 
| 561 | + | selectionBstream << "select r > " << sphereBRadius_; | 
| 562 | + | selectionB_ = selectionBstream.str(); | 
| 563 | + | } else { | 
| 564 | + | selectionB_ = "select hull"; | 
| 565 | + | hasSelectionB_ = true; | 
| 566 | + | } | 
| 567 | + | } | 
| 568 | + | } | 
| 569 | + | } | 
| 570 | + | // object evaluator: | 
| 571 | + | evaluator_.loadScriptString(rnemdObjectSelection_); | 
| 572 | + | seleMan_.setSelectionSet(evaluator_.evaluate()); | 
| 573 | + |  | 
| 574 | + | evaluatorA_.loadScriptString(selectionA_); | 
| 575 | + | evaluatorB_.loadScriptString(selectionB_); | 
| 576 | + |  | 
| 577 | + | seleManA_.setSelectionSet(evaluatorA_.evaluate()); | 
| 578 | + | seleManB_.setSelectionSet(evaluatorB_.evaluate()); | 
| 579 | + |  | 
| 580 | + | commonA_ = seleManA_ & seleMan_; | 
| 581 | + | commonB_ = seleManB_ & seleMan_; | 
| 582 |  | } | 
| 583 | < |  | 
| 583 | > |  | 
| 584 | > |  | 
| 585 |  | RNEMD::~RNEMD() { | 
| 586 |  | if (!doRNEMD_) return; | 
| 587 |  | #ifdef IS_MPI | 
| 597 |  | #endif | 
| 598 |  | } | 
| 599 |  |  | 
| 600 | < | bool RNEMD::inSlabA(Vector3d pos) { | 
| 440 | < | return (abs(pos.z() - slabACenter_) < 0.5*slabWidth_); | 
| 441 | < | } | 
| 442 | < | bool RNEMD::inSlabB(Vector3d pos) { | 
| 443 | < | return (abs(pos.z() - slabBCenter_) < 0.5*slabWidth_); | 
| 444 | < | } | 
| 445 | < |  | 
| 446 | < | void RNEMD::doSwap() { | 
| 600 | > | void RNEMD::doSwap(SelectionManager& smanA, SelectionManager& smanB) { | 
| 601 |  | if (!doRNEMD_) return; | 
| 602 | + | int selei; | 
| 603 | + | int selej; | 
| 604 | + |  | 
| 605 |  | Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 606 |  | Mat3x3d hmat = currentSnap_->getHmat(); | 
| 607 |  |  | 
| 451 | – | seleMan_.setSelectionSet(evaluator_.evaluate()); | 
| 452 | – |  | 
| 453 | – | int selei; | 
| 608 |  | StuntDouble* sd; | 
| 609 |  |  | 
| 610 |  | RealType min_val; | 
| 615 |  | bool max_found = false; | 
| 616 |  | StuntDouble* max_sd; | 
| 617 |  |  | 
| 618 | < | for (sd = seleMan_.beginSelected(selei); sd != NULL; | 
| 619 | < | sd = seleMan_.nextSelected(selei)) { | 
| 618 | > | for (sd = seleManA_.beginSelected(selei); sd != NULL; | 
| 619 | > | sd = seleManA_.nextSelected(selei)) { | 
| 620 |  |  | 
| 621 |  | Vector3d pos = sd->getPos(); | 
| 622 | < |  | 
| 622 | > |  | 
| 623 |  | // wrap the stuntdouble's position back into the box: | 
| 624 | < |  | 
| 624 | > |  | 
| 625 |  | if (usePeriodicBoundaryConditions_) | 
| 626 |  | currentSnap_->wrapVector(pos); | 
| 627 | < | bool inA = inSlabA(pos); | 
| 628 | < | bool inB = inSlabB(pos); | 
| 629 | < |  | 
| 630 | < | if (inA || inB) { | 
| 627 | > |  | 
| 628 | > | RealType mass = sd->getMass(); | 
| 629 | > | Vector3d vel = sd->getVel(); | 
| 630 | > | RealType value; | 
| 631 | > |  | 
| 632 | > | switch(rnemdFluxType_) { | 
| 633 | > | case rnemdKE : | 
| 634 |  |  | 
| 635 | < | RealType mass = sd->getMass(); | 
| 636 | < | Vector3d vel = sd->getVel(); | 
| 637 | < | RealType value; | 
| 638 | < |  | 
| 639 | < | switch(rnemdFluxType_) { | 
| 483 | < | case rnemdKE : | 
| 635 | > | value = mass * vel.lengthSquare(); | 
| 636 | > |  | 
| 637 | > | if (sd->isDirectional()) { | 
| 638 | > | Vector3d angMom = sd->getJ(); | 
| 639 | > | Mat3x3d I = sd->getI(); | 
| 640 |  |  | 
| 641 | < | value = mass * vel.lengthSquare(); | 
| 642 | < |  | 
| 643 | < | if (sd->isDirectional()) { | 
| 644 | < | Vector3d angMom = sd->getJ(); | 
| 645 | < | Mat3x3d I = sd->getI(); | 
| 646 | < |  | 
| 647 | < | if (sd->isLinear()) { | 
| 648 | < | int i = sd->linearAxis(); | 
| 649 | < | int j = (i + 1) % 3; | 
| 650 | < | int k = (i + 2) % 3; | 
| 651 | < | value += angMom[j] * angMom[j] / I(j, j) + | 
| 652 | < | angMom[k] * angMom[k] / I(k, k); | 
| 653 | < | } else { | 
| 654 | < | value += angMom[0]*angMom[0]/I(0, 0) | 
| 655 | < | + angMom[1]*angMom[1]/I(1, 1) | 
| 656 | < | + angMom[2]*angMom[2]/I(2, 2); | 
| 657 | < | } | 
| 658 | < | } //angular momenta exchange enabled | 
| 659 | < | value *= 0.5; | 
| 660 | < | break; | 
| 661 | < | case rnemdPx : | 
| 662 | < | value = mass * vel[0]; | 
| 663 | < | break; | 
| 664 | < | case rnemdPy : | 
| 665 | < | value = mass * vel[1]; | 
| 666 | < | break; | 
| 667 | < | case rnemdPz : | 
| 668 | < | value = mass * vel[2]; | 
| 669 | < | break; | 
| 670 | < | default : | 
| 671 | < | break; | 
| 641 | > | if (sd->isLinear()) { | 
| 642 | > | int i = sd->linearAxis(); | 
| 643 | > | int j = (i + 1) % 3; | 
| 644 | > | int k = (i + 2) % 3; | 
| 645 | > | value += angMom[j] * angMom[j] / I(j, j) + | 
| 646 | > | angMom[k] * angMom[k] / I(k, k); | 
| 647 | > | } else { | 
| 648 | > | value += angMom[0]*angMom[0]/I(0, 0) | 
| 649 | > | + angMom[1]*angMom[1]/I(1, 1) | 
| 650 | > | + angMom[2]*angMom[2]/I(2, 2); | 
| 651 | > | } | 
| 652 | > | } //angular momenta exchange enabled | 
| 653 | > | value *= 0.5; | 
| 654 | > | break; | 
| 655 | > | case rnemdPx : | 
| 656 | > | value = mass * vel[0]; | 
| 657 | > | break; | 
| 658 | > | case rnemdPy : | 
| 659 | > | value = mass * vel[1]; | 
| 660 | > | break; | 
| 661 | > | case rnemdPz : | 
| 662 | > | value = mass * vel[2]; | 
| 663 | > | break; | 
| 664 | > | default : | 
| 665 | > | break; | 
| 666 | > | } | 
| 667 | > | if (!max_found) { | 
| 668 | > | max_val = value; | 
| 669 | > | max_sd = sd; | 
| 670 | > | max_found = true; | 
| 671 | > | } else { | 
| 672 | > | if (max_val < value) { | 
| 673 | > | max_val = value; | 
| 674 | > | max_sd = sd; | 
| 675 |  | } | 
| 676 | + | } | 
| 677 | + | } | 
| 678 |  |  | 
| 679 | < | if (inA == 0) { | 
| 680 | < | if (!min_found) { | 
| 681 | < | min_val = value; | 
| 682 | < | min_sd = sd; | 
| 683 | < | min_found = true; | 
| 684 | < | } else { | 
| 685 | < | if (min_val > value) { | 
| 686 | < | min_val = value; | 
| 687 | < | min_sd = sd; | 
| 688 | < | } | 
| 689 | < | } | 
| 690 | < | } else { | 
| 691 | < | if (!max_found) { | 
| 692 | < | max_val = value; | 
| 693 | < | max_sd = sd; | 
| 694 | < | max_found = true; | 
| 695 | < | } else { | 
| 696 | < | if (max_val < value) { | 
| 697 | < | max_val = value; | 
| 698 | < | max_sd = sd; | 
| 699 | < | } | 
| 700 | < | } | 
| 701 | < | } | 
| 679 | > | for (sd = seleManB_.beginSelected(selej); sd != NULL; | 
| 680 | > | sd = seleManB_.nextSelected(selej)) { | 
| 681 | > |  | 
| 682 | > | Vector3d pos = sd->getPos(); | 
| 683 | > |  | 
| 684 | > | // wrap the stuntdouble's position back into the box: | 
| 685 | > |  | 
| 686 | > | if (usePeriodicBoundaryConditions_) | 
| 687 | > | currentSnap_->wrapVector(pos); | 
| 688 | > |  | 
| 689 | > | RealType mass = sd->getMass(); | 
| 690 | > | Vector3d vel = sd->getVel(); | 
| 691 | > | RealType value; | 
| 692 | > |  | 
| 693 | > | switch(rnemdFluxType_) { | 
| 694 | > | case rnemdKE : | 
| 695 | > |  | 
| 696 | > | value = mass * vel.lengthSquare(); | 
| 697 | > |  | 
| 698 | > | if (sd->isDirectional()) { | 
| 699 | > | Vector3d angMom = sd->getJ(); | 
| 700 | > | Mat3x3d I = sd->getI(); | 
| 701 | > |  | 
| 702 | > | if (sd->isLinear()) { | 
| 703 | > | int i = sd->linearAxis(); | 
| 704 | > | int j = (i + 1) % 3; | 
| 705 | > | int k = (i + 2) % 3; | 
| 706 | > | value += angMom[j] * angMom[j] / I(j, j) + | 
| 707 | > | angMom[k] * angMom[k] / I(k, k); | 
| 708 | > | } else { | 
| 709 | > | value += angMom[0]*angMom[0]/I(0, 0) | 
| 710 | > | + angMom[1]*angMom[1]/I(1, 1) | 
| 711 | > | + angMom[2]*angMom[2]/I(2, 2); | 
| 712 | > | } | 
| 713 | > | } //angular momenta exchange enabled | 
| 714 | > | value *= 0.5; | 
| 715 | > | break; | 
| 716 | > | case rnemdPx : | 
| 717 | > | value = mass * vel[0]; | 
| 718 | > | break; | 
| 719 | > | case rnemdPy : | 
| 720 | > | value = mass * vel[1]; | 
| 721 | > | break; | 
| 722 | > | case rnemdPz : | 
| 723 | > | value = mass * vel[2]; | 
| 724 | > | break; | 
| 725 | > | default : | 
| 726 | > | break; | 
| 727 | > | } | 
| 728 | > |  | 
| 729 | > | if (!min_found) { | 
| 730 | > | min_val = value; | 
| 731 | > | min_sd = sd; | 
| 732 | > | min_found = true; | 
| 733 | > | } else { | 
| 734 | > | if (min_val > value) { | 
| 735 | > | min_val = value; | 
| 736 | > | min_sd = sd; | 
| 737 | > | } | 
| 738 |  | } | 
| 739 |  | } | 
| 740 |  |  | 
| 964 |  | } | 
| 965 |  | } | 
| 966 |  |  | 
| 967 | < | void RNEMD::doNIVS() { | 
| 967 | > | void RNEMD::doNIVS(SelectionManager& smanA, SelectionManager& smanB) { | 
| 968 |  | if (!doRNEMD_) return; | 
| 969 | + | int selei; | 
| 970 | + | int selej; | 
| 971 | + |  | 
| 972 |  | Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 973 | + | RealType time = currentSnap_->getTime(); | 
| 974 |  | Mat3x3d hmat = currentSnap_->getHmat(); | 
| 975 |  |  | 
| 775 | – | seleMan_.setSelectionSet(evaluator_.evaluate()); | 
| 776 | – |  | 
| 777 | – | int selei; | 
| 976 |  | StuntDouble* sd; | 
| 977 |  |  | 
| 978 |  | vector<StuntDouble*> hotBin, coldBin; | 
| 992 |  | RealType Kcz = 0.0; | 
| 993 |  | RealType Kcw = 0.0; | 
| 994 |  |  | 
| 995 | < | for (sd = seleMan_.beginSelected(selei); sd != NULL; | 
| 996 | < | sd = seleMan_.nextSelected(selei)) { | 
| 995 | > | for (sd = smanA.beginSelected(selei); sd != NULL; | 
| 996 | > | sd = smanA.nextSelected(selei)) { | 
| 997 |  |  | 
| 998 |  | Vector3d pos = sd->getPos(); | 
| 999 | < |  | 
| 999 | > |  | 
| 1000 |  | // wrap the stuntdouble's position back into the box: | 
| 1001 | < |  | 
| 1001 | > |  | 
| 1002 |  | if (usePeriodicBoundaryConditions_) | 
| 1003 |  | currentSnap_->wrapVector(pos); | 
| 1004 | + |  | 
| 1005 | + |  | 
| 1006 | + | RealType mass = sd->getMass(); | 
| 1007 | + | Vector3d vel = sd->getVel(); | 
| 1008 | + |  | 
| 1009 | + | hotBin.push_back(sd); | 
| 1010 | + | Phx += mass * vel.x(); | 
| 1011 | + | Phy += mass * vel.y(); | 
| 1012 | + | Phz += mass * vel.z(); | 
| 1013 | + | Khx += mass * vel.x() * vel.x(); | 
| 1014 | + | Khy += mass * vel.y() * vel.y(); | 
| 1015 | + | Khz += mass * vel.z() * vel.z(); | 
| 1016 | + | if (sd->isDirectional()) { | 
| 1017 | + | Vector3d angMom = sd->getJ(); | 
| 1018 | + | Mat3x3d I = sd->getI(); | 
| 1019 | + | if (sd->isLinear()) { | 
| 1020 | + | int i = sd->linearAxis(); | 
| 1021 | + | int j = (i + 1) % 3; | 
| 1022 | + | int k = (i + 2) % 3; | 
| 1023 | + | Khw += angMom[j] * angMom[j] / I(j, j) + | 
| 1024 | + | angMom[k] * angMom[k] / I(k, k); | 
| 1025 | + | } else { | 
| 1026 | + | Khw += angMom[0]*angMom[0]/I(0, 0) | 
| 1027 | + | + angMom[1]*angMom[1]/I(1, 1) | 
| 1028 | + | + angMom[2]*angMom[2]/I(2, 2); | 
| 1029 | + | } | 
| 1030 | + | } | 
| 1031 | + | } | 
| 1032 | + | for (sd = smanB.beginSelected(selej); sd != NULL; | 
| 1033 | + | sd = smanB.nextSelected(selej)) { | 
| 1034 | + | Vector3d pos = sd->getPos(); | 
| 1035 | + |  | 
| 1036 | + | // wrap the stuntdouble's position back into the box: | 
| 1037 | + |  | 
| 1038 | + | if (usePeriodicBoundaryConditions_) | 
| 1039 | + | currentSnap_->wrapVector(pos); | 
| 1040 | + |  | 
| 1041 | + | RealType mass = sd->getMass(); | 
| 1042 | + | Vector3d vel = sd->getVel(); | 
| 1043 |  |  | 
| 1044 | < | // which bin is this stuntdouble in? | 
| 1045 | < | bool inA = inSlabA(pos); | 
| 1046 | < | bool inB = inSlabB(pos); | 
| 1047 | < |  | 
| 1048 | < | if (inA || inB) { | 
| 1049 | < |  | 
| 1050 | < | RealType mass = sd->getMass(); | 
| 1051 | < | Vector3d vel = sd->getVel(); | 
| 1052 | < |  | 
| 1053 | < | if (inA) { | 
| 1054 | < | hotBin.push_back(sd); | 
| 1055 | < | Phx += mass * vel.x(); | 
| 1056 | < | Phy += mass * vel.y(); | 
| 1057 | < | Phz += mass * vel.z(); | 
| 1058 | < | Khx += mass * vel.x() * vel.x(); | 
| 1059 | < | Khy += mass * vel.y() * vel.y(); | 
| 1060 | < | Khz += mass * vel.z() * vel.z(); | 
| 1061 | < | if (sd->isDirectional()) { | 
| 1062 | < | Vector3d angMom = sd->getJ(); | 
| 1063 | < | Mat3x3d I = sd->getI(); | 
| 1064 | < | if (sd->isLinear()) { | 
| 828 | < | int i = sd->linearAxis(); | 
| 829 | < | int j = (i + 1) % 3; | 
| 830 | < | int k = (i + 2) % 3; | 
| 831 | < | Khw += angMom[j] * angMom[j] / I(j, j) + | 
| 832 | < | angMom[k] * angMom[k] / I(k, k); | 
| 833 | < | } else { | 
| 834 | < | Khw += angMom[0]*angMom[0]/I(0, 0) | 
| 835 | < | + angMom[1]*angMom[1]/I(1, 1) | 
| 836 | < | + angMom[2]*angMom[2]/I(2, 2); | 
| 837 | < | } | 
| 838 | < | } | 
| 839 | < | } else { | 
| 840 | < | coldBin.push_back(sd); | 
| 841 | < | Pcx += mass * vel.x(); | 
| 842 | < | Pcy += mass * vel.y(); | 
| 843 | < | Pcz += mass * vel.z(); | 
| 844 | < | Kcx += mass * vel.x() * vel.x(); | 
| 845 | < | Kcy += mass * vel.y() * vel.y(); | 
| 846 | < | Kcz += mass * vel.z() * vel.z(); | 
| 847 | < | if (sd->isDirectional()) { | 
| 848 | < | Vector3d angMom = sd->getJ(); | 
| 849 | < | Mat3x3d I = sd->getI(); | 
| 850 | < | if (sd->isLinear()) { | 
| 851 | < | int i = sd->linearAxis(); | 
| 852 | < | int j = (i + 1) % 3; | 
| 853 | < | int k = (i + 2) % 3; | 
| 854 | < | Kcw += angMom[j] * angMom[j] / I(j, j) + | 
| 855 | < | angMom[k] * angMom[k] / I(k, k); | 
| 856 | < | } else { | 
| 857 | < | Kcw += angMom[0]*angMom[0]/I(0, 0) | 
| 858 | < | + angMom[1]*angMom[1]/I(1, 1) | 
| 859 | < | + angMom[2]*angMom[2]/I(2, 2); | 
| 860 | < | } | 
| 861 | < | } | 
| 862 | < | } | 
| 1044 | > | coldBin.push_back(sd); | 
| 1045 | > | Pcx += mass * vel.x(); | 
| 1046 | > | Pcy += mass * vel.y(); | 
| 1047 | > | Pcz += mass * vel.z(); | 
| 1048 | > | Kcx += mass * vel.x() * vel.x(); | 
| 1049 | > | Kcy += mass * vel.y() * vel.y(); | 
| 1050 | > | Kcz += mass * vel.z() * vel.z(); | 
| 1051 | > | if (sd->isDirectional()) { | 
| 1052 | > | Vector3d angMom = sd->getJ(); | 
| 1053 | > | Mat3x3d I = sd->getI(); | 
| 1054 | > | if (sd->isLinear()) { | 
| 1055 | > | int i = sd->linearAxis(); | 
| 1056 | > | int j = (i + 1) % 3; | 
| 1057 | > | int k = (i + 2) % 3; | 
| 1058 | > | Kcw += angMom[j] * angMom[j] / I(j, j) + | 
| 1059 | > | angMom[k] * angMom[k] / I(k, k); | 
| 1060 | > | } else { | 
| 1061 | > | Kcw += angMom[0]*angMom[0]/I(0, 0) | 
| 1062 | > | + angMom[1]*angMom[1]/I(1, 1) | 
| 1063 | > | + angMom[2]*angMom[2]/I(2, 2); | 
| 1064 | > | } | 
| 1065 |  | } | 
| 1066 |  | } | 
| 1067 |  |  | 
| 1411 |  | failTrialCount_++; | 
| 1412 |  | } | 
| 1413 |  | } | 
| 1414 | < |  | 
| 1415 | < | void RNEMD::doVSS() { | 
| 1414 | > |  | 
| 1415 | > | void RNEMD::doVSS(SelectionManager& smanA, SelectionManager& smanB) { | 
| 1416 |  | if (!doRNEMD_) return; | 
| 1417 | + | int selei; | 
| 1418 | + | int selej; | 
| 1419 | + |  | 
| 1420 |  | Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 1421 |  | RealType time = currentSnap_->getTime(); | 
| 1422 |  | Mat3x3d hmat = currentSnap_->getHmat(); | 
| 1423 |  |  | 
| 1219 | – | seleMan_.setSelectionSet(evaluator_.evaluate()); | 
| 1220 | – |  | 
| 1221 | – | int selei; | 
| 1424 |  | StuntDouble* sd; | 
| 1425 |  |  | 
| 1426 |  | vector<StuntDouble*> hotBin, coldBin; | 
| 1427 |  |  | 
| 1428 |  | Vector3d Ph(V3Zero); | 
| 1429 | + | Vector3d Lh(V3Zero); | 
| 1430 |  | RealType Mh = 0.0; | 
| 1431 | + | Mat3x3d Ih(0.0); | 
| 1432 |  | RealType Kh = 0.0; | 
| 1433 |  | Vector3d Pc(V3Zero); | 
| 1434 | + | Vector3d Lc(V3Zero); | 
| 1435 |  | RealType Mc = 0.0; | 
| 1436 | + | Mat3x3d Ic(0.0); | 
| 1437 |  | RealType Kc = 0.0; | 
| 1438 |  |  | 
| 1439 | + | for (sd = smanA.beginSelected(selei); sd != NULL; | 
| 1440 | + | sd = smanA.nextSelected(selei)) { | 
| 1441 |  |  | 
| 1234 | – | for (sd = seleMan_.beginSelected(selei); sd != NULL; | 
| 1235 | – | sd = seleMan_.nextSelected(selei)) { | 
| 1236 | – |  | 
| 1442 |  | Vector3d pos = sd->getPos(); | 
| 1443 |  |  | 
| 1444 |  | // wrap the stuntdouble's position back into the box: | 
| 1445 | + |  | 
| 1446 | + | if (usePeriodicBoundaryConditions_) | 
| 1447 | + | currentSnap_->wrapVector(pos); | 
| 1448 | + |  | 
| 1449 | + | RealType mass = sd->getMass(); | 
| 1450 | + | Vector3d vel = sd->getVel(); | 
| 1451 | + | Vector3d rPos = sd->getPos() - coordinateOrigin_; | 
| 1452 | + | RealType r2; | 
| 1453 | + |  | 
| 1454 | + | hotBin.push_back(sd); | 
| 1455 | + | Ph += mass * vel; | 
| 1456 | + | Mh += mass; | 
| 1457 | + | Kh += mass * vel.lengthSquare(); | 
| 1458 | + | Lh += mass * cross(rPos, vel); | 
| 1459 | + | Ih -= outProduct(rPos, rPos) * mass; | 
| 1460 | + | r2 = rPos.lengthSquare(); | 
| 1461 | + | Ih(0, 0) += mass * r2; | 
| 1462 | + | Ih(1, 1) += mass * r2; | 
| 1463 | + | Ih(2, 2) += mass * r2; | 
| 1464 | + |  | 
| 1465 | + | if (rnemdFluxType_ == rnemdFullKE) { | 
| 1466 | + | if (sd->isDirectional()) { | 
| 1467 | + | Vector3d angMom = sd->getJ(); | 
| 1468 | + | Mat3x3d I = sd->getI(); | 
| 1469 | + | if (sd->isLinear()) { | 
| 1470 | + | int i = sd->linearAxis(); | 
| 1471 | + | int j = (i + 1) % 3; | 
| 1472 | + | int k = (i + 2) % 3; | 
| 1473 | + | Kh += angMom[j] * angMom[j] / I(j, j) + | 
| 1474 | + | angMom[k] * angMom[k] / I(k, k); | 
| 1475 | + | } else { | 
| 1476 | + | Kh += angMom[0] * angMom[0] / I(0, 0) + | 
| 1477 | + | angMom[1] * angMom[1] / I(1, 1) + | 
| 1478 | + | angMom[2] * angMom[2] / I(2, 2); | 
| 1479 | + | } | 
| 1480 | + | } | 
| 1481 | + | } | 
| 1482 | + | } | 
| 1483 | + | for (sd = smanB.beginSelected(selej); sd != NULL; | 
| 1484 | + | sd = smanB.nextSelected(selej)) { | 
| 1485 |  |  | 
| 1486 | + | Vector3d pos = sd->getPos(); | 
| 1487 | + |  | 
| 1488 | + | // wrap the stuntdouble's position back into the box: | 
| 1489 | + |  | 
| 1490 |  | if (usePeriodicBoundaryConditions_) | 
| 1491 |  | currentSnap_->wrapVector(pos); | 
| 1492 | + |  | 
| 1493 | + | RealType mass = sd->getMass(); | 
| 1494 | + | Vector3d vel = sd->getVel(); | 
| 1495 | + | Vector3d rPos = sd->getPos() - coordinateOrigin_; | 
| 1496 | + | RealType r2; | 
| 1497 |  |  | 
| 1498 | < | // which bin is this stuntdouble in? | 
| 1499 | < | bool inA = inSlabA(pos); | 
| 1500 | < | bool inB = inSlabB(pos); | 
| 1498 | > | coldBin.push_back(sd); | 
| 1499 | > | Pc += mass * vel; | 
| 1500 | > | Mc += mass; | 
| 1501 | > | Kc += mass * vel.lengthSquare(); | 
| 1502 | > | Lc += mass * cross(rPos, vel); | 
| 1503 | > | Ic -= outProduct(rPos, rPos) * mass; | 
| 1504 | > | r2 = rPos.lengthSquare(); | 
| 1505 | > | Ic(0, 0) += mass * r2; | 
| 1506 | > | Ic(1, 1) += mass * r2; | 
| 1507 | > | Ic(2, 2) += mass * r2; | 
| 1508 |  |  | 
| 1509 | < | if (inA || inB) { | 
| 1510 | < |  | 
| 1511 | < | RealType mass = sd->getMass(); | 
| 1512 | < | Vector3d vel = sd->getVel(); | 
| 1513 | < |  | 
| 1514 | < | if (inA) { | 
| 1515 | < | hotBin.push_back(sd); | 
| 1516 | < | Ph += mass * vel; | 
| 1517 | < | Mh += mass; | 
| 1518 | < | Kh += mass * vel.lengthSquare(); | 
| 1519 | < | if (rnemdFluxType_ == rnemdFullKE) { | 
| 1520 | < | if (sd->isDirectional()) { | 
| 1521 | < | Vector3d angMom = sd->getJ(); | 
| 1522 | < | Mat3x3d I = sd->getI(); | 
| 1523 | < | if (sd->isLinear()) { | 
| 1524 | < | int i = sd->linearAxis(); | 
| 1264 | < | int j = (i + 1) % 3; | 
| 1265 | < | int k = (i + 2) % 3; | 
| 1266 | < | Kh += angMom[j] * angMom[j] / I(j, j) + | 
| 1267 | < | angMom[k] * angMom[k] / I(k, k); | 
| 1268 | < | } else { | 
| 1269 | < | Kh += angMom[0] * angMom[0] / I(0, 0) + | 
| 1270 | < | angMom[1] * angMom[1] / I(1, 1) + | 
| 1271 | < | angMom[2] * angMom[2] / I(2, 2); | 
| 1272 | < | } | 
| 1273 | < | } | 
| 1274 | < | } | 
| 1275 | < | } else { //midBin_ | 
| 1276 | < | coldBin.push_back(sd); | 
| 1277 | < | Pc += mass * vel; | 
| 1278 | < | Mc += mass; | 
| 1279 | < | Kc += mass * vel.lengthSquare(); | 
| 1280 | < | if (rnemdFluxType_ == rnemdFullKE) { | 
| 1281 | < | if (sd->isDirectional()) { | 
| 1282 | < | Vector3d angMom = sd->getJ(); | 
| 1283 | < | Mat3x3d I = sd->getI(); | 
| 1284 | < | if (sd->isLinear()) { | 
| 1285 | < | int i = sd->linearAxis(); | 
| 1286 | < | int j = (i + 1) % 3; | 
| 1287 | < | int k = (i + 2) % 3; | 
| 1288 | < | Kc += angMom[j] * angMom[j] / I(j, j) + | 
| 1289 | < | angMom[k] * angMom[k] / I(k, k); | 
| 1290 | < | } else { | 
| 1291 | < | Kc += angMom[0] * angMom[0] / I(0, 0) + | 
| 1292 | < | angMom[1] * angMom[1] / I(1, 1) + | 
| 1293 | < | angMom[2] * angMom[2] / I(2, 2); | 
| 1294 | < | } | 
| 1295 | < | } | 
| 1296 | < | } | 
| 1297 | < | } | 
| 1509 | > | if (rnemdFluxType_ == rnemdFullKE) { | 
| 1510 | > | if (sd->isDirectional()) { | 
| 1511 | > | Vector3d angMom = sd->getJ(); | 
| 1512 | > | Mat3x3d I = sd->getI(); | 
| 1513 | > | if (sd->isLinear()) { | 
| 1514 | > | int i = sd->linearAxis(); | 
| 1515 | > | int j = (i + 1) % 3; | 
| 1516 | > | int k = (i + 2) % 3; | 
| 1517 | > | Kc += angMom[j] * angMom[j] / I(j, j) + | 
| 1518 | > | angMom[k] * angMom[k] / I(k, k); | 
| 1519 | > | } else { | 
| 1520 | > | Kc += angMom[0] * angMom[0] / I(0, 0) + | 
| 1521 | > | angMom[1] * angMom[1] / I(1, 1) + | 
| 1522 | > | angMom[2] * angMom[2] / I(2, 2); | 
| 1523 | > | } | 
| 1524 | > | } | 
| 1525 |  | } | 
| 1526 |  | } | 
| 1527 |  |  | 
| 1531 |  | #ifdef IS_MPI | 
| 1532 |  | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Ph[0], 3, MPI::REALTYPE, MPI::SUM); | 
| 1533 |  | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pc[0], 3, MPI::REALTYPE, MPI::SUM); | 
| 1534 | + | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Lh[0], 3, MPI::REALTYPE, MPI::SUM); | 
| 1535 | + | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Lc[0], 3, MPI::REALTYPE, MPI::SUM); | 
| 1536 |  | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mh, 1, MPI::REALTYPE, MPI::SUM); | 
| 1537 |  | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kh, 1, MPI::REALTYPE, MPI::SUM); | 
| 1538 |  | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mc, 1, MPI::REALTYPE, MPI::SUM); | 
| 1539 |  | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kc, 1, MPI::REALTYPE, MPI::SUM); | 
| 1540 | + | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, Ih.getArrayPointer(), 9, | 
| 1541 | + | MPI::REALTYPE, MPI::SUM); | 
| 1542 | + | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, Ic.getArrayPointer(), 9, | 
| 1543 | + | MPI::REALTYPE, MPI::SUM); | 
| 1544 |  | #endif | 
| 1545 | < |  | 
| 1545 | > |  | 
| 1546 |  | bool successfulExchange = false; | 
| 1547 |  | if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty | 
| 1548 |  | Vector3d vc = Pc / Mc; | 
| 1549 |  | Vector3d ac = -momentumTarget_ / Mc + vc; | 
| 1550 |  | Vector3d acrec = -momentumTarget_ / Mc; | 
| 1551 | < | RealType cNumerator = Kc - kineticTarget_ - 0.5 * Mc * ac.lengthSquare(); | 
| 1551 | > |  | 
| 1552 | > | // We now need the inverse of the inertia tensor to calculate the | 
| 1553 | > | // angular velocity of the cold slab; | 
| 1554 | > | Mat3x3d Ici = Ic.inverse(); | 
| 1555 | > | Vector3d omegac = Ici * Lc; | 
| 1556 | > | Vector3d bc  = -(Ici * angularMomentumTarget_) + omegac; | 
| 1557 | > | Vector3d bcrec = bc - omegac; | 
| 1558 | > |  | 
| 1559 | > | RealType cNumerator = Kc - kineticTarget_ | 
| 1560 | > | - 0.5 * Mc * ac.lengthSquare() - 0.5 * ( dot(bc, Ic * bc)); | 
| 1561 |  | if (cNumerator > 0.0) { | 
| 1562 | < | RealType cDenominator = Kc - 0.5 * Mc * vc.lengthSquare(); | 
| 1562 | > |  | 
| 1563 | > | RealType cDenominator = Kc - 0.5 * Mc * vc.lengthSquare() | 
| 1564 | > | - 0.5*(dot(omegac, Ic * omegac)); | 
| 1565 | > |  | 
| 1566 |  | if (cDenominator > 0.0) { | 
| 1567 |  | RealType c = sqrt(cNumerator / cDenominator); | 
| 1568 |  | if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients | 
| 1569 | + |  | 
| 1570 |  | Vector3d vh = Ph / Mh; | 
| 1571 |  | Vector3d ah = momentumTarget_ / Mh + vh; | 
| 1572 |  | Vector3d ahrec = momentumTarget_ / Mh; | 
| 1573 | < | RealType hNumerator = Kh + kineticTarget_ | 
| 1574 | < | - 0.5 * Mh * ah.lengthSquare(); | 
| 1575 | < | if (hNumerator > 0.0) { | 
| 1576 | < | RealType hDenominator = Kh - 0.5 * Mh * vh.lengthSquare(); | 
| 1573 | > |  | 
| 1574 | > | // We now need the inverse of the inertia tensor to | 
| 1575 | > | // calculate the angular velocity of the hot slab; | 
| 1576 | > | Mat3x3d Ihi = Ih.inverse(); | 
| 1577 | > | Vector3d omegah = Ihi * Lh; | 
| 1578 | > | Vector3d bh  = (Ihi * angularMomentumTarget_) + omegah; | 
| 1579 | > | Vector3d bhrec = bh - omegah; | 
| 1580 | > |  | 
| 1581 | > | RealType hNumerator = Kh + kineticTarget_ | 
| 1582 | > | - 0.5 * Mh * ah.lengthSquare() - 0.5 * ( dot(bh, Ih * bh));; | 
| 1583 | > | if (hNumerator > 0.0) { | 
| 1584 | > |  | 
| 1585 | > | RealType hDenominator = Kh - 0.5 * Mh * vh.lengthSquare() | 
| 1586 | > | - 0.5*(dot(omegah, Ih * omegah)); | 
| 1587 | > |  | 
| 1588 |  | if (hDenominator > 0.0) { | 
| 1589 |  | RealType h = sqrt(hNumerator / hDenominator); | 
| 1590 |  | if ((h > 0.9) && (h < 1.1)) { | 
| 1591 | < |  | 
| 1591 | > |  | 
| 1592 |  | vector<StuntDouble*>::iterator sdi; | 
| 1593 |  | Vector3d vel; | 
| 1594 | + | Vector3d rPos; | 
| 1595 | + |  | 
| 1596 |  | for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) { | 
| 1597 |  | //vel = (*sdi)->getVel(); | 
| 1598 | < | vel = ((*sdi)->getVel() - vc) * c + ac; | 
| 1598 | > | rPos = (*sdi)->getPos() - coordinateOrigin_; | 
| 1599 | > | vel = ((*sdi)->getVel() - vc - cross(omegac, rPos)) * c | 
| 1600 | > | + ac + cross(bc, rPos); | 
| 1601 |  | (*sdi)->setVel(vel); | 
| 1602 |  | if (rnemdFluxType_ == rnemdFullKE) { | 
| 1603 |  | if ((*sdi)->isDirectional()) { | 
| 1608 |  | } | 
| 1609 |  | for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) { | 
| 1610 |  | //vel = (*sdi)->getVel(); | 
| 1611 | < | vel = ((*sdi)->getVel() - vh) * h + ah; | 
| 1611 | > | rPos = (*sdi)->getPos() - coordinateOrigin_; | 
| 1612 | > | vel = ((*sdi)->getVel() - vh - cross(omegah, rPos)) * h | 
| 1613 | > | + ah + cross(bh, rPos); | 
| 1614 |  | (*sdi)->setVel(vel); | 
| 1615 |  | if (rnemdFluxType_ == rnemdFullKE) { | 
| 1616 |  | if ((*sdi)->isDirectional()) { | 
| 1622 |  | successfulExchange = true; | 
| 1623 |  | kineticExchange_ += kineticTarget_; | 
| 1624 |  | momentumExchange_ += momentumTarget_; | 
| 1625 | + | angularMomentumExchange_ += angularMomentumTarget_; | 
| 1626 |  | } | 
| 1627 |  | } | 
| 1628 |  | } | 
| 1642 |  | } | 
| 1643 |  | } | 
| 1644 |  |  | 
| 1645 | + | RealType RNEMD::getDividingArea() { | 
| 1646 | + |  | 
| 1647 | + | if (hasDividingArea_) return dividingArea_; | 
| 1648 | + |  | 
| 1649 | + | RealType areaA, areaB; | 
| 1650 | + | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 1651 | + |  | 
| 1652 | + | if (hasSelectionA_) { | 
| 1653 | + | int isd; | 
| 1654 | + | StuntDouble* sd; | 
| 1655 | + | vector<StuntDouble*> aSites; | 
| 1656 | + | ConvexHull* surfaceMeshA = new ConvexHull(); | 
| 1657 | + | seleManA_.setSelectionSet(evaluatorA_.evaluate()); | 
| 1658 | + | for (sd = seleManA_.beginSelected(isd); sd != NULL; | 
| 1659 | + | sd = seleManA_.nextSelected(isd)) { | 
| 1660 | + | aSites.push_back(sd); | 
| 1661 | + | } | 
| 1662 | + | surfaceMeshA->computeHull(aSites); | 
| 1663 | + | areaA = surfaceMeshA->getArea(); | 
| 1664 | + | } else { | 
| 1665 | + | if (usePeriodicBoundaryConditions_) { | 
| 1666 | + | // in periodic boundaries, the surface area is twice the x-y | 
| 1667 | + | // area of the current box: | 
| 1668 | + | areaA = 2.0 * snap->getXYarea(); | 
| 1669 | + | } else { | 
| 1670 | + | // in non-periodic simulations, without explicitly setting | 
| 1671 | + | // selections, the sphere radius sets the surface area of the | 
| 1672 | + | // dividing surface: | 
| 1673 | + | areaA = 4.0 * M_PI * pow(sphereARadius_, 2); | 
| 1674 | + | } | 
| 1675 | + | } | 
| 1676 | + |  | 
| 1677 | + | if (hasSelectionB_) { | 
| 1678 | + | int isd; | 
| 1679 | + | StuntDouble* sd; | 
| 1680 | + | vector<StuntDouble*> bSites; | 
| 1681 | + | ConvexHull* surfaceMeshB = new ConvexHull(); | 
| 1682 | + | seleManB_.setSelectionSet(evaluatorB_.evaluate()); | 
| 1683 | + | for (sd = seleManB_.beginSelected(isd); sd != NULL; | 
| 1684 | + | sd = seleManB_.nextSelected(isd)) { | 
| 1685 | + | bSites.push_back(sd); | 
| 1686 | + | } | 
| 1687 | + | surfaceMeshB->computeHull(bSites); | 
| 1688 | + | areaB = surfaceMeshB->getArea(); | 
| 1689 | + | } else { | 
| 1690 | + | if (usePeriodicBoundaryConditions_) { | 
| 1691 | + | // in periodic boundaries, the surface area is twice the x-y | 
| 1692 | + | // area of the current box: | 
| 1693 | + | areaB = 2.0 * snap->getXYarea(); | 
| 1694 | + | } else { | 
| 1695 | + | // in non-periodic simulations, without explicitly setting | 
| 1696 | + | // selections, but if a sphereBradius has been set, just use that: | 
| 1697 | + | areaB = 4.0 * M_PI * pow(sphereBRadius_, 2); | 
| 1698 | + | } | 
| 1699 | + | } | 
| 1700 | + |  | 
| 1701 | + | dividingArea_ = min(areaA, areaB); | 
| 1702 | + | hasDividingArea_ = true; | 
| 1703 | + | return dividingArea_; | 
| 1704 | + | } | 
| 1705 | + |  | 
| 1706 |  | void RNEMD::doRNEMD() { | 
| 1707 |  | if (!doRNEMD_) return; | 
| 1708 |  | trialCount_++; | 
| 1709 | + |  | 
| 1710 | + | // object evaluator: | 
| 1711 | + | evaluator_.loadScriptString(rnemdObjectSelection_); | 
| 1712 | + | seleMan_.setSelectionSet(evaluator_.evaluate()); | 
| 1713 | + |  | 
| 1714 | + | evaluatorA_.loadScriptString(selectionA_); | 
| 1715 | + | evaluatorB_.loadScriptString(selectionB_); | 
| 1716 | + |  | 
| 1717 | + | seleManA_.setSelectionSet(evaluatorA_.evaluate()); | 
| 1718 | + | seleManB_.setSelectionSet(evaluatorB_.evaluate()); | 
| 1719 | + |  | 
| 1720 | + | commonA_ = seleManA_ & seleMan_; | 
| 1721 | + | commonB_ = seleManB_ & seleMan_; | 
| 1722 | + |  | 
| 1723 | + | // Target exchange quantities (in each exchange) = dividingArea * dt * flux | 
| 1724 | + | // dt = exchange time interval | 
| 1725 | + | // flux = target flux | 
| 1726 | + | // dividingArea = smallest dividing surface between the two regions | 
| 1727 | + |  | 
| 1728 | + | hasDividingArea_ = false; | 
| 1729 | + | RealType area = getDividingArea(); | 
| 1730 | + |  | 
| 1731 | + | kineticTarget_ = kineticFlux_ * exchangeTime_ * area; | 
| 1732 | + | momentumTarget_ = momentumFluxVector_ * exchangeTime_ * area; | 
| 1733 | + | angularMomentumTarget_ = angularMomentumFluxVector_ * exchangeTime_ * area; | 
| 1734 | + |  | 
| 1735 |  | switch(rnemdMethod_) { | 
| 1736 |  | case rnemdSwap: | 
| 1737 | < | doSwap(); | 
| 1737 | > | doSwap(commonA_, commonB_); | 
| 1738 |  | break; | 
| 1739 |  | case rnemdNIVS: | 
| 1740 | < | doNIVS(); | 
| 1740 | > | doNIVS(commonA_, commonB_); | 
| 1741 |  | break; | 
| 1742 |  | case rnemdVSS: | 
| 1743 | < | doVSS(); | 
| 1743 | > | doVSS(commonA_, commonB_); | 
| 1744 |  | break; | 
| 1745 |  | case rnemdUnkownMethod: | 
| 1746 |  | default : | 
| 1751 |  | void RNEMD::collectData() { | 
| 1752 |  | if (!doRNEMD_) return; | 
| 1753 |  | Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 1403 | – | Mat3x3d hmat = currentSnap_->getHmat(); | 
| 1754 |  |  | 
| 1755 | < | areaAccumulator_->add(currentSnap_->getXYarea()); | 
| 1755 | > | // collectData can be called more frequently than the doRNEMD, so use the | 
| 1756 | > | // computed area from the last exchange time: | 
| 1757 |  |  | 
| 1758 | + | areaAccumulator_->add(getDividingArea()); | 
| 1759 | + | Mat3x3d hmat = currentSnap_->getHmat(); | 
| 1760 |  | seleMan_.setSelectionSet(evaluator_.evaluate()); | 
| 1761 |  |  | 
| 1762 |  | int selei(0); | 
| 1763 |  | StuntDouble* sd; | 
| 1764 | + | int binNo; | 
| 1765 |  |  | 
| 1766 |  | vector<RealType> binMass(nBins_, 0.0); | 
| 1767 |  | vector<RealType> binPx(nBins_, 0.0); | 
| 1768 |  | vector<RealType> binPy(nBins_, 0.0); | 
| 1769 |  | vector<RealType> binPz(nBins_, 0.0); | 
| 1770 | + | vector<RealType> binOmegax(nBins_, 0.0); | 
| 1771 | + | vector<RealType> binOmegay(nBins_, 0.0); | 
| 1772 | + | vector<RealType> binOmegaz(nBins_, 0.0); | 
| 1773 |  | vector<RealType> binKE(nBins_, 0.0); | 
| 1774 |  | vector<int> binDOF(nBins_, 0); | 
| 1775 |  | vector<int> binCount(nBins_, 0); | 
| 1777 |  | // alternative approach, track all molecules instead of only those | 
| 1778 |  | // selected for scaling/swapping: | 
| 1779 |  | /* | 
| 1780 | < | SimInfo::MoleculeIterator miter; | 
| 1781 | < | vector<StuntDouble*>::iterator iiter; | 
| 1782 | < | Molecule* mol; | 
| 1783 | < | StuntDouble* sd; | 
| 1784 | < | for (mol = info_->beginMolecule(miter); mol != NULL; | 
| 1780 | > | SimInfo::MoleculeIterator miter; | 
| 1781 | > | vector<StuntDouble*>::iterator iiter; | 
| 1782 | > | Molecule* mol; | 
| 1783 | > | StuntDouble* sd; | 
| 1784 | > | for (mol = info_->beginMolecule(miter); mol != NULL; | 
| 1785 |  | mol = info_->nextMolecule(miter)) | 
| 1786 |  | sd is essentially sd | 
| 1787 | < | for (sd = mol->beginIntegrableObject(iiter); | 
| 1788 | < | sd != NULL; | 
| 1789 | < | sd = mol->nextIntegrableObject(iiter)) | 
| 1787 | > | for (sd = mol->beginIntegrableObject(iiter); | 
| 1788 | > | sd != NULL; | 
| 1789 | > | sd = mol->nextIntegrableObject(iiter)) | 
| 1790 |  | */ | 
| 1791 |  |  | 
| 1792 |  | for (sd = seleMan_.beginSelected(selei); sd != NULL; | 
| 1796 |  |  | 
| 1797 |  | // wrap the stuntdouble's position back into the box: | 
| 1798 |  |  | 
| 1799 | < | if (usePeriodicBoundaryConditions_) | 
| 1799 | > | if (usePeriodicBoundaryConditions_) { | 
| 1800 |  | currentSnap_->wrapVector(pos); | 
| 1801 | + | // which bin is this stuntdouble in? | 
| 1802 | + | // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)] | 
| 1803 | + | // Shift molecules by half a box to have bins start at 0 | 
| 1804 | + | // The modulo operator is used to wrap the case when we are | 
| 1805 | + | // beyond the end of the bins back to the beginning. | 
| 1806 | + | binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_; | 
| 1807 | + | } else { | 
| 1808 | + | Vector3d rPos = pos - coordinateOrigin_; | 
| 1809 | + | binNo = int(rPos.length() / binWidth_); | 
| 1810 | + | } | 
| 1811 |  |  | 
| 1445 | – |  | 
| 1446 | – | // which bin is this stuntdouble in? | 
| 1447 | – | // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)] | 
| 1448 | – | // Shift molecules by half a box to have bins start at 0 | 
| 1449 | – | // The modulo operator is used to wrap the case when we are | 
| 1450 | – | // beyond the end of the bins back to the beginning. | 
| 1451 | – | int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_; | 
| 1452 | – |  | 
| 1812 |  | RealType mass = sd->getMass(); | 
| 1813 |  | Vector3d vel = sd->getVel(); | 
| 1814 | < |  | 
| 1815 | < | binCount[binNo]++; | 
| 1816 | < | binMass[binNo] += mass; | 
| 1817 | < | binPx[binNo] += mass*vel.x(); | 
| 1818 | < | binPy[binNo] += mass*vel.y(); | 
| 1819 | < | binPz[binNo] += mass*vel.z(); | 
| 1820 | < | binKE[binNo] += 0.5 * (mass * vel.lengthSquare()); | 
| 1821 | < | binDOF[binNo] += 3; | 
| 1822 | < |  | 
| 1823 | < | if (sd->isDirectional()) { | 
| 1824 | < | Vector3d angMom = sd->getJ(); | 
| 1825 | < | Mat3x3d I = sd->getI(); | 
| 1826 | < | if (sd->isLinear()) { | 
| 1827 | < | int i = sd->linearAxis(); | 
| 1828 | < | int j = (i + 1) % 3; | 
| 1829 | < | int k = (i + 2) % 3; | 
| 1830 | < | binKE[binNo] += 0.5 * (angMom[j] * angMom[j] / I(j, j) + | 
| 1831 | < | angMom[k] * angMom[k] / I(k, k)); | 
| 1832 | < | binDOF[binNo] += 2; | 
| 1833 | < | } else { | 
| 1834 | < | binKE[binNo] += 0.5 * (angMom[0] * angMom[0] / I(0, 0) + | 
| 1835 | < | angMom[1] * angMom[1] / I(1, 1) + | 
| 1836 | < | angMom[2] * angMom[2] / I(2, 2)); | 
| 1837 | < | binDOF[binNo] += 3; | 
| 1814 | > | Vector3d rPos = sd->getPos() - coordinateOrigin_; | 
| 1815 | > | Vector3d aVel = cross(rPos, vel); | 
| 1816 | > |  | 
| 1817 | > | if (binNo < nBins_)  { | 
| 1818 | > | binCount[binNo]++; | 
| 1819 | > | binMass[binNo] += mass; | 
| 1820 | > | binPx[binNo] += mass*vel.x(); | 
| 1821 | > | binPy[binNo] += mass*vel.y(); | 
| 1822 | > | binPz[binNo] += mass*vel.z(); | 
| 1823 | > | binOmegax[binNo] += aVel.x(); | 
| 1824 | > | binOmegay[binNo] += aVel.y(); | 
| 1825 | > | binOmegaz[binNo] += aVel.z(); | 
| 1826 | > | binKE[binNo] += 0.5 * (mass * vel.lengthSquare()); | 
| 1827 | > | binDOF[binNo] += 3; | 
| 1828 | > |  | 
| 1829 | > | if (sd->isDirectional()) { | 
| 1830 | > | Vector3d angMom = sd->getJ(); | 
| 1831 | > | Mat3x3d I = sd->getI(); | 
| 1832 | > | if (sd->isLinear()) { | 
| 1833 | > | int i = sd->linearAxis(); | 
| 1834 | > | int j = (i + 1) % 3; | 
| 1835 | > | int k = (i + 2) % 3; | 
| 1836 | > | binKE[binNo] += 0.5 * (angMom[j] * angMom[j] / I(j, j) + | 
| 1837 | > | angMom[k] * angMom[k] / I(k, k)); | 
| 1838 | > | binDOF[binNo] += 2; | 
| 1839 | > | } else { | 
| 1840 | > | binKE[binNo] += 0.5 * (angMom[0] * angMom[0] / I(0, 0) + | 
| 1841 | > | angMom[1] * angMom[1] / I(1, 1) + | 
| 1842 | > | angMom[2] * angMom[2] / I(2, 2)); | 
| 1843 | > | binDOF[binNo] += 3; | 
| 1844 | > | } | 
| 1845 |  | } | 
| 1846 |  | } | 
| 1847 |  | } | 
| 1857 |  | nBins_, MPI::REALTYPE, MPI::SUM); | 
| 1858 |  | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPz[0], | 
| 1859 |  | nBins_, MPI::REALTYPE, MPI::SUM); | 
| 1860 | + | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binOmegax[0], | 
| 1861 | + | nBins_, MPI::REALTYPE, MPI::SUM); | 
| 1862 | + | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binOmegay[0], | 
| 1863 | + | nBins_, MPI::REALTYPE, MPI::SUM); | 
| 1864 | + | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binOmegaz[0], | 
| 1865 | + | nBins_, MPI::REALTYPE, MPI::SUM); | 
| 1866 |  | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binKE[0], | 
| 1867 |  | nBins_, MPI::REALTYPE, MPI::SUM); | 
| 1868 |  | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binDOF[0], | 
| 1870 |  | #endif | 
| 1871 |  |  | 
| 1872 |  | Vector3d vel; | 
| 1873 | + | Vector3d aVel; | 
| 1874 |  | RealType den; | 
| 1875 |  | RealType temp; | 
| 1876 |  | RealType z; | 
| 1877 | + | RealType r; | 
| 1878 |  | for (int i = 0; i < nBins_; i++) { | 
| 1879 | < | z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat(2,2); | 
| 1879 | > | if (usePeriodicBoundaryConditions_) { | 
| 1880 | > | z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat(2,2); | 
| 1881 | > | den = binMass[i] * nBins_ * PhysicalConstants::densityConvert | 
| 1882 | > | / currentSnap_->getVolume() ; | 
| 1883 | > | } else { | 
| 1884 | > | r = (((RealType)i + 0.5) * binWidth_); | 
| 1885 | > | RealType rinner = (RealType)i * binWidth_; | 
| 1886 | > | RealType router = (RealType)(i+1) * binWidth_; | 
| 1887 | > | den = binMass[i] * 3.0 * PhysicalConstants::densityConvert | 
| 1888 | > | / (4.0 * M_PI * (pow(router,3) - pow(rinner,3))); | 
| 1889 | > | } | 
| 1890 |  | vel.x() = binPx[i] / binMass[i]; | 
| 1891 |  | vel.y() = binPy[i] / binMass[i]; | 
| 1892 |  | vel.z() = binPz[i] / binMass[i]; | 
| 1893 | + | aVel.x() = binOmegax[i]; | 
| 1894 | + | aVel.y() = binOmegay[i]; | 
| 1895 | + | aVel.z() = binOmegaz[i]; | 
| 1896 |  |  | 
| 1510 | – | den = binMass[i] * nBins_ * PhysicalConstants::densityConvert | 
| 1511 | – | / currentSnap_->getVolume() ; | 
| 1512 | – |  | 
| 1897 |  | if (binCount[i] > 0) { | 
| 1898 |  | // only add values if there are things to add | 
| 1899 |  | temp = 2.0 * binKE[i] / (binDOF[i] * PhysicalConstants::kb * | 
| 1905 |  | case Z: | 
| 1906 |  | dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(z); | 
| 1907 |  | break; | 
| 1908 | + | case R: | 
| 1909 | + | dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(r); | 
| 1910 | + | break; | 
| 1911 |  | case TEMPERATURE: | 
| 1912 |  | dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(temp); | 
| 1913 |  | break; | 
| 1914 |  | case VELOCITY: | 
| 1915 |  | dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(vel); | 
| 1916 |  | break; | 
| 1917 | + | case ANGULARVELOCITY: | 
| 1918 | + | dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(aVel); | 
| 1919 | + | break; | 
| 1920 |  | case DENSITY: | 
| 1921 |  | dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(den); | 
| 1922 |  | break; | 
| 1929 |  |  | 
| 1930 |  | void RNEMD::getStarted() { | 
| 1931 |  | if (!doRNEMD_) return; | 
| 1932 | + | hasDividingArea_ = false; | 
| 1933 |  | collectData(); | 
| 1934 |  | writeOutputFile(); | 
| 1935 |  | } | 
| 1978 |  | RealType time = currentSnap_->getTime(); | 
| 1979 |  | RealType avgArea; | 
| 1980 |  | areaAccumulator_->getAverage(avgArea); | 
| 1981 | < | RealType Jz = kineticExchange_ / (2.0 * time * avgArea) | 
| 1981 | > | RealType Jz = kineticExchange_ / (time * avgArea) | 
| 1982 |  | / PhysicalConstants::energyConvert; | 
| 1983 | < | Vector3d JzP = momentumExchange_ / (2.0 * time * avgArea); | 
| 1983 | > | Vector3d JzP = momentumExchange_ / (time * avgArea); | 
| 1984 | > | Vector3d JzL = angularMomentumExchange_ / (time * avgArea); | 
| 1985 |  |  | 
| 1986 |  | rnemdFile_ << "#######################################################\n"; | 
| 1987 |  | rnemdFile_ << "# RNEMD {\n"; | 
| 2001 |  |  | 
| 2002 |  | rnemdFile_ << "#    objectSelection = \"" | 
| 2003 |  | << rnemdObjectSelection_ << "\";\n"; | 
| 2004 | < | rnemdFile_ << "#    slabWidth = " << slabWidth_ << ";\n"; | 
| 2005 | < | rnemdFile_ << "#    slabAcenter = " << slabACenter_ << ";\n"; | 
| 1614 | < | rnemdFile_ << "#    slabBcenter = " << slabBCenter_ << ";\n"; | 
| 2004 | > | rnemdFile_ << "#    selectionA = \"" << selectionA_ << "\";\n"; | 
| 2005 | > | rnemdFile_ << "#    selectionB = \"" << selectionB_ << "\";\n"; | 
| 2006 |  | rnemdFile_ << "# }\n"; | 
| 2007 |  | rnemdFile_ << "#######################################################\n"; | 
| 2008 |  | rnemdFile_ << "# RNEMD report:\n"; | 
| 2009 | < | rnemdFile_ << "#     running time = " << time << " fs\n"; | 
| 2010 | < | rnemdFile_ << "#     target flux:\n"; | 
| 2011 | < | rnemdFile_ << "#         kinetic = " | 
| 2009 | > | rnemdFile_ << "#      running time = " << time << " fs\n"; | 
| 2010 | > | rnemdFile_ << "# Target flux:\n"; | 
| 2011 | > | rnemdFile_ << "#           kinetic = " | 
| 2012 |  | << kineticFlux_ / PhysicalConstants::energyConvert | 
| 2013 |  | << " (kcal/mol/A^2/fs)\n"; | 
| 2014 | < | rnemdFile_ << "#         momentum = " << momentumFluxVector_ | 
| 2014 | > | rnemdFile_ << "#          momentum = " << momentumFluxVector_ | 
| 2015 |  | << " (amu/A/fs^2)\n"; | 
| 2016 | < | rnemdFile_ << "#     target one-time exchanges:\n"; | 
| 2017 | < | rnemdFile_ << "#         kinetic = " | 
| 2016 | > | rnemdFile_ << "#  angular momentum = " << angularMomentumFluxVector_ | 
| 2017 | > | << " (amu/A^2/fs^2)\n"; | 
| 2018 | > | rnemdFile_ << "# Target one-time exchanges:\n"; | 
| 2019 | > | rnemdFile_ << "#          kinetic = " | 
| 2020 |  | << kineticTarget_ / PhysicalConstants::energyConvert | 
| 2021 |  | << " (kcal/mol)\n"; | 
| 2022 | < | rnemdFile_ << "#         momentum = " << momentumTarget_ | 
| 2022 | > | rnemdFile_ << "#          momentum = " << momentumTarget_ | 
| 2023 |  | << " (amu*A/fs)\n"; | 
| 2024 | < | rnemdFile_ << "#     actual exchange totals:\n"; | 
| 2025 | < | rnemdFile_ << "#         kinetic = " | 
| 2024 | > | rnemdFile_ << "#  angular momentum = " << angularMomentumTarget_ | 
| 2025 | > | << " (amu*A^2/fs)\n"; | 
| 2026 | > | rnemdFile_ << "# Actual exchange totals:\n"; | 
| 2027 | > | rnemdFile_ << "#          kinetic = " | 
| 2028 |  | << kineticExchange_ / PhysicalConstants::energyConvert | 
| 2029 |  | << " (kcal/mol)\n"; | 
| 2030 | < | rnemdFile_ << "#         momentum = " << momentumExchange_ | 
| 2030 | > | rnemdFile_ << "#          momentum = " << momentumExchange_ | 
| 2031 |  | << " (amu*A/fs)\n"; | 
| 2032 | < | rnemdFile_ << "#     actual flux:\n"; | 
| 2033 | < | rnemdFile_ << "#         kinetic = " << Jz | 
| 2032 | > | rnemdFile_ << "#  angular momentum = " << angularMomentumExchange_ | 
| 2033 | > | << " (amu*A^2/fs)\n"; | 
| 2034 | > | rnemdFile_ << "# Actual flux:\n"; | 
| 2035 | > | rnemdFile_ << "#          kinetic = " << Jz | 
| 2036 |  | << " (kcal/mol/A^2/fs)\n"; | 
| 2037 | < | rnemdFile_ << "#         momentum = " << JzP | 
| 2037 | > | rnemdFile_ << "#          momentum = " << JzP | 
| 2038 |  | << " (amu/A/fs^2)\n"; | 
| 2039 | < | rnemdFile_ << "#     exchange statistics:\n"; | 
| 2040 | < | rnemdFile_ << "#         attempted = " << trialCount_ << "\n"; | 
| 2041 | < | rnemdFile_ << "#         failed = " << failTrialCount_ << "\n"; | 
| 2039 | > | rnemdFile_ << "#  angular momentum = " << JzL | 
| 2040 | > | << " (amu/A^2/fs^2)\n"; | 
| 2041 | > | rnemdFile_ << "# Exchange statistics:\n"; | 
| 2042 | > | rnemdFile_ << "#               attempted = " << trialCount_ << "\n"; | 
| 2043 | > | rnemdFile_ << "#                  failed = " << failTrialCount_ << "\n"; | 
| 2044 |  | if (rnemdMethod_ == rnemdNIVS) { | 
| 2045 | < | rnemdFile_ << "#         NIVS root-check errors = " | 
| 2045 | > | rnemdFile_ << "#  NIVS root-check errors = " | 
| 2046 |  | << failRootCount_ << "\n"; | 
| 2047 |  | } | 
| 2048 |  | rnemdFile_ << "#######################################################\n"; | 
| 2124 |  | assert(index >=0 && index < ENDINDEX); | 
| 2125 |  | assert(int(bin) < nBins_); | 
| 2126 |  | RealType s; | 
| 2127 | + | int count; | 
| 2128 |  |  | 
| 2129 | + | count = dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->count(); | 
| 2130 | + | if (count == 0) return; | 
| 2131 | + |  | 
| 2132 |  | dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getAverage(s); | 
| 2133 |  |  | 
| 2134 |  | if (! isinf(s) && ! isnan(s)) { | 
| 2147 |  | assert(index >=0 && index < ENDINDEX); | 
| 2148 |  | assert(int(bin) < nBins_); | 
| 2149 |  | Vector3d s; | 
| 2150 | + | int count; | 
| 2151 | + |  | 
| 2152 | + | count = dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->count(); | 
| 2153 | + | if (count == 0) return; | 
| 2154 | + |  | 
| 2155 |  | dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getAverage(s); | 
| 2156 |  | if (isinf(s[0]) || isnan(s[0]) || | 
| 2157 |  | isinf(s[1]) || isnan(s[1]) || | 
| 2171 |  | assert(index >=0 && index < ENDINDEX); | 
| 2172 |  | assert(int(bin) < nBins_); | 
| 2173 |  | RealType s; | 
| 2174 | + | int count; | 
| 2175 |  |  | 
| 2176 | + | count = dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->count(); | 
| 2177 | + | if (count == 0) return; | 
| 2178 | + |  | 
| 2179 |  | dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getStdDev(s); | 
| 2180 |  |  | 
| 2181 |  | if (! isinf(s) && ! isnan(s)) { | 
| 2194 |  | assert(index >=0 && index < ENDINDEX); | 
| 2195 |  | assert(int(bin) < nBins_); | 
| 2196 |  | Vector3d s; | 
| 2197 | + | int count; | 
| 2198 | + |  | 
| 2199 | + | count = dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->count(); | 
| 2200 | + | if (count == 0) return; | 
| 2201 | + |  | 
| 2202 |  | dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getStdDev(s); | 
| 2203 |  | if (isinf(s[0]) || isnan(s[0]) || | 
| 2204 |  | isinf(s[1]) || isnan(s[1]) || |