# | Line 35 | Line 35 | |
---|---|---|
35 | * | |
36 | * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | |
37 | * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | |
38 | < | * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
38 | > | * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 | * [4] Vardeman & Gezelter, in progress (2009). | |
40 | */ | |
41 | ||
42 | #include <cmath> | |
43 | < | #include "integrators/RNEMD.hpp" |
43 | > | #include <sstream> |
44 | > | #include <string> |
45 | > | |
46 | > | #include "rnemd/RNEMD.hpp" |
47 | #include "math/Vector3.hpp" | |
48 | + | #include "math/Vector.hpp" |
49 | #include "math/SquareMatrix3.hpp" | |
50 | #include "math/Polynomial.hpp" | |
51 | #include "primitives/Molecule.hpp" | |
52 | #include "primitives/StuntDouble.hpp" | |
53 | #include "utils/PhysicalConstants.hpp" | |
54 | #include "utils/Tuple.hpp" | |
55 | + | #include "brains/Thermo.hpp" |
56 | + | #include "math/ConvexHull.hpp" |
57 | + | #ifdef IS_MPI |
58 | + | #include <mpi.h> |
59 | + | #endif |
60 | ||
61 | < | #ifndef IS_MPI |
62 | < | #include "math/SeqRandNumGen.hpp" |
63 | < | #else |
55 | < | #include "math/ParallelRandNumGen.hpp" |
61 | > | #ifdef _MSC_VER |
62 | > | #define isnan(x) _isnan((x)) |
63 | > | #define isinf(x) (!_finite(x) && !_isnan(x)) |
64 | #endif | |
65 | ||
66 | #define HONKING_LARGE_VALUE 1.0e10 | |
67 | ||
68 | + | using namespace std; |
69 | namespace OpenMD { | |
70 | ||
71 | < | RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info), usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) { |
71 | > | RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info), |
72 | > | evaluatorA_(info), seleManA_(info), |
73 | > | commonA_(info), evaluatorB_(info), |
74 | > | seleManB_(info), commonB_(info), |
75 | > | usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) { |
76 | ||
77 | + | trialCount_ = 0; |
78 | failTrialCount_ = 0; | |
79 | failRootCount_ = 0; | |
80 | ||
81 | < | int seedValue; |
82 | < | Globals * simParams = info->getSimParams(); |
81 | > | Globals* simParams = info->getSimParams(); |
82 | > | RNEMDParameters* rnemdParams = simParams->getRNEMDParameters(); |
83 | ||
84 | < | stringToEnumMap_["KineticSwap"] = rnemdKineticSwap; |
85 | < | stringToEnumMap_["KineticScale"] = rnemdKineticScale; |
72 | < | stringToEnumMap_["PxScale"] = rnemdPxScale; |
73 | < | stringToEnumMap_["PyScale"] = rnemdPyScale; |
74 | < | stringToEnumMap_["PzScale"] = rnemdPzScale; |
75 | < | stringToEnumMap_["Px"] = rnemdPx; |
76 | < | stringToEnumMap_["Py"] = rnemdPy; |
77 | < | stringToEnumMap_["Pz"] = rnemdPz; |
78 | < | stringToEnumMap_["Unknown"] = rnemdUnknown; |
84 | > | doRNEMD_ = rnemdParams->getUseRNEMD(); |
85 | > | if (!doRNEMD_) return; |
86 | ||
87 | < | rnemdObjectSelection_ = simParams->getRNEMD_objectSelection(); |
88 | < | evaluator_.loadScriptString(rnemdObjectSelection_); |
89 | < | seleMan_.setSelectionSet(evaluator_.evaluate()); |
87 | > | stringToMethod_["Swap"] = rnemdSwap; |
88 | > | stringToMethod_["NIVS"] = rnemdNIVS; |
89 | > | stringToMethod_["VSS"] = rnemdVSS; |
90 | ||
91 | < | // do some sanity checking |
91 | > | stringToFluxType_["KE"] = rnemdKE; |
92 | > | stringToFluxType_["Px"] = rnemdPx; |
93 | > | stringToFluxType_["Py"] = rnemdPy; |
94 | > | stringToFluxType_["Pz"] = rnemdPz; |
95 | > | stringToFluxType_["Pvector"] = rnemdPvector; |
96 | > | stringToFluxType_["Lx"] = rnemdLx; |
97 | > | stringToFluxType_["Ly"] = rnemdLy; |
98 | > | stringToFluxType_["Lz"] = rnemdLz; |
99 | > | stringToFluxType_["Lvector"] = rnemdLvector; |
100 | > | stringToFluxType_["KE+Px"] = rnemdKePx; |
101 | > | stringToFluxType_["KE+Py"] = rnemdKePy; |
102 | > | stringToFluxType_["KE+Pvector"] = rnemdKePvector; |
103 | > | stringToFluxType_["KE+Lx"] = rnemdKeLx; |
104 | > | stringToFluxType_["KE+Ly"] = rnemdKeLy; |
105 | > | stringToFluxType_["KE+Lz"] = rnemdKeLz; |
106 | > | stringToFluxType_["KE+Lvector"] = rnemdKeLvector; |
107 | ||
108 | < | int selectionCount = seleMan_.getSelectionCount(); |
109 | < | int nIntegrable = info->getNGlobalIntegrableObjects(); |
108 | > | runTime_ = simParams->getRunTime(); |
109 | > | statusTime_ = simParams->getStatusTime(); |
110 | ||
111 | < | if (selectionCount > nIntegrable) { |
111 | > | const string methStr = rnemdParams->getMethod(); |
112 | > | bool hasFluxType = rnemdParams->haveFluxType(); |
113 | > | |
114 | > | rnemdObjectSelection_ = rnemdParams->getObjectSelection(); |
115 | > | |
116 | > | string fluxStr; |
117 | > | if (hasFluxType) { |
118 | > | fluxStr = rnemdParams->getFluxType(); |
119 | > | } else { |
120 | sprintf(painCave.errMsg, | |
121 | < | "RNEMD warning: The current RNEMD_objectSelection,\n" |
122 | < | "\t\t%s\n" |
123 | < | "\thas resulted in %d selected objects. However,\n" |
124 | < | "\tthe total number of integrable objects in the system\n" |
125 | < | "\tis only %d. This is almost certainly not what you want\n" |
126 | < | "\tto do. A likely cause of this is forgetting the _RB_0\n" |
127 | < | "\tselector in the selection script!\n", |
98 | < | rnemdObjectSelection_.c_str(), |
99 | < | selectionCount, nIntegrable); |
100 | < | painCave.isFatal = 0; |
121 | > | "RNEMD: No fluxType was set in the md file. This parameter,\n" |
122 | > | "\twhich must be one of the following values:\n" |
123 | > | "\tKE, Px, Py, Pz, Pvector, Lx, Ly, Lz, Lvector,\n" |
124 | > | "\tKE+Px, KE+Py, KE+Pvector, KE+Lx, KE+Ly, KE+Lz, KE+Lvector\n" |
125 | > | "\tmust be set to use RNEMD\n"); |
126 | > | painCave.isFatal = 1; |
127 | > | painCave.severity = OPENMD_ERROR; |
128 | simError(); | |
102 | – | |
129 | } | |
130 | + | |
131 | + | bool hasKineticFlux = rnemdParams->haveKineticFlux(); |
132 | + | bool hasMomentumFlux = rnemdParams->haveMomentumFlux(); |
133 | + | bool hasMomentumFluxVector = rnemdParams->haveMomentumFluxVector(); |
134 | + | bool hasAngularMomentumFlux = rnemdParams->haveAngularMomentumFlux(); |
135 | + | bool hasAngularMomentumFluxVector = rnemdParams->haveAngularMomentumFluxVector(); |
136 | + | hasSelectionA_ = rnemdParams->haveSelectionA(); |
137 | + | hasSelectionB_ = rnemdParams->haveSelectionB(); |
138 | + | bool hasSlabWidth = rnemdParams->haveSlabWidth(); |
139 | + | bool hasSlabACenter = rnemdParams->haveSlabACenter(); |
140 | + | bool hasSlabBCenter = rnemdParams->haveSlabBCenter(); |
141 | + | bool hasSphereARadius = rnemdParams->haveSphereARadius(); |
142 | + | hasSphereBRadius_ = rnemdParams->haveSphereBRadius(); |
143 | + | bool hasCoordinateOrigin = rnemdParams->haveCoordinateOrigin(); |
144 | + | bool hasOutputFileName = rnemdParams->haveOutputFileName(); |
145 | + | bool hasOutputFields = rnemdParams->haveOutputFields(); |
146 | ||
147 | < | const std::string st = simParams->getRNEMD_exchangeType(); |
147 | > | map<string, RNEMDMethod>::iterator i; |
148 | > | i = stringToMethod_.find(methStr); |
149 | > | if (i != stringToMethod_.end()) |
150 | > | rnemdMethod_ = i->second; |
151 | > | else { |
152 | > | sprintf(painCave.errMsg, |
153 | > | "RNEMD: The current method,\n" |
154 | > | "\t\t%s is not one of the recognized\n" |
155 | > | "\texchange methods: Swap, NIVS, or VSS\n", |
156 | > | methStr.c_str()); |
157 | > | painCave.isFatal = 1; |
158 | > | painCave.severity = OPENMD_ERROR; |
159 | > | simError(); |
160 | > | } |
161 | ||
162 | < | std::map<std::string, RNEMDTypeEnum>::iterator i; |
163 | < | i = stringToEnumMap_.find(st); |
164 | < | rnemdType_ = (i == stringToEnumMap_.end()) ? RNEMD::rnemdUnknown : i->second; |
165 | < | if (rnemdType_ == rnemdUnknown) { |
166 | < | std::cerr << "WARNING! RNEMD Type Unknown!\n"; |
162 | > | map<string, RNEMDFluxType>::iterator j; |
163 | > | j = stringToFluxType_.find(fluxStr); |
164 | > | if (j != stringToFluxType_.end()) |
165 | > | rnemdFluxType_ = j->second; |
166 | > | else { |
167 | > | sprintf(painCave.errMsg, |
168 | > | "RNEMD: The current fluxType,\n" |
169 | > | "\t\t%s\n" |
170 | > | "\tis not one of the recognized flux types.\n", |
171 | > | fluxStr.c_str()); |
172 | > | painCave.isFatal = 1; |
173 | > | painCave.severity = OPENMD_ERROR; |
174 | > | simError(); |
175 | } | |
176 | ||
177 | < | #ifdef IS_MPI |
178 | < | if (worldRank == 0) { |
179 | < | #endif |
180 | < | |
181 | < | std::string rnemdFileName; |
182 | < | std::string xTempFileName; |
183 | < | std::string yTempFileName; |
121 | < | std::string zTempFileName; |
122 | < | switch(rnemdType_) { |
123 | < | case rnemdKineticSwap : |
124 | < | case rnemdKineticScale : |
125 | < | rnemdFileName = "temperature.log"; |
177 | > | bool methodFluxMismatch = false; |
178 | > | bool hasCorrectFlux = false; |
179 | > | switch(rnemdMethod_) { |
180 | > | case rnemdSwap: |
181 | > | switch (rnemdFluxType_) { |
182 | > | case rnemdKE: |
183 | > | hasCorrectFlux = hasKineticFlux; |
184 | break; | |
185 | < | case rnemdPx : |
186 | < | case rnemdPxScale : |
187 | < | case rnemdPy : |
188 | < | case rnemdPyScale : |
131 | < | rnemdFileName = "momemtum.log"; |
132 | < | xTempFileName = "temperatureX.log"; |
133 | < | yTempFileName = "temperatureY.log"; |
134 | < | zTempFileName = "temperatureZ.log"; |
135 | < | xTempLog_.open(xTempFileName.c_str()); |
136 | < | yTempLog_.open(yTempFileName.c_str()); |
137 | < | zTempLog_.open(zTempFileName.c_str()); |
185 | > | case rnemdPx: |
186 | > | case rnemdPy: |
187 | > | case rnemdPz: |
188 | > | hasCorrectFlux = hasMomentumFlux; |
189 | break; | |
139 | – | case rnemdPz : |
140 | – | case rnemdPzScale : |
141 | – | case rnemdUnknown : |
190 | default : | |
191 | < | rnemdFileName = "rnemd.log"; |
191 | > | methodFluxMismatch = true; |
192 | break; | |
193 | } | |
194 | < | rnemdLog_.open(rnemdFileName.c_str()); |
195 | < | |
196 | < | #ifdef IS_MPI |
197 | < | } |
198 | < | #endif |
199 | < | |
200 | < | set_RNEMD_exchange_time(simParams->getRNEMD_exchangeTime()); |
201 | < | set_RNEMD_nBins(simParams->getRNEMD_nBins()); |
202 | < | midBin_ = nBins_ / 2; |
203 | < | if (simParams->haveRNEMD_logWidth()) { |
204 | < | rnemdLogWidth_ = simParams->getRNEMD_logWidth(); |
205 | < | if (rnemdLogWidth_ != nBins_ && rnemdLogWidth_ != midBin_ + 1) { |
206 | < | std::cerr << "WARNING! RNEMD_logWidth has abnormal value!\n"; |
207 | < | std::cerr << "Automaically set back to default.\n"; |
208 | < | rnemdLogWidth_ = nBins_; |
194 | > | break; |
195 | > | case rnemdNIVS: |
196 | > | switch (rnemdFluxType_) { |
197 | > | case rnemdKE: |
198 | > | case rnemdRotKE: |
199 | > | case rnemdFullKE: |
200 | > | hasCorrectFlux = hasKineticFlux; |
201 | > | break; |
202 | > | case rnemdPx: |
203 | > | case rnemdPy: |
204 | > | case rnemdPz: |
205 | > | hasCorrectFlux = hasMomentumFlux; |
206 | > | break; |
207 | > | case rnemdKePx: |
208 | > | case rnemdKePy: |
209 | > | hasCorrectFlux = hasMomentumFlux && hasKineticFlux; |
210 | > | break; |
211 | > | default: |
212 | > | methodFluxMismatch = true; |
213 | > | break; |
214 | } | |
215 | < | } else { |
216 | < | rnemdLogWidth_ = nBins_; |
217 | < | } |
218 | < | valueHist_.resize(rnemdLogWidth_, 0.0); |
219 | < | valueCount_.resize(rnemdLogWidth_, 0); |
220 | < | xTempHist_.resize(rnemdLogWidth_, 0.0); |
221 | < | yTempHist_.resize(rnemdLogWidth_, 0.0); |
222 | < | zTempHist_.resize(rnemdLogWidth_, 0.0); |
223 | < | |
224 | < | set_RNEMD_exchange_total(0.0); |
225 | < | if (simParams->haveRNEMD_targetFlux()) { |
226 | < | set_RNEMD_target_flux(simParams->getRNEMD_targetFlux()); |
215 | > | break; |
216 | > | case rnemdVSS: |
217 | > | switch (rnemdFluxType_) { |
218 | > | case rnemdKE: |
219 | > | case rnemdRotKE: |
220 | > | case rnemdFullKE: |
221 | > | hasCorrectFlux = hasKineticFlux; |
222 | > | break; |
223 | > | case rnemdPx: |
224 | > | case rnemdPy: |
225 | > | case rnemdPz: |
226 | > | hasCorrectFlux = hasMomentumFlux; |
227 | > | break; |
228 | > | case rnemdLx: |
229 | > | case rnemdLy: |
230 | > | case rnemdLz: |
231 | > | hasCorrectFlux = hasAngularMomentumFlux; |
232 | > | break; |
233 | > | case rnemdPvector: |
234 | > | hasCorrectFlux = hasMomentumFluxVector; |
235 | > | break; |
236 | > | case rnemdLvector: |
237 | > | hasCorrectFlux = hasAngularMomentumFluxVector; |
238 | > | break; |
239 | > | case rnemdKePx: |
240 | > | case rnemdKePy: |
241 | > | hasCorrectFlux = hasMomentumFlux && hasKineticFlux; |
242 | > | break; |
243 | > | case rnemdKeLx: |
244 | > | case rnemdKeLy: |
245 | > | case rnemdKeLz: |
246 | > | hasCorrectFlux = hasAngularMomentumFlux && hasKineticFlux; |
247 | > | break; |
248 | > | case rnemdKePvector: |
249 | > | hasCorrectFlux = hasMomentumFluxVector && hasKineticFlux; |
250 | > | break; |
251 | > | case rnemdKeLvector: |
252 | > | hasCorrectFlux = hasAngularMomentumFluxVector && hasKineticFlux; |
253 | > | break; |
254 | > | default: |
255 | > | methodFluxMismatch = true; |
256 | > | break; |
257 | > | } |
258 | > | default: |
259 | > | break; |
260 | > | } |
261 | > | |
262 | > | if (methodFluxMismatch) { |
263 | > | sprintf(painCave.errMsg, |
264 | > | "RNEMD: The current method,\n" |
265 | > | "\t\t%s\n" |
266 | > | "\tcannot be used with the current flux type, %s\n", |
267 | > | methStr.c_str(), fluxStr.c_str()); |
268 | > | painCave.isFatal = 1; |
269 | > | painCave.severity = OPENMD_ERROR; |
270 | > | simError(); |
271 | > | } |
272 | > | if (!hasCorrectFlux) { |
273 | > | sprintf(painCave.errMsg, |
274 | > | "RNEMD: The current method, %s, and flux type, %s,\n" |
275 | > | "\tdid not have the correct flux value specified. Options\n" |
276 | > | "\tinclude: kineticFlux, momentumFlux, angularMomentumFlux,\n" |
277 | > | "\tmomentumFluxVector, and angularMomentumFluxVector.\n", |
278 | > | methStr.c_str(), fluxStr.c_str()); |
279 | > | painCave.isFatal = 1; |
280 | > | painCave.severity = OPENMD_ERROR; |
281 | > | simError(); |
282 | > | } |
283 | > | |
284 | > | if (hasKineticFlux) { |
285 | > | // convert the kcal / mol / Angstroms^2 / fs values in the md file |
286 | > | // into amu / fs^3: |
287 | > | kineticFlux_ = rnemdParams->getKineticFlux() |
288 | > | * PhysicalConstants::energyConvert; |
289 | } else { | |
290 | < | set_RNEMD_target_flux(0.0); |
290 | > | kineticFlux_ = 0.0; |
291 | } | |
292 | + | if (hasMomentumFluxVector) { |
293 | + | momentumFluxVector_ = rnemdParams->getMomentumFluxVector(); |
294 | + | } else { |
295 | + | momentumFluxVector_ = V3Zero; |
296 | + | if (hasMomentumFlux) { |
297 | + | RealType momentumFlux = rnemdParams->getMomentumFlux(); |
298 | + | switch (rnemdFluxType_) { |
299 | + | case rnemdPx: |
300 | + | momentumFluxVector_.x() = momentumFlux; |
301 | + | break; |
302 | + | case rnemdPy: |
303 | + | momentumFluxVector_.y() = momentumFlux; |
304 | + | break; |
305 | + | case rnemdPz: |
306 | + | momentumFluxVector_.z() = momentumFlux; |
307 | + | break; |
308 | + | case rnemdKePx: |
309 | + | momentumFluxVector_.x() = momentumFlux; |
310 | + | break; |
311 | + | case rnemdKePy: |
312 | + | momentumFluxVector_.y() = momentumFlux; |
313 | + | break; |
314 | + | default: |
315 | + | break; |
316 | + | } |
317 | + | } |
318 | + | if (hasAngularMomentumFluxVector) { |
319 | + | angularMomentumFluxVector_ = rnemdParams->getAngularMomentumFluxVector(); |
320 | + | } else { |
321 | + | angularMomentumFluxVector_ = V3Zero; |
322 | + | if (hasAngularMomentumFlux) { |
323 | + | RealType angularMomentumFlux = rnemdParams->getAngularMomentumFlux(); |
324 | + | switch (rnemdFluxType_) { |
325 | + | case rnemdLx: |
326 | + | angularMomentumFluxVector_.x() = angularMomentumFlux; |
327 | + | break; |
328 | + | case rnemdLy: |
329 | + | angularMomentumFluxVector_.y() = angularMomentumFlux; |
330 | + | break; |
331 | + | case rnemdLz: |
332 | + | angularMomentumFluxVector_.z() = angularMomentumFlux; |
333 | + | break; |
334 | + | case rnemdKeLx: |
335 | + | angularMomentumFluxVector_.x() = angularMomentumFlux; |
336 | + | break; |
337 | + | case rnemdKeLy: |
338 | + | angularMomentumFluxVector_.y() = angularMomentumFlux; |
339 | + | break; |
340 | + | case rnemdKeLz: |
341 | + | angularMomentumFluxVector_.z() = angularMomentumFlux; |
342 | + | break; |
343 | + | default: |
344 | + | break; |
345 | + | } |
346 | + | } |
347 | + | } |
348 | ||
349 | < | #ifndef IS_MPI |
350 | < | if (simParams->haveSeed()) { |
351 | < | seedValue = simParams->getSeed(); |
352 | < | randNumGen_ = new SeqRandNumGen(seedValue); |
353 | < | }else { |
354 | < | randNumGen_ = new SeqRandNumGen(); |
355 | < | } |
356 | < | #else |
357 | < | if (simParams->haveSeed()) { |
358 | < | seedValue = simParams->getSeed(); |
359 | < | randNumGen_ = new ParallelRandNumGen(seedValue); |
360 | < | }else { |
361 | < | randNumGen_ = new ParallelRandNumGen(); |
362 | < | } |
363 | < | #endif |
349 | > | if (hasCoordinateOrigin) { |
350 | > | coordinateOrigin_ = rnemdParams->getCoordinateOrigin(); |
351 | > | } else { |
352 | > | coordinateOrigin_ = V3Zero; |
353 | > | } |
354 | > | |
355 | > | // do some sanity checking |
356 | > | |
357 | > | int selectionCount = seleMan_.getSelectionCount(); |
358 | > | |
359 | > | int nIntegrable = info->getNGlobalIntegrableObjects(); |
360 | > | |
361 | > | if (selectionCount > nIntegrable) { |
362 | > | sprintf(painCave.errMsg, |
363 | > | "RNEMD: The current objectSelection,\n" |
364 | > | "\t\t%s\n" |
365 | > | "\thas resulted in %d selected objects. However,\n" |
366 | > | "\tthe total number of integrable objects in the system\n" |
367 | > | "\tis only %d. This is almost certainly not what you want\n" |
368 | > | "\tto do. A likely cause of this is forgetting the _RB_0\n" |
369 | > | "\tselector in the selection script!\n", |
370 | > | rnemdObjectSelection_.c_str(), |
371 | > | selectionCount, nIntegrable); |
372 | > | painCave.isFatal = 0; |
373 | > | painCave.severity = OPENMD_WARNING; |
374 | > | simError(); |
375 | > | } |
376 | > | |
377 | > | areaAccumulator_ = new Accumulator(); |
378 | > | |
379 | > | nBins_ = rnemdParams->getOutputBins(); |
380 | > | binWidth_ = rnemdParams->getOutputBinWidth(); |
381 | > | |
382 | > | data_.resize(RNEMD::ENDINDEX); |
383 | > | OutputData z; |
384 | > | z.units = "Angstroms"; |
385 | > | z.title = "Z"; |
386 | > | z.dataType = "RealType"; |
387 | > | z.accumulator.reserve(nBins_); |
388 | > | for (int i = 0; i < nBins_; i++) |
389 | > | z.accumulator.push_back( new Accumulator() ); |
390 | > | data_[Z] = z; |
391 | > | outputMap_["Z"] = Z; |
392 | > | |
393 | > | OutputData r; |
394 | > | r.units = "Angstroms"; |
395 | > | r.title = "R"; |
396 | > | r.dataType = "RealType"; |
397 | > | r.accumulator.reserve(nBins_); |
398 | > | for (int i = 0; i < nBins_; i++) |
399 | > | r.accumulator.push_back( new Accumulator() ); |
400 | > | data_[R] = r; |
401 | > | outputMap_["R"] = R; |
402 | > | |
403 | > | OutputData temperature; |
404 | > | temperature.units = "K"; |
405 | > | temperature.title = "Temperature"; |
406 | > | temperature.dataType = "RealType"; |
407 | > | temperature.accumulator.reserve(nBins_); |
408 | > | for (int i = 0; i < nBins_; i++) |
409 | > | temperature.accumulator.push_back( new Accumulator() ); |
410 | > | data_[TEMPERATURE] = temperature; |
411 | > | outputMap_["TEMPERATURE"] = TEMPERATURE; |
412 | > | |
413 | > | OutputData velocity; |
414 | > | velocity.units = "angstroms/fs"; |
415 | > | velocity.title = "Velocity"; |
416 | > | velocity.dataType = "Vector3d"; |
417 | > | velocity.accumulator.reserve(nBins_); |
418 | > | for (int i = 0; i < nBins_; i++) |
419 | > | velocity.accumulator.push_back( new VectorAccumulator() ); |
420 | > | data_[VELOCITY] = velocity; |
421 | > | outputMap_["VELOCITY"] = VELOCITY; |
422 | > | |
423 | > | OutputData angularVelocity; |
424 | > | angularVelocity.units = "angstroms^2/fs"; |
425 | > | angularVelocity.title = "AngularVelocity"; |
426 | > | angularVelocity.dataType = "Vector3d"; |
427 | > | angularVelocity.accumulator.reserve(nBins_); |
428 | > | for (int i = 0; i < nBins_; i++) |
429 | > | angularVelocity.accumulator.push_back( new VectorAccumulator() ); |
430 | > | data_[ANGULARVELOCITY] = angularVelocity; |
431 | > | outputMap_["ANGULARVELOCITY"] = ANGULARVELOCITY; |
432 | > | |
433 | > | OutputData density; |
434 | > | density.units = "g cm^-3"; |
435 | > | density.title = "Density"; |
436 | > | density.dataType = "RealType"; |
437 | > | density.accumulator.reserve(nBins_); |
438 | > | for (int i = 0; i < nBins_; i++) |
439 | > | density.accumulator.push_back( new Accumulator() ); |
440 | > | data_[DENSITY] = density; |
441 | > | outputMap_["DENSITY"] = DENSITY; |
442 | > | |
443 | > | if (hasOutputFields) { |
444 | > | parseOutputFileFormat(rnemdParams->getOutputFields()); |
445 | > | } else { |
446 | > | if (usePeriodicBoundaryConditions_) |
447 | > | outputMask_.set(Z); |
448 | > | else |
449 | > | outputMask_.set(R); |
450 | > | switch (rnemdFluxType_) { |
451 | > | case rnemdKE: |
452 | > | case rnemdRotKE: |
453 | > | case rnemdFullKE: |
454 | > | outputMask_.set(TEMPERATURE); |
455 | > | break; |
456 | > | case rnemdPx: |
457 | > | case rnemdPy: |
458 | > | outputMask_.set(VELOCITY); |
459 | > | break; |
460 | > | case rnemdPz: |
461 | > | case rnemdPvector: |
462 | > | outputMask_.set(VELOCITY); |
463 | > | outputMask_.set(DENSITY); |
464 | > | break; |
465 | > | case rnemdLx: |
466 | > | case rnemdLy: |
467 | > | case rnemdLz: |
468 | > | case rnemdLvector: |
469 | > | outputMask_.set(ANGULARVELOCITY); |
470 | > | break; |
471 | > | case rnemdKeLx: |
472 | > | case rnemdKeLy: |
473 | > | case rnemdKeLz: |
474 | > | case rnemdKeLvector: |
475 | > | outputMask_.set(TEMPERATURE); |
476 | > | outputMask_.set(ANGULARVELOCITY); |
477 | > | break; |
478 | > | case rnemdKePx: |
479 | > | case rnemdKePy: |
480 | > | outputMask_.set(TEMPERATURE); |
481 | > | outputMask_.set(VELOCITY); |
482 | > | break; |
483 | > | case rnemdKePvector: |
484 | > | outputMask_.set(TEMPERATURE); |
485 | > | outputMask_.set(VELOCITY); |
486 | > | outputMask_.set(DENSITY); |
487 | > | break; |
488 | > | default: |
489 | > | break; |
490 | > | } |
491 | > | } |
492 | > | |
493 | > | if (hasOutputFileName) { |
494 | > | rnemdFileName_ = rnemdParams->getOutputFileName(); |
495 | > | } else { |
496 | > | rnemdFileName_ = getPrefix(info->getFinalConfigFileName()) + ".rnemd"; |
497 | > | } |
498 | > | |
499 | > | exchangeTime_ = rnemdParams->getExchangeTime(); |
500 | > | |
501 | > | Snapshot* currentSnap_ = info->getSnapshotManager()->getCurrentSnapshot(); |
502 | > | // total exchange sums are zeroed out at the beginning: |
503 | > | |
504 | > | kineticExchange_ = 0.0; |
505 | > | momentumExchange_ = V3Zero; |
506 | > | angularMomentumExchange_ = V3Zero; |
507 | > | |
508 | > | std::ostringstream selectionAstream; |
509 | > | std::ostringstream selectionBstream; |
510 | > | |
511 | > | if (hasSelectionA_) { |
512 | > | selectionA_ = rnemdParams->getSelectionA(); |
513 | > | } else { |
514 | > | if (usePeriodicBoundaryConditions_) { |
515 | > | Mat3x3d hmat = currentSnap_->getHmat(); |
516 | > | |
517 | > | if (hasSlabWidth) |
518 | > | slabWidth_ = rnemdParams->getSlabWidth(); |
519 | > | else |
520 | > | slabWidth_ = hmat(2,2) / 10.0; |
521 | > | |
522 | > | if (hasSlabACenter) |
523 | > | slabACenter_ = rnemdParams->getSlabACenter(); |
524 | > | else |
525 | > | slabACenter_ = 0.0; |
526 | > | |
527 | > | selectionAstream << "select wrappedz > " |
528 | > | << slabACenter_ - 0.5*slabWidth_ |
529 | > | << " && wrappedz < " |
530 | > | << slabACenter_ + 0.5*slabWidth_; |
531 | > | selectionA_ = selectionAstream.str(); |
532 | > | } else { |
533 | > | if (hasSphereARadius) |
534 | > | sphereARadius_ = rnemdParams->getSphereARadius(); |
535 | > | else { |
536 | > | // use an initial guess to the size of the inner slab to be 1/10 the |
537 | > | // radius of an approximately spherical hull: |
538 | > | Thermo thermo(info); |
539 | > | RealType hVol = thermo.getHullVolume(); |
540 | > | sphereARadius_ = 0.1 * pow((3.0 * hVol / (4.0 * M_PI)), 1.0/3.0); |
541 | > | } |
542 | > | selectionAstream << "select r < " << sphereARadius_; |
543 | > | selectionA_ = selectionAstream.str(); |
544 | > | } |
545 | > | } |
546 | > | |
547 | > | if (hasSelectionB_) { |
548 | > | selectionB_ = rnemdParams->getSelectionB(); |
549 | > | } else { |
550 | > | if (usePeriodicBoundaryConditions_) { |
551 | > | Mat3x3d hmat = currentSnap_->getHmat(); |
552 | > | |
553 | > | if (hasSlabWidth) |
554 | > | slabWidth_ = rnemdParams->getSlabWidth(); |
555 | > | else |
556 | > | slabWidth_ = hmat(2,2) / 10.0; |
557 | > | |
558 | > | if (hasSlabBCenter) |
559 | > | slabBCenter_ = rnemdParams->getSlabACenter(); |
560 | > | else |
561 | > | slabBCenter_ = hmat(2,2) / 2.0; |
562 | > | |
563 | > | selectionBstream << "select wrappedz > " |
564 | > | << slabBCenter_ - 0.5*slabWidth_ |
565 | > | << " && wrappedz < " |
566 | > | << slabBCenter_ + 0.5*slabWidth_; |
567 | > | selectionB_ = selectionBstream.str(); |
568 | > | } else { |
569 | > | if (hasSphereBRadius_) { |
570 | > | sphereBRadius_ = rnemdParams->getSphereBRadius(); |
571 | > | selectionBstream << "select r > " << sphereBRadius_; |
572 | > | selectionB_ = selectionBstream.str(); |
573 | > | } else { |
574 | > | selectionB_ = "select hull"; |
575 | > | hasSelectionB_ = true; |
576 | > | } |
577 | > | } |
578 | > | } |
579 | > | } |
580 | > | // object evaluator: |
581 | > | evaluator_.loadScriptString(rnemdObjectSelection_); |
582 | > | seleMan_.setSelectionSet(evaluator_.evaluate()); |
583 | > | |
584 | > | evaluatorA_.loadScriptString(selectionA_); |
585 | > | evaluatorB_.loadScriptString(selectionB_); |
586 | > | |
587 | > | seleManA_.setSelectionSet(evaluatorA_.evaluate()); |
588 | > | seleManB_.setSelectionSet(evaluatorB_.evaluate()); |
589 | > | |
590 | > | commonA_ = seleManA_ & seleMan_; |
591 | > | commonB_ = seleManB_ & seleMan_; |
592 | } | |
593 | ||
195 | – | RNEMD::~RNEMD() { |
196 | – | delete randNumGen_; |
594 | ||
595 | + | RNEMD::~RNEMD() { |
596 | + | if (!doRNEMD_) return; |
597 | #ifdef IS_MPI | |
598 | if (worldRank == 0) { | |
599 | #endif | |
600 | < | std::cerr << "total fail trials: " << failTrialCount_ << "\n"; |
601 | < | rnemdLog_.close(); |
602 | < | if (rnemdType_ == rnemdKineticScale || rnemdType_ == rnemdPxScale || rnemdType_ == rnemdPyScale) |
603 | < | std::cerr<< "total root-checking warnings: " << failRootCount_ << "\n"; |
604 | < | if (rnemdType_ == rnemdPx || rnemdType_ == rnemdPxScale || rnemdType_ == rnemdPy || rnemdType_ == rnemdPyScale) { |
206 | < | xTempLog_.close(); |
207 | < | yTempLog_.close(); |
208 | < | zTempLog_.close(); |
209 | < | } |
600 | > | |
601 | > | writeOutputFile(); |
602 | > | |
603 | > | rnemdFile_.close(); |
604 | > | |
605 | #ifdef IS_MPI | |
606 | } | |
607 | #endif | |
608 | } | |
609 | + | |
610 | + | void RNEMD::doSwap(SelectionManager& smanA, SelectionManager& smanB) { |
611 | + | if (!doRNEMD_) return; |
612 | + | int selei; |
613 | + | int selej; |
614 | ||
215 | – | void RNEMD::doSwap() { |
216 | – | |
615 | Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); | |
616 | Mat3x3d hmat = currentSnap_->getHmat(); | |
617 | ||
220 | – | seleMan_.setSelectionSet(evaluator_.evaluate()); |
221 | – | |
222 | – | int selei; |
618 | StuntDouble* sd; | |
224 | – | int idx; |
619 | ||
620 | RealType min_val; | |
621 | bool min_found = false; | |
# | Line 231 | Line 625 | namespace OpenMD { | |
625 | bool max_found = false; | |
626 | StuntDouble* max_sd; | |
627 | ||
628 | < | for (sd = seleMan_.beginSelected(selei); sd != NULL; |
629 | < | sd = seleMan_.nextSelected(selei)) { |
628 | > | for (sd = seleManA_.beginSelected(selei); sd != NULL; |
629 | > | sd = seleManA_.nextSelected(selei)) { |
630 | ||
237 | – | idx = sd->getLocalIndex(); |
238 | – | |
631 | Vector3d pos = sd->getPos(); | |
632 | < | |
632 | > | |
633 | // wrap the stuntdouble's position back into the box: | |
634 | < | |
634 | > | |
635 | if (usePeriodicBoundaryConditions_) | |
636 | currentSnap_->wrapVector(pos); | |
637 | < | |
638 | < | // which bin is this stuntdouble in? |
639 | < | // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)] |
640 | < | |
641 | < | int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_; |
642 | < | |
643 | < | |
252 | < | // if we're in bin 0 or the middleBin |
253 | < | if (binNo == 0 || binNo == midBin_) { |
637 | > | |
638 | > | RealType mass = sd->getMass(); |
639 | > | Vector3d vel = sd->getVel(); |
640 | > | RealType value; |
641 | > | |
642 | > | switch(rnemdFluxType_) { |
643 | > | case rnemdKE : |
644 | ||
645 | < | RealType mass = sd->getMass(); |
646 | < | Vector3d vel = sd->getVel(); |
647 | < | RealType value; |
648 | < | |
649 | < | switch(rnemdType_) { |
260 | < | case rnemdKineticSwap : |
645 | > | value = mass * vel.lengthSquare(); |
646 | > | |
647 | > | if (sd->isDirectional()) { |
648 | > | Vector3d angMom = sd->getJ(); |
649 | > | Mat3x3d I = sd->getI(); |
650 | ||
651 | < | value = mass * (vel[0]*vel[0] + vel[1]*vel[1] + |
652 | < | vel[2]*vel[2]); |
653 | < | if (sd->isDirectional()) { |
654 | < | Vector3d angMom = sd->getJ(); |
655 | < | Mat3x3d I = sd->getI(); |
656 | < | |
657 | < | if (sd->isLinear()) { |
658 | < | int i = sd->linearAxis(); |
659 | < | int j = (i + 1) % 3; |
660 | < | int k = (i + 2) % 3; |
272 | < | value += angMom[j] * angMom[j] / I(j, j) + |
273 | < | angMom[k] * angMom[k] / I(k, k); |
274 | < | } else { |
275 | < | value += angMom[0]*angMom[0]/I(0, 0) |
276 | < | + angMom[1]*angMom[1]/I(1, 1) |
277 | < | + angMom[2]*angMom[2]/I(2, 2); |
278 | < | } |
651 | > | if (sd->isLinear()) { |
652 | > | int i = sd->linearAxis(); |
653 | > | int j = (i + 1) % 3; |
654 | > | int k = (i + 2) % 3; |
655 | > | value += angMom[j] * angMom[j] / I(j, j) + |
656 | > | angMom[k] * angMom[k] / I(k, k); |
657 | > | } else { |
658 | > | value += angMom[0]*angMom[0]/I(0, 0) |
659 | > | + angMom[1]*angMom[1]/I(1, 1) |
660 | > | + angMom[2]*angMom[2]/I(2, 2); |
661 | } | |
662 | < | //make exchangeSum_ comparable between swap & scale |
663 | < | //temporarily without using energyConvert |
664 | < | //value = value * 0.5 / PhysicalConstants::energyConvert; |
665 | < | value *= 0.5; |
666 | < | break; |
667 | < | case rnemdPx : |
668 | < | value = mass * vel[0]; |
669 | < | break; |
670 | < | case rnemdPy : |
671 | < | value = mass * vel[1]; |
672 | < | break; |
673 | < | case rnemdPz : |
674 | < | value = mass * vel[2]; |
675 | < | break; |
676 | < | default : |
677 | < | break; |
662 | > | } //angular momenta exchange enabled |
663 | > | value *= 0.5; |
664 | > | break; |
665 | > | case rnemdPx : |
666 | > | value = mass * vel[0]; |
667 | > | break; |
668 | > | case rnemdPy : |
669 | > | value = mass * vel[1]; |
670 | > | break; |
671 | > | case rnemdPz : |
672 | > | value = mass * vel[2]; |
673 | > | break; |
674 | > | default : |
675 | > | break; |
676 | > | } |
677 | > | if (!max_found) { |
678 | > | max_val = value; |
679 | > | max_sd = sd; |
680 | > | max_found = true; |
681 | > | } else { |
682 | > | if (max_val < value) { |
683 | > | max_val = value; |
684 | > | max_sd = sd; |
685 | } | |
686 | + | } |
687 | + | } |
688 | ||
689 | < | if (binNo == 0) { |
690 | < | if (!min_found) { |
691 | < | min_val = value; |
692 | < | min_sd = sd; |
693 | < | min_found = true; |
694 | < | } else { |
695 | < | if (min_val > value) { |
696 | < | min_val = value; |
697 | < | min_sd = sd; |
698 | < | } |
699 | < | } |
700 | < | } else { //midBin_ |
701 | < | if (!max_found) { |
702 | < | max_val = value; |
703 | < | max_sd = sd; |
704 | < | max_found = true; |
705 | < | } else { |
706 | < | if (max_val < value) { |
707 | < | max_val = value; |
708 | < | max_sd = sd; |
709 | < | } |
710 | < | } |
711 | < | } |
689 | > | for (sd = seleManB_.beginSelected(selej); sd != NULL; |
690 | > | sd = seleManB_.nextSelected(selej)) { |
691 | > | |
692 | > | Vector3d pos = sd->getPos(); |
693 | > | |
694 | > | // wrap the stuntdouble's position back into the box: |
695 | > | |
696 | > | if (usePeriodicBoundaryConditions_) |
697 | > | currentSnap_->wrapVector(pos); |
698 | > | |
699 | > | RealType mass = sd->getMass(); |
700 | > | Vector3d vel = sd->getVel(); |
701 | > | RealType value; |
702 | > | |
703 | > | switch(rnemdFluxType_) { |
704 | > | case rnemdKE : |
705 | > | |
706 | > | value = mass * vel.lengthSquare(); |
707 | > | |
708 | > | if (sd->isDirectional()) { |
709 | > | Vector3d angMom = sd->getJ(); |
710 | > | Mat3x3d I = sd->getI(); |
711 | > | |
712 | > | if (sd->isLinear()) { |
713 | > | int i = sd->linearAxis(); |
714 | > | int j = (i + 1) % 3; |
715 | > | int k = (i + 2) % 3; |
716 | > | value += angMom[j] * angMom[j] / I(j, j) + |
717 | > | angMom[k] * angMom[k] / I(k, k); |
718 | > | } else { |
719 | > | value += angMom[0]*angMom[0]/I(0, 0) |
720 | > | + angMom[1]*angMom[1]/I(1, 1) |
721 | > | + angMom[2]*angMom[2]/I(2, 2); |
722 | > | } |
723 | > | } //angular momenta exchange enabled |
724 | > | value *= 0.5; |
725 | > | break; |
726 | > | case rnemdPx : |
727 | > | value = mass * vel[0]; |
728 | > | break; |
729 | > | case rnemdPy : |
730 | > | value = mass * vel[1]; |
731 | > | break; |
732 | > | case rnemdPz : |
733 | > | value = mass * vel[2]; |
734 | > | break; |
735 | > | default : |
736 | > | break; |
737 | } | |
738 | + | |
739 | + | if (!min_found) { |
740 | + | min_val = value; |
741 | + | min_sd = sd; |
742 | + | min_found = true; |
743 | + | } else { |
744 | + | if (min_val > value) { |
745 | + | min_val = value; |
746 | + | min_sd = sd; |
747 | + | } |
748 | + | } |
749 | } | |
750 | < | |
751 | < | #ifdef IS_MPI |
752 | < | int nProc, worldRank; |
753 | < | |
327 | < | nProc = MPI::COMM_WORLD.Get_size(); |
328 | < | worldRank = MPI::COMM_WORLD.Get_rank(); |
329 | < | |
750 | > | |
751 | > | #ifdef IS_MPI |
752 | > | int worldRank = MPI::COMM_WORLD.Get_rank(); |
753 | > | |
754 | bool my_min_found = min_found; | |
755 | bool my_max_found = max_found; | |
756 | ||
757 | // Even if we didn't find a minimum, did someone else? | |
758 | < | MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found, |
335 | < | 1, MPI::BOOL, MPI::LAND); |
336 | < | |
758 | > | MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found, 1, MPI::BOOL, MPI::LOR); |
759 | // Even if we didn't find a maximum, did someone else? | |
760 | < | MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found, |
761 | < | 1, MPI::BOOL, MPI::LAND); |
762 | < | |
763 | < | struct { |
764 | < | RealType val; |
765 | < | int rank; |
766 | < | } max_vals, min_vals; |
767 | < | |
768 | < | if (min_found) { |
769 | < | if (my_min_found) |
760 | > | MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found, 1, MPI::BOOL, MPI::LOR); |
761 | > | #endif |
762 | > | |
763 | > | if (max_found && min_found) { |
764 | > | |
765 | > | #ifdef IS_MPI |
766 | > | struct { |
767 | > | RealType val; |
768 | > | int rank; |
769 | > | } max_vals, min_vals; |
770 | > | |
771 | > | if (my_min_found) { |
772 | min_vals.val = min_val; | |
773 | < | else |
773 | > | } else { |
774 | min_vals.val = HONKING_LARGE_VALUE; | |
775 | < | |
775 | > | } |
776 | min_vals.rank = worldRank; | |
777 | ||
778 | // Who had the minimum? | |
779 | MPI::COMM_WORLD.Allreduce(&min_vals, &min_vals, | |
780 | 1, MPI::REALTYPE_INT, MPI::MINLOC); | |
781 | min_val = min_vals.val; | |
358 | – | } |
782 | ||
783 | < | if (max_found) { |
361 | < | if (my_max_found) |
783 | > | if (my_max_found) { |
784 | max_vals.val = max_val; | |
785 | < | else |
785 | > | } else { |
786 | max_vals.val = -HONKING_LARGE_VALUE; | |
787 | < | |
787 | > | } |
788 | max_vals.rank = worldRank; | |
789 | ||
790 | // Who had the maximum? | |
791 | MPI::COMM_WORLD.Allreduce(&max_vals, &max_vals, | |
792 | 1, MPI::REALTYPE_INT, MPI::MAXLOC); | |
793 | max_val = max_vals.val; | |
372 | – | } |
794 | #endif | |
795 | < | |
796 | < | if (max_found && min_found) { |
797 | < | if (min_val< max_val) { |
377 | < | |
795 | > | |
796 | > | if (min_val < max_val) { |
797 | > | |
798 | #ifdef IS_MPI | |
799 | if (max_vals.rank == worldRank && min_vals.rank == worldRank) { | |
800 | // I have both maximum and minimum, so proceed like a single | |
801 | // processor version: | |
802 | #endif | |
803 | < | // objects to be swapped: velocity & angular velocity |
803 | > | |
804 | Vector3d min_vel = min_sd->getVel(); | |
805 | Vector3d max_vel = max_sd->getVel(); | |
806 | RealType temp_vel; | |
807 | ||
808 | < | switch(rnemdType_) { |
809 | < | case rnemdKineticSwap : |
808 | > | switch(rnemdFluxType_) { |
809 | > | case rnemdKE : |
810 | min_sd->setVel(max_vel); | |
811 | max_sd->setVel(min_vel); | |
812 | < | if (min_sd->isDirectional() && max_sd->isDirectional()) { |
812 | > | if (min_sd->isDirectional() && max_sd->isDirectional()) { |
813 | Vector3d min_angMom = min_sd->getJ(); | |
814 | Vector3d max_angMom = max_sd->getJ(); | |
815 | min_sd->setJ(max_angMom); | |
816 | max_sd->setJ(min_angMom); | |
817 | < | } |
817 | > | }//angular momenta exchange enabled |
818 | > | //assumes same rigid body identity |
819 | break; | |
820 | case rnemdPx : | |
821 | temp_vel = min_vel.x(); | |
# | Line 420 | Line 841 | namespace OpenMD { | |
841 | default : | |
842 | break; | |
843 | } | |
844 | + | |
845 | #ifdef IS_MPI | |
846 | // the rest of the cases only apply in parallel simulations: | |
847 | } else if (max_vals.rank == worldRank) { | |
# | Line 435 | Line 857 | namespace OpenMD { | |
857 | min_vel.getArrayPointer(), 3, MPI::REALTYPE, | |
858 | min_vals.rank, 0, status); | |
859 | ||
860 | < | switch(rnemdType_) { |
861 | < | case rnemdKineticSwap : |
860 | > | switch(rnemdFluxType_) { |
861 | > | case rnemdKE : |
862 | max_sd->setVel(min_vel); | |
863 | < | |
863 | > | //angular momenta exchange enabled |
864 | if (max_sd->isDirectional()) { | |
865 | Vector3d min_angMom; | |
866 | Vector3d max_angMom = max_sd->getJ(); | |
867 | < | |
867 | > | |
868 | // point-to-point swap of the angular momentum vector | |
869 | MPI::COMM_WORLD.Sendrecv(max_angMom.getArrayPointer(), 3, | |
870 | MPI::REALTYPE, min_vals.rank, 1, | |
871 | min_angMom.getArrayPointer(), 3, | |
872 | MPI::REALTYPE, min_vals.rank, 1, | |
873 | status); | |
874 | < | |
874 | > | |
875 | max_sd->setJ(min_angMom); | |
876 | < | } |
876 | > | } |
877 | break; | |
878 | case rnemdPx : | |
879 | max_vel.x() = min_vel.x(); | |
# | Line 481 | Line 903 | namespace OpenMD { | |
903 | max_vel.getArrayPointer(), 3, MPI::REALTYPE, | |
904 | max_vals.rank, 0, status); | |
905 | ||
906 | < | switch(rnemdType_) { |
907 | < | case rnemdKineticSwap : |
906 | > | switch(rnemdFluxType_) { |
907 | > | case rnemdKE : |
908 | min_sd->setVel(max_vel); | |
909 | < | |
909 | > | //angular momenta exchange enabled |
910 | if (min_sd->isDirectional()) { | |
911 | Vector3d min_angMom = min_sd->getJ(); | |
912 | Vector3d max_angMom; | |
913 | < | |
913 | > | |
914 | // point-to-point swap of the angular momentum vector | |
915 | MPI::COMM_WORLD.Sendrecv(min_angMom.getArrayPointer(), 3, | |
916 | MPI::REALTYPE, max_vals.rank, 1, | |
917 | max_angMom.getArrayPointer(), 3, | |
918 | MPI::REALTYPE, max_vals.rank, 1, | |
919 | status); | |
920 | < | |
920 | > | |
921 | min_sd->setJ(max_angMom); | |
922 | } | |
923 | break; | |
# | Line 516 | Line 938 | namespace OpenMD { | |
938 | } | |
939 | } | |
940 | #endif | |
941 | < | exchangeSum_ += max_val - min_val; |
942 | < | } else { |
943 | < | std::cerr << "exchange NOT performed!\nmin_val > max_val.\n"; |
941 | > | |
942 | > | switch(rnemdFluxType_) { |
943 | > | case rnemdKE: |
944 | > | kineticExchange_ += max_val - min_val; |
945 | > | break; |
946 | > | case rnemdPx: |
947 | > | momentumExchange_.x() += max_val - min_val; |
948 | > | break; |
949 | > | case rnemdPy: |
950 | > | momentumExchange_.y() += max_val - min_val; |
951 | > | break; |
952 | > | case rnemdPz: |
953 | > | momentumExchange_.z() += max_val - min_val; |
954 | > | break; |
955 | > | default: |
956 | > | break; |
957 | > | } |
958 | > | } else { |
959 | > | sprintf(painCave.errMsg, |
960 | > | "RNEMD::doSwap exchange NOT performed because min_val > max_val\n"); |
961 | > | painCave.isFatal = 0; |
962 | > | painCave.severity = OPENMD_INFO; |
963 | > | simError(); |
964 | failTrialCount_++; | |
965 | } | |
966 | } else { | |
967 | < | std::cerr << "exchange NOT performed!\n"; |
968 | < | std::cerr << "at least one of the two slabs empty.\n"; |
967 | > | sprintf(painCave.errMsg, |
968 | > | "RNEMD::doSwap exchange NOT performed because selected object\n" |
969 | > | "\twas not present in at least one of the two slabs.\n"); |
970 | > | painCave.isFatal = 0; |
971 | > | painCave.severity = OPENMD_INFO; |
972 | > | simError(); |
973 | failTrialCount_++; | |
974 | < | } |
529 | < | |
974 | > | } |
975 | } | |
976 | ||
977 | < | void RNEMD::doScale() { |
977 | > | void RNEMD::doNIVS(SelectionManager& smanA, SelectionManager& smanB) { |
978 | > | if (!doRNEMD_) return; |
979 | > | int selei; |
980 | > | int selej; |
981 | ||
982 | Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); | |
983 | + | RealType time = currentSnap_->getTime(); |
984 | Mat3x3d hmat = currentSnap_->getHmat(); | |
985 | ||
537 | – | seleMan_.setSelectionSet(evaluator_.evaluate()); |
538 | – | |
539 | – | int selei; |
986 | StuntDouble* sd; | |
541 | – | int idx; |
987 | ||
988 | < | std::vector<StuntDouble*> hotBin, coldBin; |
988 | > | vector<StuntDouble*> hotBin, coldBin; |
989 | ||
990 | RealType Phx = 0.0; | |
991 | RealType Phy = 0.0; | |
# | Line 548 | Line 993 | namespace OpenMD { | |
993 | RealType Khx = 0.0; | |
994 | RealType Khy = 0.0; | |
995 | RealType Khz = 0.0; | |
996 | + | RealType Khw = 0.0; |
997 | RealType Pcx = 0.0; | |
998 | RealType Pcy = 0.0; | |
999 | RealType Pcz = 0.0; | |
1000 | RealType Kcx = 0.0; | |
1001 | RealType Kcy = 0.0; | |
1002 | RealType Kcz = 0.0; | |
1003 | + | RealType Kcw = 0.0; |
1004 | ||
1005 | < | for (sd = seleMan_.beginSelected(selei); sd != NULL; |
1006 | < | sd = seleMan_.nextSelected(selei)) { |
1005 | > | for (sd = smanA.beginSelected(selei); sd != NULL; |
1006 | > | sd = smanA.nextSelected(selei)) { |
1007 | ||
561 | – | idx = sd->getLocalIndex(); |
562 | – | |
1008 | Vector3d pos = sd->getPos(); | |
1009 | < | |
1009 | > | |
1010 | // wrap the stuntdouble's position back into the box: | |
1011 | < | |
1011 | > | |
1012 | if (usePeriodicBoundaryConditions_) | |
1013 | currentSnap_->wrapVector(pos); | |
1014 | < | |
1015 | < | // which bin is this stuntdouble in? |
1016 | < | // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)] |
1017 | < | |
1018 | < | int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_; |
1019 | < | |
1020 | < | // if we're in bin 0 or the middleBin |
1021 | < | if (binNo == 0 || binNo == midBin_) { |
1022 | < | |
1023 | < | RealType mass = sd->getMass(); |
1024 | < | Vector3d vel = sd->getVel(); |
1025 | < | |
1026 | < | if (binNo == 0) { |
1027 | < | hotBin.push_back(sd); |
1028 | < | Phx += mass * vel.x(); |
1029 | < | Phy += mass * vel.y(); |
1030 | < | Phz += mass * vel.z(); |
1031 | < | Khx += mass * vel.x() * vel.x(); |
1032 | < | Khy += mass * vel.y() * vel.y(); |
1033 | < | Khz += mass * vel.z() * vel.z(); |
1034 | < | } else { //midBin_ |
1035 | < | coldBin.push_back(sd); |
1036 | < | Pcx += mass * vel.x(); |
1037 | < | Pcy += mass * vel.y(); |
1038 | < | Pcz += mass * vel.z(); |
1039 | < | Kcx += mass * vel.x() * vel.x(); |
1040 | < | Kcy += mass * vel.y() * vel.y(); |
1041 | < | Kcz += mass * vel.z() * vel.z(); |
1042 | < | } |
1043 | < | } |
1044 | < | } |
1045 | < | |
1046 | < | Khx *= 0.5; |
1047 | < | Khy *= 0.5; |
1048 | < | Khz *= 0.5; |
1049 | < | Kcx *= 0.5; |
1050 | < | Kcy *= 0.5; |
1051 | < | Kcz *= 0.5; |
1014 | > | |
1015 | > | |
1016 | > | RealType mass = sd->getMass(); |
1017 | > | Vector3d vel = sd->getVel(); |
1018 | > | |
1019 | > | hotBin.push_back(sd); |
1020 | > | Phx += mass * vel.x(); |
1021 | > | Phy += mass * vel.y(); |
1022 | > | Phz += mass * vel.z(); |
1023 | > | Khx += mass * vel.x() * vel.x(); |
1024 | > | Khy += mass * vel.y() * vel.y(); |
1025 | > | Khz += mass * vel.z() * vel.z(); |
1026 | > | if (sd->isDirectional()) { |
1027 | > | Vector3d angMom = sd->getJ(); |
1028 | > | Mat3x3d I = sd->getI(); |
1029 | > | if (sd->isLinear()) { |
1030 | > | int i = sd->linearAxis(); |
1031 | > | int j = (i + 1) % 3; |
1032 | > | int k = (i + 2) % 3; |
1033 | > | Khw += angMom[j] * angMom[j] / I(j, j) + |
1034 | > | angMom[k] * angMom[k] / I(k, k); |
1035 | > | } else { |
1036 | > | Khw += angMom[0]*angMom[0]/I(0, 0) |
1037 | > | + angMom[1]*angMom[1]/I(1, 1) |
1038 | > | + angMom[2]*angMom[2]/I(2, 2); |
1039 | > | } |
1040 | > | } |
1041 | > | } |
1042 | > | for (sd = smanB.beginSelected(selej); sd != NULL; |
1043 | > | sd = smanB.nextSelected(selej)) { |
1044 | > | Vector3d pos = sd->getPos(); |
1045 | > | |
1046 | > | // wrap the stuntdouble's position back into the box: |
1047 | > | |
1048 | > | if (usePeriodicBoundaryConditions_) |
1049 | > | currentSnap_->wrapVector(pos); |
1050 | > | |
1051 | > | RealType mass = sd->getMass(); |
1052 | > | Vector3d vel = sd->getVel(); |
1053 | ||
1054 | + | coldBin.push_back(sd); |
1055 | + | Pcx += mass * vel.x(); |
1056 | + | Pcy += mass * vel.y(); |
1057 | + | Pcz += mass * vel.z(); |
1058 | + | Kcx += mass * vel.x() * vel.x(); |
1059 | + | Kcy += mass * vel.y() * vel.y(); |
1060 | + | Kcz += mass * vel.z() * vel.z(); |
1061 | + | if (sd->isDirectional()) { |
1062 | + | Vector3d angMom = sd->getJ(); |
1063 | + | Mat3x3d I = sd->getI(); |
1064 | + | if (sd->isLinear()) { |
1065 | + | int i = sd->linearAxis(); |
1066 | + | int j = (i + 1) % 3; |
1067 | + | int k = (i + 2) % 3; |
1068 | + | Kcw += angMom[j] * angMom[j] / I(j, j) + |
1069 | + | angMom[k] * angMom[k] / I(k, k); |
1070 | + | } else { |
1071 | + | Kcw += angMom[0]*angMom[0]/I(0, 0) |
1072 | + | + angMom[1]*angMom[1]/I(1, 1) |
1073 | + | + angMom[2]*angMom[2]/I(2, 2); |
1074 | + | } |
1075 | + | } |
1076 | + | } |
1077 | + | |
1078 | + | Khx *= 0.5; |
1079 | + | Khy *= 0.5; |
1080 | + | Khz *= 0.5; |
1081 | + | Khw *= 0.5; |
1082 | + | Kcx *= 0.5; |
1083 | + | Kcy *= 0.5; |
1084 | + | Kcz *= 0.5; |
1085 | + | Kcw *= 0.5; |
1086 | + | |
1087 | #ifdef IS_MPI | |
1088 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phx, 1, MPI::REALTYPE, MPI::SUM); | |
1089 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phy, 1, MPI::REALTYPE, MPI::SUM); | |
# | Line 616 | Line 1095 | namespace OpenMD { | |
1095 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khx, 1, MPI::REALTYPE, MPI::SUM); | |
1096 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khy, 1, MPI::REALTYPE, MPI::SUM); | |
1097 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khz, 1, MPI::REALTYPE, MPI::SUM); | |
1098 | + | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khw, 1, MPI::REALTYPE, MPI::SUM); |
1099 | + | |
1100 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcx, 1, MPI::REALTYPE, MPI::SUM); | |
1101 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcy, 1, MPI::REALTYPE, MPI::SUM); | |
1102 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcz, 1, MPI::REALTYPE, MPI::SUM); | |
1103 | + | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcw, 1, MPI::REALTYPE, MPI::SUM); |
1104 | #endif | |
1105 | ||
1106 | < | //use coldBin coeff's |
1106 | > | //solve coldBin coeff's first |
1107 | RealType px = Pcx / Phx; | |
1108 | RealType py = Pcy / Phy; | |
1109 | RealType pz = Pcz / Phz; | |
1110 | + | RealType c, x, y, z; |
1111 | + | bool successfulScale = false; |
1112 | + | if ((rnemdFluxType_ == rnemdFullKE) || |
1113 | + | (rnemdFluxType_ == rnemdRotKE)) { |
1114 | + | //may need sanity check Khw & Kcw > 0 |
1115 | ||
1116 | < | RealType a000, a110, c0, a001, a111, b01, b11, c1, c; |
1117 | < | switch(rnemdType_) { |
1118 | < | case rnemdKineticScale : |
1119 | < | /*used hotBin coeff's & only scale x & y dimensions |
1120 | < | RealType px = Phx / Pcx; |
634 | < | RealType py = Phy / Pcy; |
635 | < | a110 = Khy; |
636 | < | c0 = - Khx - Khy - targetFlux_; |
637 | < | a000 = Khx; |
638 | < | a111 = Kcy * py * py |
639 | < | b11 = -2.0 * Kcy * py * (1.0 + py); |
640 | < | c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + targetFlux_; |
641 | < | b01 = -2.0 * Kcx * px * (1.0 + px); |
642 | < | a001 = Kcx * px * px; |
643 | < | */ |
1116 | > | if (rnemdFluxType_ == rnemdFullKE) { |
1117 | > | c = 1.0 - kineticTarget_ / (Kcx + Kcy + Kcz + Kcw); |
1118 | > | } else { |
1119 | > | c = 1.0 - kineticTarget_ / Kcw; |
1120 | > | } |
1121 | ||
1122 | < | //scale all three dimensions, let c_x = c_y |
1123 | < | a000 = Kcx + Kcy; |
647 | < | a110 = Kcz; |
648 | < | c0 = targetFlux_ - Kcx - Kcy - Kcz; |
649 | < | a001 = Khx * px * px + Khy * py * py; |
650 | < | a111 = Khz * pz * pz; |
651 | < | b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py)); |
652 | < | b11 = -2.0 * Khz * pz * (1.0 + pz); |
653 | < | c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py) |
654 | < | + Khz * pz * (2.0 + pz) - targetFlux_; |
655 | < | break; |
656 | < | case rnemdPxScale : |
657 | < | c = 1 - targetFlux_ / Pcx; |
658 | < | a000 = Kcy; |
659 | < | a110 = Kcz; |
660 | < | c0 = Kcx * c * c - Kcx - Kcy - Kcz; |
661 | < | a001 = py * py * Khy; |
662 | < | a111 = pz * pz * Khz; |
663 | < | b01 = -2.0 * Khy * py * (1.0 + py); |
664 | < | b11 = -2.0 * Khz * pz * (1.0 + pz); |
665 | < | c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz) |
666 | < | + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0); |
667 | < | break; |
668 | < | case rnemdPyScale : |
669 | < | c = 1 - targetFlux_ / Pcy; |
670 | < | a000 = Kcx; |
671 | < | a110 = Kcz; |
672 | < | c0 = Kcy * c * c - Kcx - Kcy - Kcz; |
673 | < | a001 = px * px * Khx; |
674 | < | a111 = pz * pz * Khz; |
675 | < | b01 = -2.0 * Khx * px * (1.0 + px); |
676 | < | b11 = -2.0 * Khz * pz * (1.0 + pz); |
677 | < | c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz) |
678 | < | + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0); |
679 | < | break; |
680 | < | case rnemdPzScale ://we don't really do this, do we? |
681 | < | c = 1 - targetFlux_ / Pcz; |
682 | < | a000 = Kcx; |
683 | < | a110 = Kcy; |
684 | < | c0 = Kcz * c * c - Kcx - Kcy - Kcz; |
685 | < | a001 = px * px * Khx; |
686 | < | a111 = py * py * Khy; |
687 | < | b01 = -2.0 * Khx * px * (1.0 + px); |
688 | < | b11 = -2.0 * Khy * py * (1.0 + py); |
689 | < | c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py) |
690 | < | + Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0); |
691 | < | break; |
692 | < | default : |
693 | < | break; |
694 | < | } |
1122 | > | if ((c > 0.81) && (c < 1.21)) {//restrict scaling coefficients |
1123 | > | c = sqrt(c); |
1124 | ||
1125 | < | RealType v1 = a000 * a111 - a001 * a110; |
1126 | < | RealType v2 = a000 * b01; |
1127 | < | RealType v3 = a000 * b11; |
1128 | < | RealType v4 = a000 * c1 - a001 * c0; |
1129 | < | RealType v8 = a110 * b01; |
1130 | < | RealType v10 = - b01 * c0; |
1131 | < | |
1132 | < | RealType u0 = v2 * v10 - v4 * v4; |
1133 | < | RealType u1 = -2.0 * v3 * v4; |
1134 | < | RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4; |
1135 | < | RealType u3 = -2.0 * v1 * v3; |
1136 | < | RealType u4 = - v1 * v1; |
1137 | < | //rescale coefficients |
1138 | < | RealType maxAbs = fabs(u0); |
1139 | < | if (maxAbs < fabs(u1)) maxAbs = fabs(u1); |
1140 | < | if (maxAbs < fabs(u2)) maxAbs = fabs(u2); |
1141 | < | if (maxAbs < fabs(u3)) maxAbs = fabs(u3); |
1142 | < | if (maxAbs < fabs(u4)) maxAbs = fabs(u4); |
1143 | < | u0 /= maxAbs; |
1144 | < | u1 /= maxAbs; |
1145 | < | u2 /= maxAbs; |
1146 | < | u3 /= maxAbs; |
1147 | < | u4 /= maxAbs; |
1148 | < | //max_element(start, end) is also available. |
1149 | < | Polynomial<RealType> poly; //same as DoublePolynomial poly; |
1150 | < | poly.setCoefficient(4, u4); |
1151 | < | poly.setCoefficient(3, u3); |
1152 | < | poly.setCoefficient(2, u2); |
1153 | < | poly.setCoefficient(1, u1); |
1154 | < | poly.setCoefficient(0, u0); |
1155 | < | std::vector<RealType> realRoots = poly.FindRealRoots(); |
1156 | < | |
1157 | < | std::vector<RealType>::iterator ri; |
1158 | < | RealType r1, r2, alpha0; |
1159 | < | std::vector<std::pair<RealType,RealType> > rps; |
1160 | < | for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) { |
1161 | < | r2 = *ri; |
1162 | < | //check if FindRealRoots() give the right answer |
1163 | < | if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) { |
1164 | < | sprintf(painCave.errMsg, |
1165 | < | "RNEMD Warning: polynomial solve seems to have an error!"); |
1166 | < | painCave.isFatal = 0; |
1167 | < | simError(); |
1168 | < | failRootCount_++; |
1125 | > | RealType w = 0.0; |
1126 | > | if (rnemdFluxType_ == rnemdFullKE) { |
1127 | > | x = 1.0 + px * (1.0 - c); |
1128 | > | y = 1.0 + py * (1.0 - c); |
1129 | > | z = 1.0 + pz * (1.0 - c); |
1130 | > | /* more complicated way |
1131 | > | w = 1.0 + (Kcw - Kcw * c * c - (c * c * (Kcx + Kcy + Kcz |
1132 | > | + Khx * px * px + Khy * py * py + Khz * pz * pz) |
1133 | > | - 2.0 * c * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py) |
1134 | > | + Khz * pz * (1.0 + pz)) + Khx * px * (2.0 + px) |
1135 | > | + Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz) |
1136 | > | - Kcx - Kcy - Kcz)) / Khw; the following is simpler |
1137 | > | */ |
1138 | > | if ((fabs(x - 1.0) < 0.1) && (fabs(y - 1.0) < 0.1) && |
1139 | > | (fabs(z - 1.0) < 0.1)) { |
1140 | > | w = 1.0 + (kineticTarget_ |
1141 | > | + Khx * (1.0 - x * x) + Khy * (1.0 - y * y) |
1142 | > | + Khz * (1.0 - z * z)) / Khw; |
1143 | > | }//no need to calculate w if x, y or z is out of range |
1144 | > | } else { |
1145 | > | w = 1.0 + kineticTarget_ / Khw; |
1146 | > | } |
1147 | > | if ((w > 0.81) && (w < 1.21)) {//restrict scaling coefficients |
1148 | > | //if w is in the right range, so should be x, y, z. |
1149 | > | vector<StuntDouble*>::iterator sdi; |
1150 | > | Vector3d vel; |
1151 | > | for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) { |
1152 | > | if (rnemdFluxType_ == rnemdFullKE) { |
1153 | > | vel = (*sdi)->getVel() * c; |
1154 | > | (*sdi)->setVel(vel); |
1155 | > | } |
1156 | > | if ((*sdi)->isDirectional()) { |
1157 | > | Vector3d angMom = (*sdi)->getJ() * c; |
1158 | > | (*sdi)->setJ(angMom); |
1159 | > | } |
1160 | > | } |
1161 | > | w = sqrt(w); |
1162 | > | for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) { |
1163 | > | if (rnemdFluxType_ == rnemdFullKE) { |
1164 | > | vel = (*sdi)->getVel(); |
1165 | > | vel.x() *= x; |
1166 | > | vel.y() *= y; |
1167 | > | vel.z() *= z; |
1168 | > | (*sdi)->setVel(vel); |
1169 | > | } |
1170 | > | if ((*sdi)->isDirectional()) { |
1171 | > | Vector3d angMom = (*sdi)->getJ() * w; |
1172 | > | (*sdi)->setJ(angMom); |
1173 | > | } |
1174 | > | } |
1175 | > | successfulScale = true; |
1176 | > | kineticExchange_ += kineticTarget_; |
1177 | > | } |
1178 | } | |
1179 | < | //might not be useful w/o rescaling coefficients |
1180 | < | alpha0 = -c0 - a110 * r2 * r2; |
1181 | < | if (alpha0 >= 0.0) { |
1182 | < | r1 = sqrt(alpha0 / a000); |
1183 | < | if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111)) < 1e-6) |
1184 | < | { rps.push_back(std::make_pair(r1, r2)); } |
1185 | < | if (r1 > 1e-6) { //r1 non-negative |
1186 | < | r1 = -r1; |
1187 | < | if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111)) <1e-6) |
1188 | < | { rps.push_back(std::make_pair(r1, r2)); } |
1189 | < | } |
1179 | > | } else { |
1180 | > | RealType a000, a110, c0, a001, a111, b01, b11, c1; |
1181 | > | switch(rnemdFluxType_) { |
1182 | > | case rnemdKE : |
1183 | > | /* used hotBin coeff's & only scale x & y dimensions |
1184 | > | RealType px = Phx / Pcx; |
1185 | > | RealType py = Phy / Pcy; |
1186 | > | a110 = Khy; |
1187 | > | c0 = - Khx - Khy - kineticTarget_; |
1188 | > | a000 = Khx; |
1189 | > | a111 = Kcy * py * py; |
1190 | > | b11 = -2.0 * Kcy * py * (1.0 + py); |
1191 | > | c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + kineticTarget_; |
1192 | > | b01 = -2.0 * Kcx * px * (1.0 + px); |
1193 | > | a001 = Kcx * px * px; |
1194 | > | */ |
1195 | > | //scale all three dimensions, let c_x = c_y |
1196 | > | a000 = Kcx + Kcy; |
1197 | > | a110 = Kcz; |
1198 | > | c0 = kineticTarget_ - Kcx - Kcy - Kcz; |
1199 | > | a001 = Khx * px * px + Khy * py * py; |
1200 | > | a111 = Khz * pz * pz; |
1201 | > | b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py)); |
1202 | > | b11 = -2.0 * Khz * pz * (1.0 + pz); |
1203 | > | c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py) |
1204 | > | + Khz * pz * (2.0 + pz) - kineticTarget_; |
1205 | > | break; |
1206 | > | case rnemdPx : |
1207 | > | c = 1 - momentumTarget_.x() / Pcx; |
1208 | > | a000 = Kcy; |
1209 | > | a110 = Kcz; |
1210 | > | c0 = Kcx * c * c - Kcx - Kcy - Kcz; |
1211 | > | a001 = py * py * Khy; |
1212 | > | a111 = pz * pz * Khz; |
1213 | > | b01 = -2.0 * Khy * py * (1.0 + py); |
1214 | > | b11 = -2.0 * Khz * pz * (1.0 + pz); |
1215 | > | c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz) |
1216 | > | + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0); |
1217 | > | break; |
1218 | > | case rnemdPy : |
1219 | > | c = 1 - momentumTarget_.y() / Pcy; |
1220 | > | a000 = Kcx; |
1221 | > | a110 = Kcz; |
1222 | > | c0 = Kcy * c * c - Kcx - Kcy - Kcz; |
1223 | > | a001 = px * px * Khx; |
1224 | > | a111 = pz * pz * Khz; |
1225 | > | b01 = -2.0 * Khx * px * (1.0 + px); |
1226 | > | b11 = -2.0 * Khz * pz * (1.0 + pz); |
1227 | > | c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz) |
1228 | > | + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0); |
1229 | > | break; |
1230 | > | case rnemdPz ://we don't really do this, do we? |
1231 | > | c = 1 - momentumTarget_.z() / Pcz; |
1232 | > | a000 = Kcx; |
1233 | > | a110 = Kcy; |
1234 | > | c0 = Kcz * c * c - Kcx - Kcy - Kcz; |
1235 | > | a001 = px * px * Khx; |
1236 | > | a111 = py * py * Khy; |
1237 | > | b01 = -2.0 * Khx * px * (1.0 + px); |
1238 | > | b11 = -2.0 * Khy * py * (1.0 + py); |
1239 | > | c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py) |
1240 | > | + Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0); |
1241 | > | break; |
1242 | > | default : |
1243 | > | break; |
1244 | > | } |
1245 | > | |
1246 | > | RealType v1 = a000 * a111 - a001 * a110; |
1247 | > | RealType v2 = a000 * b01; |
1248 | > | RealType v3 = a000 * b11; |
1249 | > | RealType v4 = a000 * c1 - a001 * c0; |
1250 | > | RealType v8 = a110 * b01; |
1251 | > | RealType v10 = - b01 * c0; |
1252 | > | |
1253 | > | RealType u0 = v2 * v10 - v4 * v4; |
1254 | > | RealType u1 = -2.0 * v3 * v4; |
1255 | > | RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4; |
1256 | > | RealType u3 = -2.0 * v1 * v3; |
1257 | > | RealType u4 = - v1 * v1; |
1258 | > | //rescale coefficients |
1259 | > | RealType maxAbs = fabs(u0); |
1260 | > | if (maxAbs < fabs(u1)) maxAbs = fabs(u1); |
1261 | > | if (maxAbs < fabs(u2)) maxAbs = fabs(u2); |
1262 | > | if (maxAbs < fabs(u3)) maxAbs = fabs(u3); |
1263 | > | if (maxAbs < fabs(u4)) maxAbs = fabs(u4); |
1264 | > | u0 /= maxAbs; |
1265 | > | u1 /= maxAbs; |
1266 | > | u2 /= maxAbs; |
1267 | > | u3 /= maxAbs; |
1268 | > | u4 /= maxAbs; |
1269 | > | //max_element(start, end) is also available. |
1270 | > | Polynomial<RealType> poly; //same as DoublePolynomial poly; |
1271 | > | poly.setCoefficient(4, u4); |
1272 | > | poly.setCoefficient(3, u3); |
1273 | > | poly.setCoefficient(2, u2); |
1274 | > | poly.setCoefficient(1, u1); |
1275 | > | poly.setCoefficient(0, u0); |
1276 | > | vector<RealType> realRoots = poly.FindRealRoots(); |
1277 | > | |
1278 | > | vector<RealType>::iterator ri; |
1279 | > | RealType r1, r2, alpha0; |
1280 | > | vector<pair<RealType,RealType> > rps; |
1281 | > | for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) { |
1282 | > | r2 = *ri; |
1283 | > | //check if FindRealRoots() give the right answer |
1284 | > | if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) { |
1285 | > | sprintf(painCave.errMsg, |
1286 | > | "RNEMD Warning: polynomial solve seems to have an error!"); |
1287 | > | painCave.isFatal = 0; |
1288 | > | simError(); |
1289 | > | failRootCount_++; |
1290 | > | } |
1291 | > | //might not be useful w/o rescaling coefficients |
1292 | > | alpha0 = -c0 - a110 * r2 * r2; |
1293 | > | if (alpha0 >= 0.0) { |
1294 | > | r1 = sqrt(alpha0 / a000); |
1295 | > | if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111)) |
1296 | > | < 1e-6) |
1297 | > | { rps.push_back(make_pair(r1, r2)); } |
1298 | > | if (r1 > 1e-6) { //r1 non-negative |
1299 | > | r1 = -r1; |
1300 | > | if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111)) |
1301 | > | < 1e-6) |
1302 | > | { rps.push_back(make_pair(r1, r2)); } |
1303 | > | } |
1304 | > | } |
1305 | } | |
1306 | < | } |
1307 | < | // Consider combininig together the solving pair part w/ the searching |
1308 | < | // best solution part so that we don't need the pairs vector |
1309 | < | if (!rps.empty()) { |
1310 | < | RealType smallestDiff = HONKING_LARGE_VALUE; |
1311 | < | RealType diff; |
1312 | < | std::pair<RealType,RealType> bestPair = std::make_pair(1.0, 1.0); |
1313 | < | std::vector<std::pair<RealType,RealType> >::iterator rpi; |
1314 | < | for (rpi = rps.begin(); rpi != rps.end(); rpi++) { |
1315 | < | r1 = (*rpi).first; |
1316 | < | r2 = (*rpi).second; |
1317 | < | switch(rnemdType_) { |
1318 | < | case rnemdKineticScale : |
1319 | < | diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2) |
1320 | < | + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2) |
1321 | < | + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2); |
1322 | < | break; |
1323 | < | case rnemdPxScale : |
1324 | < | diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2) |
1325 | < | + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2); |
1326 | < | break; |
1327 | < | case rnemdPyScale : |
1328 | < | diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2) |
1329 | < | + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2); |
1330 | < | break; |
1331 | < | case rnemdPzScale : |
1332 | < | default : |
1333 | < | break; |
1334 | < | } |
1335 | < | if (diff < smallestDiff) { |
1336 | < | smallestDiff = diff; |
1337 | < | bestPair = *rpi; |
1338 | < | } |
1339 | < | } |
1306 | > | // Consider combining together the solving pair part w/ the searching |
1307 | > | // best solution part so that we don't need the pairs vector |
1308 | > | if (!rps.empty()) { |
1309 | > | RealType smallestDiff = HONKING_LARGE_VALUE; |
1310 | > | RealType diff; |
1311 | > | pair<RealType,RealType> bestPair = make_pair(1.0, 1.0); |
1312 | > | vector<pair<RealType,RealType> >::iterator rpi; |
1313 | > | for (rpi = rps.begin(); rpi != rps.end(); rpi++) { |
1314 | > | r1 = (*rpi).first; |
1315 | > | r2 = (*rpi).second; |
1316 | > | switch(rnemdFluxType_) { |
1317 | > | case rnemdKE : |
1318 | > | diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2) |
1319 | > | + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2) |
1320 | > | + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2); |
1321 | > | break; |
1322 | > | case rnemdPx : |
1323 | > | diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2) |
1324 | > | + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2); |
1325 | > | break; |
1326 | > | case rnemdPy : |
1327 | > | diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2) |
1328 | > | + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2); |
1329 | > | break; |
1330 | > | case rnemdPz : |
1331 | > | diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2) |
1332 | > | + fastpow(r1 * r1 / r2 / r2 - Kcy/Kcx, 2); |
1333 | > | default : |
1334 | > | break; |
1335 | > | } |
1336 | > | if (diff < smallestDiff) { |
1337 | > | smallestDiff = diff; |
1338 | > | bestPair = *rpi; |
1339 | > | } |
1340 | > | } |
1341 | #ifdef IS_MPI | |
1342 | < | if (worldRank == 0) { |
1342 | > | if (worldRank == 0) { |
1343 | #endif | |
1344 | < | std::cerr << "we choose r1 = " << bestPair.first |
1345 | < | << " and r2 = " << bestPair.second << "\n"; |
1344 | > | // sprintf(painCave.errMsg, |
1345 | > | // "RNEMD: roots r1= %lf\tr2 = %lf\n", |
1346 | > | // bestPair.first, bestPair.second); |
1347 | > | // painCave.isFatal = 0; |
1348 | > | // painCave.severity = OPENMD_INFO; |
1349 | > | // simError(); |
1350 | #ifdef IS_MPI | |
1351 | < | } |
1351 | > | } |
1352 | #endif | |
1353 | + | |
1354 | + | switch(rnemdFluxType_) { |
1355 | + | case rnemdKE : |
1356 | + | x = bestPair.first; |
1357 | + | y = bestPair.first; |
1358 | + | z = bestPair.second; |
1359 | + | break; |
1360 | + | case rnemdPx : |
1361 | + | x = c; |
1362 | + | y = bestPair.first; |
1363 | + | z = bestPair.second; |
1364 | + | break; |
1365 | + | case rnemdPy : |
1366 | + | x = bestPair.first; |
1367 | + | y = c; |
1368 | + | z = bestPair.second; |
1369 | + | break; |
1370 | + | case rnemdPz : |
1371 | + | x = bestPair.first; |
1372 | + | y = bestPair.second; |
1373 | + | z = c; |
1374 | + | break; |
1375 | + | default : |
1376 | + | break; |
1377 | + | } |
1378 | + | vector<StuntDouble*>::iterator sdi; |
1379 | + | Vector3d vel; |
1380 | + | for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) { |
1381 | + | vel = (*sdi)->getVel(); |
1382 | + | vel.x() *= x; |
1383 | + | vel.y() *= y; |
1384 | + | vel.z() *= z; |
1385 | + | (*sdi)->setVel(vel); |
1386 | + | } |
1387 | + | //convert to hotBin coefficient |
1388 | + | x = 1.0 + px * (1.0 - x); |
1389 | + | y = 1.0 + py * (1.0 - y); |
1390 | + | z = 1.0 + pz * (1.0 - z); |
1391 | + | for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) { |
1392 | + | vel = (*sdi)->getVel(); |
1393 | + | vel.x() *= x; |
1394 | + | vel.y() *= y; |
1395 | + | vel.z() *= z; |
1396 | + | (*sdi)->setVel(vel); |
1397 | + | } |
1398 | + | successfulScale = true; |
1399 | + | switch(rnemdFluxType_) { |
1400 | + | case rnemdKE : |
1401 | + | kineticExchange_ += kineticTarget_; |
1402 | + | break; |
1403 | + | case rnemdPx : |
1404 | + | case rnemdPy : |
1405 | + | case rnemdPz : |
1406 | + | momentumExchange_ += momentumTarget_; |
1407 | + | break; |
1408 | + | default : |
1409 | + | break; |
1410 | + | } |
1411 | + | } |
1412 | + | } |
1413 | + | if (successfulScale != true) { |
1414 | + | sprintf(painCave.errMsg, |
1415 | + | "RNEMD::doNIVS exchange NOT performed - roots that solve\n" |
1416 | + | "\tthe constraint equations may not exist or there may be\n" |
1417 | + | "\tno selected objects in one or both slabs.\n"); |
1418 | + | painCave.isFatal = 0; |
1419 | + | painCave.severity = OPENMD_INFO; |
1420 | + | simError(); |
1421 | + | failTrialCount_++; |
1422 | + | } |
1423 | + | } |
1424 | + | |
1425 | + | void RNEMD::doVSS(SelectionManager& smanA, SelectionManager& smanB) { |
1426 | + | if (!doRNEMD_) return; |
1427 | + | int selei; |
1428 | + | int selej; |
1429 | ||
1430 | < | RealType x, y, z; |
1431 | < | switch(rnemdType_) { |
1432 | < | case rnemdKineticScale : |
1433 | < | x = bestPair.first; |
1434 | < | y = bestPair.first; |
1435 | < | z = bestPair.second; |
1436 | < | break; |
1437 | < | case rnemdPxScale : |
1438 | < | x = c; |
1439 | < | y = bestPair.first; |
1440 | < | z = bestPair.second; |
1441 | < | break; |
1442 | < | case rnemdPyScale : |
1443 | < | x = bestPair.first; |
1444 | < | y = c; |
1445 | < | z = bestPair.second; |
1446 | < | break; |
1447 | < | case rnemdPzScale : |
1448 | < | x = bestPair.first; |
1449 | < | y = bestPair.second; |
1450 | < | z = c; |
1451 | < | break; |
1452 | < | default : |
1453 | < | break; |
1430 | > | Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
1431 | > | RealType time = currentSnap_->getTime(); |
1432 | > | Mat3x3d hmat = currentSnap_->getHmat(); |
1433 | > | |
1434 | > | StuntDouble* sd; |
1435 | > | |
1436 | > | vector<StuntDouble*> hotBin, coldBin; |
1437 | > | |
1438 | > | Vector3d Ph(V3Zero); |
1439 | > | Vector3d Lh(V3Zero); |
1440 | > | RealType Mh = 0.0; |
1441 | > | Mat3x3d Ih(0.0); |
1442 | > | RealType Kh = 0.0; |
1443 | > | Vector3d Pc(V3Zero); |
1444 | > | Vector3d Lc(V3Zero); |
1445 | > | RealType Mc = 0.0; |
1446 | > | Mat3x3d Ic(0.0); |
1447 | > | RealType Kc = 0.0; |
1448 | > | |
1449 | > | for (sd = smanA.beginSelected(selei); sd != NULL; |
1450 | > | sd = smanA.nextSelected(selei)) { |
1451 | > | |
1452 | > | Vector3d pos = sd->getPos(); |
1453 | > | |
1454 | > | // wrap the stuntdouble's position back into the box: |
1455 | > | |
1456 | > | if (usePeriodicBoundaryConditions_) |
1457 | > | currentSnap_->wrapVector(pos); |
1458 | > | |
1459 | > | RealType mass = sd->getMass(); |
1460 | > | Vector3d vel = sd->getVel(); |
1461 | > | Vector3d rPos = sd->getPos() - coordinateOrigin_; |
1462 | > | RealType r2; |
1463 | > | |
1464 | > | hotBin.push_back(sd); |
1465 | > | Ph += mass * vel; |
1466 | > | Mh += mass; |
1467 | > | Kh += mass * vel.lengthSquare(); |
1468 | > | Lh += mass * cross(rPos, vel); |
1469 | > | Ih -= outProduct(rPos, rPos) * mass; |
1470 | > | r2 = rPos.lengthSquare(); |
1471 | > | Ih(0, 0) += mass * r2; |
1472 | > | Ih(1, 1) += mass * r2; |
1473 | > | Ih(2, 2) += mass * r2; |
1474 | > | |
1475 | > | if (rnemdFluxType_ == rnemdFullKE) { |
1476 | > | if (sd->isDirectional()) { |
1477 | > | Vector3d angMom = sd->getJ(); |
1478 | > | Mat3x3d I = sd->getI(); |
1479 | > | if (sd->isLinear()) { |
1480 | > | int i = sd->linearAxis(); |
1481 | > | int j = (i + 1) % 3; |
1482 | > | int k = (i + 2) % 3; |
1483 | > | Kh += angMom[j] * angMom[j] / I(j, j) + |
1484 | > | angMom[k] * angMom[k] / I(k, k); |
1485 | > | } else { |
1486 | > | Kh += angMom[0] * angMom[0] / I(0, 0) + |
1487 | > | angMom[1] * angMom[1] / I(1, 1) + |
1488 | > | angMom[2] * angMom[2] / I(2, 2); |
1489 | > | } |
1490 | } | |
821 | – | std::vector<StuntDouble*>::iterator sdi; |
822 | – | Vector3d vel; |
823 | – | for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) { |
824 | – | vel = (*sdi)->getVel(); |
825 | – | vel.x() *= x; |
826 | – | vel.y() *= y; |
827 | – | vel.z() *= z; |
828 | – | (*sdi)->setVel(vel); |
1491 | } | |
1492 | < | //convert to hotBin coefficient |
1493 | < | x = 1.0 + px * (1.0 - x); |
1494 | < | y = 1.0 + py * (1.0 - y); |
1495 | < | z = 1.0 + pz * (1.0 - z); |
1496 | < | for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) { |
1497 | < | vel = (*sdi)->getVel(); |
1498 | < | vel.x() *= x; |
1499 | < | vel.y() *= y; |
1500 | < | vel.z() *= z; |
1501 | < | (*sdi)->setVel(vel); |
1492 | > | } |
1493 | > | for (sd = smanB.beginSelected(selej); sd != NULL; |
1494 | > | sd = smanB.nextSelected(selej)) { |
1495 | > | |
1496 | > | Vector3d pos = sd->getPos(); |
1497 | > | |
1498 | > | // wrap the stuntdouble's position back into the box: |
1499 | > | |
1500 | > | if (usePeriodicBoundaryConditions_) |
1501 | > | currentSnap_->wrapVector(pos); |
1502 | > | |
1503 | > | RealType mass = sd->getMass(); |
1504 | > | Vector3d vel = sd->getVel(); |
1505 | > | Vector3d rPos = sd->getPos() - coordinateOrigin_; |
1506 | > | RealType r2; |
1507 | > | |
1508 | > | coldBin.push_back(sd); |
1509 | > | Pc += mass * vel; |
1510 | > | Mc += mass; |
1511 | > | Kc += mass * vel.lengthSquare(); |
1512 | > | Lc += mass * cross(rPos, vel); |
1513 | > | Ic -= outProduct(rPos, rPos) * mass; |
1514 | > | r2 = rPos.lengthSquare(); |
1515 | > | Ic(0, 0) += mass * r2; |
1516 | > | Ic(1, 1) += mass * r2; |
1517 | > | Ic(2, 2) += mass * r2; |
1518 | > | |
1519 | > | if (rnemdFluxType_ == rnemdFullKE) { |
1520 | > | if (sd->isDirectional()) { |
1521 | > | Vector3d angMom = sd->getJ(); |
1522 | > | Mat3x3d I = sd->getI(); |
1523 | > | if (sd->isLinear()) { |
1524 | > | int i = sd->linearAxis(); |
1525 | > | int j = (i + 1) % 3; |
1526 | > | int k = (i + 2) % 3; |
1527 | > | Kc += angMom[j] * angMom[j] / I(j, j) + |
1528 | > | angMom[k] * angMom[k] / I(k, k); |
1529 | > | } else { |
1530 | > | Kc += angMom[0] * angMom[0] / I(0, 0) + |
1531 | > | angMom[1] * angMom[1] / I(1, 1) + |
1532 | > | angMom[2] * angMom[2] / I(2, 2); |
1533 | > | } |
1534 | > | } |
1535 | } | |
1536 | < | exchangeSum_ += targetFlux_; |
1537 | < | //we may want to check whether the exchange has been successful |
1538 | < | } else { |
1539 | < | std::cerr << "exchange NOT performed!\n";//MPI incompatible |
1536 | > | } |
1537 | > | |
1538 | > | Kh *= 0.5; |
1539 | > | Kc *= 0.5; |
1540 | > | |
1541 | > | #ifdef IS_MPI |
1542 | > | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Ph[0], 3, MPI::REALTYPE, MPI::SUM); |
1543 | > | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pc[0], 3, MPI::REALTYPE, MPI::SUM); |
1544 | > | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Lh[0], 3, MPI::REALTYPE, MPI::SUM); |
1545 | > | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Lc[0], 3, MPI::REALTYPE, MPI::SUM); |
1546 | > | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mh, 1, MPI::REALTYPE, MPI::SUM); |
1547 | > | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kh, 1, MPI::REALTYPE, MPI::SUM); |
1548 | > | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mc, 1, MPI::REALTYPE, MPI::SUM); |
1549 | > | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kc, 1, MPI::REALTYPE, MPI::SUM); |
1550 | > | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, Ih.getArrayPointer(), 9, |
1551 | > | MPI::REALTYPE, MPI::SUM); |
1552 | > | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, Ic.getArrayPointer(), 9, |
1553 | > | MPI::REALTYPE, MPI::SUM); |
1554 | > | #endif |
1555 | > | |
1556 | > | bool successfulExchange = false; |
1557 | > | if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty |
1558 | > | Vector3d vc = Pc / Mc; |
1559 | > | Vector3d ac = -momentumTarget_ / Mc + vc; |
1560 | > | Vector3d acrec = -momentumTarget_ / Mc; |
1561 | > | |
1562 | > | // We now need the inverse of the inertia tensor to calculate the |
1563 | > | // angular velocity of the cold slab; |
1564 | > | Mat3x3d Ici = Ic.inverse(); |
1565 | > | Vector3d omegac = Ici * Lc; |
1566 | > | Vector3d bc = -(Ici * angularMomentumTarget_) + omegac; |
1567 | > | Vector3d bcrec = bc - omegac; |
1568 | > | |
1569 | > | RealType cNumerator = Kc - kineticTarget_ |
1570 | > | - 0.5 * Mc * ac.lengthSquare() - 0.5 * ( dot(bc, Ic * bc)); |
1571 | > | if (cNumerator > 0.0) { |
1572 | > | |
1573 | > | RealType cDenominator = Kc - 0.5 * Mc * vc.lengthSquare() |
1574 | > | - 0.5*(dot(omegac, Ic * omegac)); |
1575 | > | |
1576 | > | if (cDenominator > 0.0) { |
1577 | > | RealType c = sqrt(cNumerator / cDenominator); |
1578 | > | if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients |
1579 | > | |
1580 | > | Vector3d vh = Ph / Mh; |
1581 | > | Vector3d ah = momentumTarget_ / Mh + vh; |
1582 | > | Vector3d ahrec = momentumTarget_ / Mh; |
1583 | > | |
1584 | > | // We now need the inverse of the inertia tensor to |
1585 | > | // calculate the angular velocity of the hot slab; |
1586 | > | Mat3x3d Ihi = Ih.inverse(); |
1587 | > | Vector3d omegah = Ihi * Lh; |
1588 | > | Vector3d bh = (Ihi * angularMomentumTarget_) + omegah; |
1589 | > | Vector3d bhrec = bh - omegah; |
1590 | > | |
1591 | > | RealType hNumerator = Kh + kineticTarget_ |
1592 | > | - 0.5 * Mh * ah.lengthSquare() - 0.5 * ( dot(bh, Ih * bh));; |
1593 | > | if (hNumerator > 0.0) { |
1594 | > | |
1595 | > | RealType hDenominator = Kh - 0.5 * Mh * vh.lengthSquare() |
1596 | > | - 0.5*(dot(omegah, Ih * omegah)); |
1597 | > | |
1598 | > | if (hDenominator > 0.0) { |
1599 | > | RealType h = sqrt(hNumerator / hDenominator); |
1600 | > | if ((h > 0.9) && (h < 1.1)) { |
1601 | > | |
1602 | > | vector<StuntDouble*>::iterator sdi; |
1603 | > | Vector3d vel; |
1604 | > | Vector3d rPos; |
1605 | > | |
1606 | > | for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) { |
1607 | > | //vel = (*sdi)->getVel(); |
1608 | > | rPos = (*sdi)->getPos() - coordinateOrigin_; |
1609 | > | vel = ((*sdi)->getVel() - vc - cross(omegac, rPos)) * c |
1610 | > | + ac + cross(bc, rPos); |
1611 | > | (*sdi)->setVel(vel); |
1612 | > | if (rnemdFluxType_ == rnemdFullKE) { |
1613 | > | if ((*sdi)->isDirectional()) { |
1614 | > | Vector3d angMom = (*sdi)->getJ() * c; |
1615 | > | (*sdi)->setJ(angMom); |
1616 | > | } |
1617 | > | } |
1618 | > | } |
1619 | > | for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) { |
1620 | > | //vel = (*sdi)->getVel(); |
1621 | > | rPos = (*sdi)->getPos() - coordinateOrigin_; |
1622 | > | vel = ((*sdi)->getVel() - vh - cross(omegah, rPos)) * h |
1623 | > | + ah + cross(bh, rPos); |
1624 | > | cerr << "setting vel to " << vel << "\n"; |
1625 | > | (*sdi)->setVel(vel); |
1626 | > | if (rnemdFluxType_ == rnemdFullKE) { |
1627 | > | if ((*sdi)->isDirectional()) { |
1628 | > | Vector3d angMom = (*sdi)->getJ() * h; |
1629 | > | (*sdi)->setJ(angMom); |
1630 | > | } |
1631 | > | } |
1632 | > | } |
1633 | > | successfulExchange = true; |
1634 | > | kineticExchange_ += kineticTarget_; |
1635 | > | momentumExchange_ += momentumTarget_; |
1636 | > | angularMomentumExchange_ += angularMomentumTarget_; |
1637 | > | } |
1638 | > | } |
1639 | > | } |
1640 | > | } |
1641 | > | } |
1642 | > | } |
1643 | > | } |
1644 | > | if (successfulExchange != true) { |
1645 | > | sprintf(painCave.errMsg, |
1646 | > | "RNEMD::doVSS exchange NOT performed - roots that solve\n" |
1647 | > | "\tthe constraint equations may not exist or there may be\n" |
1648 | > | "\tno selected objects in one or both slabs.\n"); |
1649 | > | painCave.isFatal = 0; |
1650 | > | painCave.severity = OPENMD_INFO; |
1651 | > | simError(); |
1652 | failTrialCount_++; | |
1653 | } | |
847 | – | |
1654 | } | |
1655 | ||
1656 | + | RealType RNEMD::getDividingArea() { |
1657 | + | |
1658 | + | if (hasDividingArea_) return dividingArea_; |
1659 | + | |
1660 | + | RealType areaA, areaB; |
1661 | + | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
1662 | + | |
1663 | + | if (hasSelectionA_) { |
1664 | + | int isd; |
1665 | + | StuntDouble* sd; |
1666 | + | vector<StuntDouble*> aSites; |
1667 | + | ConvexHull* surfaceMeshA = new ConvexHull(); |
1668 | + | seleManA_.setSelectionSet(evaluatorA_.evaluate()); |
1669 | + | for (sd = seleManA_.beginSelected(isd); sd != NULL; |
1670 | + | sd = seleManA_.nextSelected(isd)) { |
1671 | + | aSites.push_back(sd); |
1672 | + | } |
1673 | + | surfaceMeshA->computeHull(aSites); |
1674 | + | areaA = surfaceMeshA->getArea(); |
1675 | + | } else { |
1676 | + | if (usePeriodicBoundaryConditions_) { |
1677 | + | // in periodic boundaries, the surface area is twice the x-y |
1678 | + | // area of the current box: |
1679 | + | areaA = 2.0 * snap->getXYarea(); |
1680 | + | } else { |
1681 | + | // in non-periodic simulations, without explicitly setting |
1682 | + | // selections, the sphere radius sets the surface area of the |
1683 | + | // dividing surface: |
1684 | + | areaA = 4.0 * M_PI * pow(sphereARadius_, 2); |
1685 | + | } |
1686 | + | } |
1687 | + | |
1688 | + | if (hasSelectionB_) { |
1689 | + | int isd; |
1690 | + | StuntDouble* sd; |
1691 | + | vector<StuntDouble*> bSites; |
1692 | + | ConvexHull* surfaceMeshB = new ConvexHull(); |
1693 | + | seleManB_.setSelectionSet(evaluatorB_.evaluate()); |
1694 | + | for (sd = seleManB_.beginSelected(isd); sd != NULL; |
1695 | + | sd = seleManB_.nextSelected(isd)) { |
1696 | + | bSites.push_back(sd); |
1697 | + | } |
1698 | + | surfaceMeshB->computeHull(bSites); |
1699 | + | areaB = surfaceMeshB->getArea(); |
1700 | + | } else { |
1701 | + | if (usePeriodicBoundaryConditions_) { |
1702 | + | // in periodic boundaries, the surface area is twice the x-y |
1703 | + | // area of the current box: |
1704 | + | areaB = 2.0 * snap->getXYarea(); |
1705 | + | } else { |
1706 | + | // in non-periodic simulations, without explicitly setting |
1707 | + | // selections, but if a sphereBradius has been set, just use that: |
1708 | + | areaB = 4.0 * M_PI * pow(sphereBRadius_, 2); |
1709 | + | } |
1710 | + | } |
1711 | + | |
1712 | + | dividingArea_ = min(areaA, areaB); |
1713 | + | hasDividingArea_ = true; |
1714 | + | return dividingArea_; |
1715 | + | } |
1716 | + | |
1717 | void RNEMD::doRNEMD() { | |
1718 | + | if (!doRNEMD_) return; |
1719 | + | trialCount_++; |
1720 | ||
1721 | < | switch(rnemdType_) { |
1722 | < | case rnemdKineticScale : |
1723 | < | case rnemdPxScale : |
1724 | < | case rnemdPyScale : |
1725 | < | case rnemdPzScale : |
1726 | < | doScale(); |
1721 | > | cerr << "trialCount = " << trialCount_ << "\n"; |
1722 | > | // object evaluator: |
1723 | > | evaluator_.loadScriptString(rnemdObjectSelection_); |
1724 | > | seleMan_.setSelectionSet(evaluator_.evaluate()); |
1725 | > | |
1726 | > | evaluatorA_.loadScriptString(selectionA_); |
1727 | > | evaluatorB_.loadScriptString(selectionB_); |
1728 | > | |
1729 | > | seleManA_.setSelectionSet(evaluatorA_.evaluate()); |
1730 | > | seleManB_.setSelectionSet(evaluatorB_.evaluate()); |
1731 | > | |
1732 | > | commonA_ = seleManA_ & seleMan_; |
1733 | > | commonB_ = seleManB_ & seleMan_; |
1734 | > | |
1735 | > | // Target exchange quantities (in each exchange) = dividingArea * dt * flux |
1736 | > | // dt = exchange time interval |
1737 | > | // flux = target flux |
1738 | > | // dividingArea = smallest dividing surface between the two regions |
1739 | > | |
1740 | > | hasDividingArea_ = false; |
1741 | > | RealType area = getDividingArea(); |
1742 | > | |
1743 | > | kineticTarget_ = kineticFlux_ * exchangeTime_ * area; |
1744 | > | momentumTarget_ = momentumFluxVector_ * exchangeTime_ * area; |
1745 | > | angularMomentumTarget_ = angularMomentumFluxVector_ * exchangeTime_ * area; |
1746 | > | |
1747 | > | switch(rnemdMethod_) { |
1748 | > | case rnemdSwap: |
1749 | > | doSwap(commonA_, commonB_); |
1750 | break; | |
1751 | < | case rnemdKineticSwap : |
1752 | < | case rnemdPx : |
861 | < | case rnemdPy : |
862 | < | case rnemdPz : |
863 | < | doSwap(); |
1751 | > | case rnemdNIVS: |
1752 | > | doNIVS(commonA_, commonB_); |
1753 | break; | |
1754 | < | case rnemdUnknown : |
1754 | > | case rnemdVSS: |
1755 | > | doVSS(commonA_, commonB_); |
1756 | > | break; |
1757 | > | case rnemdUnkownMethod: |
1758 | default : | |
1759 | break; | |
1760 | } | |
1761 | } | |
1762 | ||
1763 | void RNEMD::collectData() { | |
1764 | < | |
1764 | > | if (!doRNEMD_) return; |
1765 | Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); | |
1766 | + | |
1767 | + | cerr << "collecting data\n"; |
1768 | + | // collectData can be called more frequently than the doRNEMD, so use the |
1769 | + | // computed area from the last exchange time: |
1770 | + | RealType area = getDividingArea(); |
1771 | + | areaAccumulator_->add(area); |
1772 | Mat3x3d hmat = currentSnap_->getHmat(); | |
875 | – | |
1773 | seleMan_.setSelectionSet(evaluator_.evaluate()); | |
1774 | ||
1775 | < | int selei; |
1775 | > | int selei(0); |
1776 | StuntDouble* sd; | |
1777 | < | int idx; |
1777 | > | int binNo; |
1778 | ||
1779 | + | vector<RealType> binMass(nBins_, 0.0); |
1780 | + | vector<RealType> binPx(nBins_, 0.0); |
1781 | + | vector<RealType> binPy(nBins_, 0.0); |
1782 | + | vector<RealType> binPz(nBins_, 0.0); |
1783 | + | vector<RealType> binOmegax(nBins_, 0.0); |
1784 | + | vector<RealType> binOmegay(nBins_, 0.0); |
1785 | + | vector<RealType> binOmegaz(nBins_, 0.0); |
1786 | + | vector<RealType> binKE(nBins_, 0.0); |
1787 | + | vector<int> binDOF(nBins_, 0); |
1788 | + | vector<int> binCount(nBins_, 0); |
1789 | + | |
1790 | + | // alternative approach, track all molecules instead of only those |
1791 | + | // selected for scaling/swapping: |
1792 | + | /* |
1793 | + | SimInfo::MoleculeIterator miter; |
1794 | + | vector<StuntDouble*>::iterator iiter; |
1795 | + | Molecule* mol; |
1796 | + | StuntDouble* sd; |
1797 | + | for (mol = info_->beginMolecule(miter); mol != NULL; |
1798 | + | mol = info_->nextMolecule(miter)) |
1799 | + | sd is essentially sd |
1800 | + | for (sd = mol->beginIntegrableObject(iiter); |
1801 | + | sd != NULL; |
1802 | + | sd = mol->nextIntegrableObject(iiter)) |
1803 | + | */ |
1804 | + | |
1805 | for (sd = seleMan_.beginSelected(selei); sd != NULL; | |
1806 | < | sd = seleMan_.nextSelected(selei)) { |
1807 | < | |
885 | < | idx = sd->getLocalIndex(); |
886 | < | |
1806 | > | sd = seleMan_.nextSelected(selei)) { |
1807 | > | |
1808 | Vector3d pos = sd->getPos(); | |
1809 | ||
1810 | // wrap the stuntdouble's position back into the box: | |
1811 | ||
1812 | < | if (usePeriodicBoundaryConditions_) |
1812 | > | if (usePeriodicBoundaryConditions_) { |
1813 | currentSnap_->wrapVector(pos); | |
1814 | < | |
1815 | < | // which bin is this stuntdouble in? |
1816 | < | // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)] |
1817 | < | |
1818 | < | int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_; |
1814 | > | // which bin is this stuntdouble in? |
1815 | > | // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)] |
1816 | > | // Shift molecules by half a box to have bins start at 0 |
1817 | > | // The modulo operator is used to wrap the case when we are |
1818 | > | // beyond the end of the bins back to the beginning. |
1819 | > | binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_; |
1820 | > | } else { |
1821 | > | Vector3d rPos = pos - coordinateOrigin_; |
1822 | > | binNo = int(rPos.length() / binWidth_); |
1823 | > | } |
1824 | ||
899 | – | if (rnemdLogWidth_ == midBin_ + 1) |
900 | – | if (binNo > midBin_) |
901 | – | binNo = nBins_ - binNo; |
902 | – | |
1825 | RealType mass = sd->getMass(); | |
1826 | Vector3d vel = sd->getVel(); | |
1827 | < | RealType value; |
1828 | < | RealType xVal, yVal, zVal; |
1827 | > | Vector3d rPos = sd->getPos() - coordinateOrigin_; |
1828 | > | Vector3d aVel = cross(rPos, vel); |
1829 | > | |
1830 | > | if (binNo >= 0 && binNo < nBins_) { |
1831 | > | binCount[binNo]++; |
1832 | > | binMass[binNo] += mass; |
1833 | > | binPx[binNo] += mass*vel.x(); |
1834 | > | binPy[binNo] += mass*vel.y(); |
1835 | > | binPz[binNo] += mass*vel.z(); |
1836 | > | binOmegax[binNo] += aVel.x(); |
1837 | > | binOmegay[binNo] += aVel.y(); |
1838 | > | binOmegaz[binNo] += aVel.z(); |
1839 | > | binKE[binNo] += 0.5 * (mass * vel.lengthSquare()); |
1840 | > | binDOF[binNo] += 3; |
1841 | > | |
1842 | > | if (sd->isDirectional()) { |
1843 | > | Vector3d angMom = sd->getJ(); |
1844 | > | Mat3x3d I = sd->getI(); |
1845 | > | if (sd->isLinear()) { |
1846 | > | int i = sd->linearAxis(); |
1847 | > | int j = (i + 1) % 3; |
1848 | > | int k = (i + 2) % 3; |
1849 | > | binKE[binNo] += 0.5 * (angMom[j] * angMom[j] / I(j, j) + |
1850 | > | angMom[k] * angMom[k] / I(k, k)); |
1851 | > | binDOF[binNo] += 2; |
1852 | > | } else { |
1853 | > | binKE[binNo] += 0.5 * (angMom[0] * angMom[0] / I(0, 0) + |
1854 | > | angMom[1] * angMom[1] / I(1, 1) + |
1855 | > | angMom[2] * angMom[2] / I(2, 2)); |
1856 | > | binDOF[binNo] += 3; |
1857 | > | } |
1858 | > | } |
1859 | > | } |
1860 | > | } |
1861 | > | |
1862 | > | #ifdef IS_MPI |
1863 | > | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binCount[0], |
1864 | > | nBins_, MPI::INT, MPI::SUM); |
1865 | > | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binMass[0], |
1866 | > | nBins_, MPI::REALTYPE, MPI::SUM); |
1867 | > | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPx[0], |
1868 | > | nBins_, MPI::REALTYPE, MPI::SUM); |
1869 | > | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPy[0], |
1870 | > | nBins_, MPI::REALTYPE, MPI::SUM); |
1871 | > | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPz[0], |
1872 | > | nBins_, MPI::REALTYPE, MPI::SUM); |
1873 | > | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binOmegax[0], |
1874 | > | nBins_, MPI::REALTYPE, MPI::SUM); |
1875 | > | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binOmegay[0], |
1876 | > | nBins_, MPI::REALTYPE, MPI::SUM); |
1877 | > | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binOmegaz[0], |
1878 | > | nBins_, MPI::REALTYPE, MPI::SUM); |
1879 | > | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binKE[0], |
1880 | > | nBins_, MPI::REALTYPE, MPI::SUM); |
1881 | > | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binDOF[0], |
1882 | > | nBins_, MPI::INT, MPI::SUM); |
1883 | > | #endif |
1884 | ||
1885 | < | switch(rnemdType_) { |
1886 | < | case rnemdKineticSwap : |
1887 | < | case rnemdKineticScale : |
1888 | < | |
1889 | < | value = mass * (vel[0]*vel[0] + vel[1]*vel[1] + |
1890 | < | vel[2]*vel[2]); |
1891 | < | |
1892 | < | valueCount_[binNo] += 3; |
1893 | < | if (sd->isDirectional()) { |
1894 | < | Vector3d angMom = sd->getJ(); |
1895 | < | Mat3x3d I = sd->getI(); |
1896 | < | |
1897 | < | if (sd->isLinear()) { |
1898 | < | int i = sd->linearAxis(); |
1899 | < | int j = (i + 1) % 3; |
1900 | < | int k = (i + 2) % 3; |
1901 | < | value += angMom[j] * angMom[j] / I(j, j) + |
1902 | < | angMom[k] * angMom[k] / I(k, k); |
1885 | > | Vector3d vel; |
1886 | > | Vector3d aVel; |
1887 | > | RealType den; |
1888 | > | RealType temp; |
1889 | > | RealType z; |
1890 | > | RealType r; |
1891 | > | for (int i = 0; i < nBins_; i++) { |
1892 | > | if (usePeriodicBoundaryConditions_) { |
1893 | > | z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat(2,2); |
1894 | > | den = binMass[i] * nBins_ * PhysicalConstants::densityConvert |
1895 | > | / currentSnap_->getVolume() ; |
1896 | > | } else { |
1897 | > | r = (((RealType)i + 0.5) * binWidth_); |
1898 | > | RealType rinner = (RealType)i * binWidth_; |
1899 | > | RealType router = (RealType)(i+1) * binWidth_; |
1900 | > | den = binMass[i] * 3.0 * PhysicalConstants::densityConvert |
1901 | > | / (4.0 * M_PI * (pow(router,3) - pow(rinner,3))); |
1902 | > | } |
1903 | > | vel.x() = binPx[i] / binMass[i]; |
1904 | > | vel.y() = binPy[i] / binMass[i]; |
1905 | > | vel.z() = binPz[i] / binMass[i]; |
1906 | > | aVel.x() = binOmegax[i]; |
1907 | > | aVel.y() = binOmegay[i]; |
1908 | > | aVel.z() = binOmegaz[i]; |
1909 | ||
1910 | < | valueCount_[binNo] +=2; |
1911 | < | |
1912 | < | } else { |
1913 | < | value += angMom[0]*angMom[0]/I(0, 0) |
1914 | < | + angMom[1]*angMom[1]/I(1, 1) |
1915 | < | + angMom[2]*angMom[2]/I(2, 2); |
1916 | < | valueCount_[binNo] +=3; |
1917 | < | } |
1918 | < | } |
1919 | < | value = value / PhysicalConstants::energyConvert / PhysicalConstants::kb; |
1920 | < | |
1921 | < | break; |
1922 | < | case rnemdPx : |
1923 | < | case rnemdPxScale : |
1924 | < | value = mass * vel[0]; |
1925 | < | valueCount_[binNo]++; |
1926 | < | xVal = mass * vel.x() * vel.x() / PhysicalConstants::energyConvert |
1927 | < | / PhysicalConstants::kb; |
1928 | < | yVal = mass * vel.y() * vel.y() / PhysicalConstants::energyConvert |
1929 | < | / PhysicalConstants::kb; |
1930 | < | zVal = mass * vel.z() * vel.z() / PhysicalConstants::energyConvert |
1931 | < | / PhysicalConstants::kb; |
1932 | < | xTempHist_[binNo] += xVal; |
1933 | < | yTempHist_[binNo] += yVal; |
1934 | < | zTempHist_[binNo] += zVal; |
1935 | < | break; |
1936 | < | case rnemdPy : |
1937 | < | case rnemdPyScale : |
1938 | < | value = mass * vel[1]; |
956 | < | valueCount_[binNo]++; |
957 | < | break; |
958 | < | case rnemdPz : |
959 | < | case rnemdPzScale : |
960 | < | value = mass * vel[2]; |
961 | < | valueCount_[binNo]++; |
962 | < | break; |
963 | < | case rnemdUnknown : |
964 | < | default : |
965 | < | break; |
1910 | > | if (binCount[i] > 0) { |
1911 | > | // only add values if there are things to add |
1912 | > | temp = 2.0 * binKE[i] / (binDOF[i] * PhysicalConstants::kb * |
1913 | > | PhysicalConstants::energyConvert); |
1914 | > | |
1915 | > | for (unsigned int j = 0; j < outputMask_.size(); ++j) { |
1916 | > | if(outputMask_[j]) { |
1917 | > | switch(j) { |
1918 | > | case Z: |
1919 | > | dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(z); |
1920 | > | break; |
1921 | > | case R: |
1922 | > | dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(r); |
1923 | > | break; |
1924 | > | case TEMPERATURE: |
1925 | > | dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(temp); |
1926 | > | break; |
1927 | > | case VELOCITY: |
1928 | > | dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(vel); |
1929 | > | break; |
1930 | > | case ANGULARVELOCITY: |
1931 | > | dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(aVel); |
1932 | > | break; |
1933 | > | case DENSITY: |
1934 | > | dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(den); |
1935 | > | break; |
1936 | > | } |
1937 | > | } |
1938 | > | } |
1939 | } | |
967 | – | valueHist_[binNo] += value; |
1940 | } | |
969 | – | |
1941 | } | |
1942 | ||
1943 | void RNEMD::getStarted() { | |
1944 | < | Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
1945 | < | Stats& stat = currentSnap_->statData; |
1946 | < | stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_; |
1944 | > | if (!doRNEMD_) return; |
1945 | > | hasDividingArea_ = false; |
1946 | > | collectData(); |
1947 | > | writeOutputFile(); |
1948 | } | |
1949 | ||
1950 | < | void RNEMD::getStatus() { |
1951 | < | |
1952 | < | Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
1953 | < | Stats& stat = currentSnap_->statData; |
1954 | < | RealType time = currentSnap_->getTime(); |
1955 | < | |
1956 | < | stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_; |
1957 | < | //or to be more meaningful, define another item as exchangeSum_ / time |
1958 | < | int j; |
1959 | < | |
1950 | > | void RNEMD::parseOutputFileFormat(const std::string& format) { |
1951 | > | if (!doRNEMD_) return; |
1952 | > | StringTokenizer tokenizer(format, " ,;|\t\n\r"); |
1953 | > | |
1954 | > | while(tokenizer.hasMoreTokens()) { |
1955 | > | std::string token(tokenizer.nextToken()); |
1956 | > | toUpper(token); |
1957 | > | OutputMapType::iterator i = outputMap_.find(token); |
1958 | > | if (i != outputMap_.end()) { |
1959 | > | outputMask_.set(i->second); |
1960 | > | } else { |
1961 | > | sprintf( painCave.errMsg, |
1962 | > | "RNEMD::parseOutputFileFormat: %s is not a recognized\n" |
1963 | > | "\toutputFileFormat keyword.\n", token.c_str() ); |
1964 | > | painCave.isFatal = 0; |
1965 | > | painCave.severity = OPENMD_ERROR; |
1966 | > | simError(); |
1967 | > | } |
1968 | > | } |
1969 | > | } |
1970 | > | |
1971 | > | void RNEMD::writeOutputFile() { |
1972 | > | if (!doRNEMD_) return; |
1973 | > | |
1974 | #ifdef IS_MPI | |
989 | – | |
990 | – | // all processors have the same number of bins, and STL vectors pack their |
991 | – | // arrays, so in theory, this should be safe: |
992 | – | |
993 | – | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &valueHist_[0], |
994 | – | rnemdLogWidth_, MPI::REALTYPE, MPI::SUM); |
995 | – | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &valueCount_[0], |
996 | – | rnemdLogWidth_, MPI::INT, MPI::SUM); |
997 | – | if (rnemdType_ == rnemdPx || rnemdType_ == rnemdPxScale) { |
998 | – | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &xTempHist_[0], |
999 | – | rnemdLogWidth_, MPI::REALTYPE, MPI::SUM); |
1000 | – | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &yTempHist_[0], |
1001 | – | rnemdLogWidth_, MPI::REALTYPE, MPI::SUM); |
1002 | – | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &zTempHist_[0], |
1003 | – | rnemdLogWidth_, MPI::REALTYPE, MPI::SUM); |
1004 | – | } |
1975 | // If we're the root node, should we print out the results | |
1976 | int worldRank = MPI::COMM_WORLD.Get_rank(); | |
1977 | if (worldRank == 0) { | |
1978 | #endif | |
1979 | < | rnemdLog_ << time; |
1980 | < | for (j = 0; j < rnemdLogWidth_; j++) { |
1981 | < | rnemdLog_ << "\t" << valueHist_[j] / (RealType)valueCount_[j]; |
1979 | > | rnemdFile_.open(rnemdFileName_.c_str(), std::ios::out | std::ios::trunc ); |
1980 | > | |
1981 | > | if( !rnemdFile_ ){ |
1982 | > | sprintf( painCave.errMsg, |
1983 | > | "Could not open \"%s\" for RNEMD output.\n", |
1984 | > | rnemdFileName_.c_str()); |
1985 | > | painCave.isFatal = 1; |
1986 | > | simError(); |
1987 | } | |
1988 | < | rnemdLog_ << "\n"; |
1989 | < | if (rnemdType_ == rnemdPx || rnemdType_ == rnemdPxScale ) { |
1990 | < | xTempLog_ << time; |
1991 | < | for (j = 0; j < rnemdLogWidth_; j++) { |
1992 | < | xTempLog_ << "\t" << xTempHist_[j] / (RealType)valueCount_[j]; |
1988 | > | |
1989 | > | Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
1990 | > | |
1991 | > | RealType time = currentSnap_->getTime(); |
1992 | > | RealType avgArea; |
1993 | > | areaAccumulator_->getAverage(avgArea); |
1994 | > | RealType Jz = kineticExchange_ / (time * avgArea) |
1995 | > | / PhysicalConstants::energyConvert; |
1996 | > | Vector3d JzP = momentumExchange_ / (time * avgArea); |
1997 | > | Vector3d JzL = angularMomentumExchange_ / (time * avgArea); |
1998 | > | |
1999 | > | rnemdFile_ << "#######################################################\n"; |
2000 | > | rnemdFile_ << "# RNEMD {\n"; |
2001 | > | |
2002 | > | map<string, RNEMDMethod>::iterator mi; |
2003 | > | for(mi = stringToMethod_.begin(); mi != stringToMethod_.end(); ++mi) { |
2004 | > | if ( (*mi).second == rnemdMethod_) |
2005 | > | rnemdFile_ << "# exchangeMethod = \"" << (*mi).first << "\";\n"; |
2006 | > | } |
2007 | > | map<string, RNEMDFluxType>::iterator fi; |
2008 | > | for(fi = stringToFluxType_.begin(); fi != stringToFluxType_.end(); ++fi) { |
2009 | > | if ( (*fi).second == rnemdFluxType_) |
2010 | > | rnemdFile_ << "# fluxType = \"" << (*fi).first << "\";\n"; |
2011 | > | } |
2012 | > | |
2013 | > | rnemdFile_ << "# exchangeTime = " << exchangeTime_ << ";\n"; |
2014 | > | |
2015 | > | rnemdFile_ << "# objectSelection = \"" |
2016 | > | << rnemdObjectSelection_ << "\";\n"; |
2017 | > | rnemdFile_ << "# selectionA = \"" << selectionA_ << "\";\n"; |
2018 | > | rnemdFile_ << "# selectionB = \"" << selectionB_ << "\";\n"; |
2019 | > | rnemdFile_ << "# }\n"; |
2020 | > | rnemdFile_ << "#######################################################\n"; |
2021 | > | rnemdFile_ << "# RNEMD report:\n"; |
2022 | > | rnemdFile_ << "# running time = " << time << " fs\n"; |
2023 | > | rnemdFile_ << "# Target flux:\n"; |
2024 | > | rnemdFile_ << "# kinetic = " |
2025 | > | << kineticFlux_ / PhysicalConstants::energyConvert |
2026 | > | << " (kcal/mol/A^2/fs)\n"; |
2027 | > | rnemdFile_ << "# momentum = " << momentumFluxVector_ |
2028 | > | << " (amu/A/fs^2)\n"; |
2029 | > | rnemdFile_ << "# angular momentum = " << angularMomentumFluxVector_ |
2030 | > | << " (amu/A^2/fs^2)\n"; |
2031 | > | rnemdFile_ << "# Target one-time exchanges:\n"; |
2032 | > | rnemdFile_ << "# kinetic = " |
2033 | > | << kineticTarget_ / PhysicalConstants::energyConvert |
2034 | > | << " (kcal/mol)\n"; |
2035 | > | rnemdFile_ << "# momentum = " << momentumTarget_ |
2036 | > | << " (amu*A/fs)\n"; |
2037 | > | rnemdFile_ << "# angular momentum = " << angularMomentumTarget_ |
2038 | > | << " (amu*A^2/fs)\n"; |
2039 | > | rnemdFile_ << "# Actual exchange totals:\n"; |
2040 | > | rnemdFile_ << "# kinetic = " |
2041 | > | << kineticExchange_ / PhysicalConstants::energyConvert |
2042 | > | << " (kcal/mol)\n"; |
2043 | > | rnemdFile_ << "# momentum = " << momentumExchange_ |
2044 | > | << " (amu*A/fs)\n"; |
2045 | > | rnemdFile_ << "# angular momentum = " << angularMomentumExchange_ |
2046 | > | << " (amu*A^2/fs)\n"; |
2047 | > | rnemdFile_ << "# Actual flux:\n"; |
2048 | > | rnemdFile_ << "# kinetic = " << Jz |
2049 | > | << " (kcal/mol/A^2/fs)\n"; |
2050 | > | rnemdFile_ << "# momentum = " << JzP |
2051 | > | << " (amu/A/fs^2)\n"; |
2052 | > | rnemdFile_ << "# angular momentum = " << JzL |
2053 | > | << " (amu/A^2/fs^2)\n"; |
2054 | > | rnemdFile_ << "# Exchange statistics:\n"; |
2055 | > | rnemdFile_ << "# attempted = " << trialCount_ << "\n"; |
2056 | > | rnemdFile_ << "# failed = " << failTrialCount_ << "\n"; |
2057 | > | if (rnemdMethod_ == rnemdNIVS) { |
2058 | > | rnemdFile_ << "# NIVS root-check errors = " |
2059 | > | << failRootCount_ << "\n"; |
2060 | > | } |
2061 | > | rnemdFile_ << "#######################################################\n"; |
2062 | > | |
2063 | > | |
2064 | > | |
2065 | > | //write title |
2066 | > | rnemdFile_ << "#"; |
2067 | > | for (unsigned int i = 0; i < outputMask_.size(); ++i) { |
2068 | > | if (outputMask_[i]) { |
2069 | > | rnemdFile_ << "\t" << data_[i].title << |
2070 | > | "(" << data_[i].units << ")"; |
2071 | > | // add some extra tabs for column alignment |
2072 | > | if (data_[i].dataType == "Vector3d") rnemdFile_ << "\t\t"; |
2073 | } | |
2074 | < | xTempLog_ << "\n"; |
2075 | < | yTempLog_ << time; |
2076 | < | for (j = 0; j < rnemdLogWidth_; j++) { |
2077 | < | yTempLog_ << "\t" << yTempHist_[j] / (RealType)valueCount_[j]; |
2074 | > | } |
2075 | > | rnemdFile_ << std::endl; |
2076 | > | |
2077 | > | rnemdFile_.precision(8); |
2078 | > | |
2079 | > | for (int j = 0; j < nBins_; j++) { |
2080 | > | |
2081 | > | for (unsigned int i = 0; i < outputMask_.size(); ++i) { |
2082 | > | if (outputMask_[i]) { |
2083 | > | if (data_[i].dataType == "RealType") |
2084 | > | writeReal(i,j); |
2085 | > | else if (data_[i].dataType == "Vector3d") |
2086 | > | writeVector(i,j); |
2087 | > | else { |
2088 | > | sprintf( painCave.errMsg, |
2089 | > | "RNEMD found an unknown data type for: %s ", |
2090 | > | data_[i].title.c_str()); |
2091 | > | painCave.isFatal = 1; |
2092 | > | simError(); |
2093 | > | } |
2094 | > | } |
2095 | } | |
2096 | < | yTempLog_ << "\n"; |
2097 | < | zTempLog_ << time; |
2098 | < | for (j = 0; j < rnemdLogWidth_; j++) { |
2099 | < | zTempLog_ << "\t" << zTempHist_[j] / (RealType)valueCount_[j]; |
2096 | > | rnemdFile_ << std::endl; |
2097 | > | |
2098 | > | } |
2099 | > | |
2100 | > | rnemdFile_ << "#######################################################\n"; |
2101 | > | rnemdFile_ << "# Standard Deviations in those quantities follow:\n"; |
2102 | > | rnemdFile_ << "#######################################################\n"; |
2103 | > | |
2104 | > | |
2105 | > | for (int j = 0; j < nBins_; j++) { |
2106 | > | rnemdFile_ << "#"; |
2107 | > | for (unsigned int i = 0; i < outputMask_.size(); ++i) { |
2108 | > | if (outputMask_[i]) { |
2109 | > | if (data_[i].dataType == "RealType") |
2110 | > | writeRealStdDev(i,j); |
2111 | > | else if (data_[i].dataType == "Vector3d") |
2112 | > | writeVectorStdDev(i,j); |
2113 | > | else { |
2114 | > | sprintf( painCave.errMsg, |
2115 | > | "RNEMD found an unknown data type for: %s ", |
2116 | > | data_[i].title.c_str()); |
2117 | > | painCave.isFatal = 1; |
2118 | > | simError(); |
2119 | > | } |
2120 | > | } |
2121 | } | |
2122 | < | zTempLog_ << "\n"; |
2123 | < | } |
2122 | > | rnemdFile_ << std::endl; |
2123 | > | |
2124 | > | } |
2125 | > | |
2126 | > | rnemdFile_.flush(); |
2127 | > | rnemdFile_.close(); |
2128 | > | |
2129 | #ifdef IS_MPI | |
2130 | } | |
2131 | #endif | |
2132 | < | for (j = 0; j < rnemdLogWidth_; j++) { |
2133 | < | valueCount_[j] = 0; |
2134 | < | valueHist_[j] = 0.0; |
2132 | > | |
2133 | > | } |
2134 | > | |
2135 | > | void RNEMD::writeReal(int index, unsigned int bin) { |
2136 | > | if (!doRNEMD_) return; |
2137 | > | assert(index >=0 && index < ENDINDEX); |
2138 | > | assert(int(bin) < nBins_); |
2139 | > | RealType s; |
2140 | > | int count; |
2141 | > | |
2142 | > | count = data_[index].accumulator[bin]->count(); |
2143 | > | if (count == 0) return; |
2144 | > | |
2145 | > | dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getAverage(s); |
2146 | > | |
2147 | > | if (! isinf(s) && ! isnan(s)) { |
2148 | > | rnemdFile_ << "\t" << s; |
2149 | > | } else{ |
2150 | > | sprintf( painCave.errMsg, |
2151 | > | "RNEMD detected a numerical error writing: %s for bin %d", |
2152 | > | data_[index].title.c_str(), bin); |
2153 | > | painCave.isFatal = 1; |
2154 | > | simError(); |
2155 | > | } |
2156 | > | } |
2157 | > | |
2158 | > | void RNEMD::writeVector(int index, unsigned int bin) { |
2159 | > | if (!doRNEMD_) return; |
2160 | > | assert(index >=0 && index < ENDINDEX); |
2161 | > | assert(int(bin) < nBins_); |
2162 | > | Vector3d s; |
2163 | > | int count; |
2164 | > | |
2165 | > | count = data_[index].accumulator[bin]->count(); |
2166 | > | |
2167 | > | if (count == 0) return; |
2168 | > | |
2169 | > | dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getAverage(s); |
2170 | > | if (isinf(s[0]) || isnan(s[0]) || |
2171 | > | isinf(s[1]) || isnan(s[1]) || |
2172 | > | isinf(s[2]) || isnan(s[2]) ) { |
2173 | > | sprintf( painCave.errMsg, |
2174 | > | "RNEMD detected a numerical error writing: %s for bin %d", |
2175 | > | data_[index].title.c_str(), bin); |
2176 | > | painCave.isFatal = 1; |
2177 | > | simError(); |
2178 | > | } else { |
2179 | > | rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2]; |
2180 | } | |
2181 | < | if (rnemdType_ == rnemdPx || rnemdType_ == rnemdPxScale) |
2182 | < | for (j = 0; j < rnemdLogWidth_; j++) { |
2183 | < | xTempHist_[j] = 0.0; |
2184 | < | yTempHist_[j] = 0.0; |
2185 | < | zTempHist_[j] = 0.0; |
2186 | < | } |
2181 | > | } |
2182 | > | |
2183 | > | void RNEMD::writeRealStdDev(int index, unsigned int bin) { |
2184 | > | if (!doRNEMD_) return; |
2185 | > | assert(index >=0 && index < ENDINDEX); |
2186 | > | assert(int(bin) < nBins_); |
2187 | > | RealType s; |
2188 | > | int count; |
2189 | > | |
2190 | > | count = data_[index].accumulator[bin]->count(); |
2191 | > | if (count == 0) return; |
2192 | > | |
2193 | > | dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getStdDev(s); |
2194 | > | |
2195 | > | if (! isinf(s) && ! isnan(s)) { |
2196 | > | rnemdFile_ << "\t" << s; |
2197 | > | } else{ |
2198 | > | sprintf( painCave.errMsg, |
2199 | > | "RNEMD detected a numerical error writing: %s std. dev. for bin %d", |
2200 | > | data_[index].title.c_str(), bin); |
2201 | > | painCave.isFatal = 1; |
2202 | > | simError(); |
2203 | > | } |
2204 | } | |
2205 | + | |
2206 | + | void RNEMD::writeVectorStdDev(int index, unsigned int bin) { |
2207 | + | if (!doRNEMD_) return; |
2208 | + | assert(index >=0 && index < ENDINDEX); |
2209 | + | assert(int(bin) < nBins_); |
2210 | + | Vector3d s; |
2211 | + | int count; |
2212 | + | |
2213 | + | count = data_[index].accumulator[bin]->count(); |
2214 | + | if (count == 0) return; |
2215 | + | |
2216 | + | dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getStdDev(s); |
2217 | + | if (isinf(s[0]) || isnan(s[0]) || |
2218 | + | isinf(s[1]) || isnan(s[1]) || |
2219 | + | isinf(s[2]) || isnan(s[2]) ) { |
2220 | + | sprintf( painCave.errMsg, |
2221 | + | "RNEMD detected a numerical error writing: %s std. dev. for bin %d", |
2222 | + | data_[index].title.c_str(), bin); |
2223 | + | painCave.isFatal = 1; |
2224 | + | simError(); |
2225 | + | } else { |
2226 | + | rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2]; |
2227 | + | } |
2228 | + | } |
2229 | } | |
2230 | + |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |