# | Line 35 | Line 35 | |
---|---|---|
35 | * | |
36 | * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | |
37 | * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | |
38 | < | * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
38 | > | * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 | * [4] Vardeman & Gezelter, in progress (2009). | |
40 | */ | |
41 | ||
42 | #include <cmath> | |
43 | + | #include <sstream> |
44 | + | #include <string> |
45 | + | |
46 | #include "rnemd/RNEMD.hpp" | |
47 | #include "math/Vector3.hpp" | |
48 | #include "math/Vector.hpp" | |
# | Line 49 | Line 52 | |
52 | #include "primitives/StuntDouble.hpp" | |
53 | #include "utils/PhysicalConstants.hpp" | |
54 | #include "utils/Tuple.hpp" | |
55 | + | #include "brains/Thermo.hpp" |
56 | + | #include "math/ConvexHull.hpp" |
57 | #ifdef IS_MPI | |
58 | #include <mpi.h> | |
59 | #endif | |
60 | ||
61 | + | #ifdef _MSC_VER |
62 | + | #define isnan(x) _isnan((x)) |
63 | + | #define isinf(x) (!_finite(x) && !_isnan(x)) |
64 | + | #endif |
65 | + | |
66 | #define HONKING_LARGE_VALUE 1.0e10 | |
67 | ||
68 | using namespace std; | |
69 | namespace OpenMD { | |
70 | ||
71 | RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info), | |
72 | + | evaluatorA_(info), seleManA_(info), |
73 | + | commonA_(info), evaluatorB_(info), |
74 | + | seleManB_(info), commonB_(info), |
75 | + | hasData_(false), hasDividingArea_(false), |
76 | usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) { | |
77 | ||
78 | trialCount_ = 0; | |
79 | failTrialCount_ = 0; | |
80 | failRootCount_ = 0; | |
81 | ||
82 | < | int seedValue; |
69 | < | Globals * simParams = info->getSimParams(); |
82 | > | Globals* simParams = info->getSimParams(); |
83 | RNEMDParameters* rnemdParams = simParams->getRNEMDParameters(); | |
84 | ||
85 | doRNEMD_ = rnemdParams->getUseRNEMD(); | |
# | Line 81 | Line 94 | namespace OpenMD { | |
94 | stringToFluxType_["Py"] = rnemdPy; | |
95 | stringToFluxType_["Pz"] = rnemdPz; | |
96 | stringToFluxType_["Pvector"] = rnemdPvector; | |
97 | + | stringToFluxType_["Lx"] = rnemdLx; |
98 | + | stringToFluxType_["Ly"] = rnemdLy; |
99 | + | stringToFluxType_["Lz"] = rnemdLz; |
100 | + | stringToFluxType_["Lvector"] = rnemdLvector; |
101 | stringToFluxType_["KE+Px"] = rnemdKePx; | |
102 | stringToFluxType_["KE+Py"] = rnemdKePy; | |
103 | stringToFluxType_["KE+Pvector"] = rnemdKePvector; | |
104 | + | stringToFluxType_["KE+Lx"] = rnemdKeLx; |
105 | + | stringToFluxType_["KE+Ly"] = rnemdKeLy; |
106 | + | stringToFluxType_["KE+Lz"] = rnemdKeLz; |
107 | + | stringToFluxType_["KE+Lvector"] = rnemdKeLvector; |
108 | ||
109 | runTime_ = simParams->getRunTime(); | |
110 | statusTime_ = simParams->getStatusTime(); | |
111 | ||
91 | – | rnemdObjectSelection_ = rnemdParams->getObjectSelection(); |
92 | – | evaluator_.loadScriptString(rnemdObjectSelection_); |
93 | – | seleMan_.setSelectionSet(evaluator_.evaluate()); |
94 | – | |
112 | const string methStr = rnemdParams->getMethod(); | |
113 | bool hasFluxType = rnemdParams->haveFluxType(); | |
114 | ||
115 | + | rnemdObjectSelection_ = rnemdParams->getObjectSelection(); |
116 | + | |
117 | string fluxStr; | |
118 | if (hasFluxType) { | |
119 | fluxStr = rnemdParams->getFluxType(); | |
# | Line 102 | Line 121 | namespace OpenMD { | |
121 | sprintf(painCave.errMsg, | |
122 | "RNEMD: No fluxType was set in the md file. This parameter,\n" | |
123 | "\twhich must be one of the following values:\n" | |
124 | < | "\tKE, Px, Py, Pz, Pvector, KE+Px, KE+Py, KE+Pvector\n" |
124 | > | "\tKE, Px, Py, Pz, Pvector, Lx, Ly, Lz, Lvector,\n" |
125 | > | "\tKE+Px, KE+Py, KE+Pvector, KE+Lx, KE+Ly, KE+Lz, KE+Lvector\n" |
126 | "\tmust be set to use RNEMD\n"); | |
127 | painCave.isFatal = 1; | |
128 | painCave.severity = OPENMD_ERROR; | |
# | Line 112 | Line 132 | namespace OpenMD { | |
132 | bool hasKineticFlux = rnemdParams->haveKineticFlux(); | |
133 | bool hasMomentumFlux = rnemdParams->haveMomentumFlux(); | |
134 | bool hasMomentumFluxVector = rnemdParams->haveMomentumFluxVector(); | |
135 | + | bool hasAngularMomentumFlux = rnemdParams->haveAngularMomentumFlux(); |
136 | + | bool hasAngularMomentumFluxVector = rnemdParams->haveAngularMomentumFluxVector(); |
137 | + | hasSelectionA_ = rnemdParams->haveSelectionA(); |
138 | + | hasSelectionB_ = rnemdParams->haveSelectionB(); |
139 | bool hasSlabWidth = rnemdParams->haveSlabWidth(); | |
140 | bool hasSlabACenter = rnemdParams->haveSlabACenter(); | |
141 | bool hasSlabBCenter = rnemdParams->haveSlabBCenter(); | |
142 | + | bool hasSphereARadius = rnemdParams->haveSphereARadius(); |
143 | + | hasSphereBRadius_ = rnemdParams->haveSphereBRadius(); |
144 | + | bool hasCoordinateOrigin = rnemdParams->haveCoordinateOrigin(); |
145 | bool hasOutputFileName = rnemdParams->haveOutputFileName(); | |
146 | bool hasOutputFields = rnemdParams->haveOutputFields(); | |
147 | ||
# | Line 199 | Line 226 | namespace OpenMD { | |
226 | case rnemdPz: | |
227 | hasCorrectFlux = hasMomentumFlux; | |
228 | break; | |
229 | + | case rnemdLx: |
230 | + | case rnemdLy: |
231 | + | case rnemdLz: |
232 | + | hasCorrectFlux = hasAngularMomentumFlux; |
233 | + | break; |
234 | case rnemdPvector: | |
235 | hasCorrectFlux = hasMomentumFluxVector; | |
236 | break; | |
237 | + | case rnemdLvector: |
238 | + | hasCorrectFlux = hasAngularMomentumFluxVector; |
239 | + | break; |
240 | case rnemdKePx: | |
241 | case rnemdKePy: | |
242 | hasCorrectFlux = hasMomentumFlux && hasKineticFlux; | |
243 | break; | |
244 | + | case rnemdKeLx: |
245 | + | case rnemdKeLy: |
246 | + | case rnemdKeLz: |
247 | + | hasCorrectFlux = hasAngularMomentumFlux && hasKineticFlux; |
248 | + | break; |
249 | case rnemdKePvector: | |
250 | hasCorrectFlux = hasMomentumFluxVector && hasKineticFlux; | |
251 | break; | |
252 | + | case rnemdKeLvector: |
253 | + | hasCorrectFlux = hasAngularMomentumFluxVector && hasKineticFlux; |
254 | + | break; |
255 | default: | |
256 | methodFluxMismatch = true; | |
257 | break; | |
# | Line 231 | Line 274 | namespace OpenMD { | |
274 | sprintf(painCave.errMsg, | |
275 | "RNEMD: The current method, %s, and flux type, %s,\n" | |
276 | "\tdid not have the correct flux value specified. Options\n" | |
277 | < | "\tinclude: kineticFlux, momentumFlux, and momentumFluxVector\n", |
277 | > | "\tinclude: kineticFlux, momentumFlux, angularMomentumFlux,\n" |
278 | > | "\tmomentumFluxVector, and angularMomentumFluxVector.\n", |
279 | methStr.c_str(), fluxStr.c_str()); | |
280 | painCave.isFatal = 1; | |
281 | painCave.severity = OPENMD_ERROR; | |
# | Line 271 | Line 315 | namespace OpenMD { | |
315 | default: | |
316 | break; | |
317 | } | |
318 | < | } |
319 | < | } |
318 | > | } |
319 | > | if (hasAngularMomentumFluxVector) { |
320 | > | angularMomentumFluxVector_ = rnemdParams->getAngularMomentumFluxVector(); |
321 | > | } else { |
322 | > | angularMomentumFluxVector_ = V3Zero; |
323 | > | if (hasAngularMomentumFlux) { |
324 | > | RealType angularMomentumFlux = rnemdParams->getAngularMomentumFlux(); |
325 | > | switch (rnemdFluxType_) { |
326 | > | case rnemdLx: |
327 | > | angularMomentumFluxVector_.x() = angularMomentumFlux; |
328 | > | break; |
329 | > | case rnemdLy: |
330 | > | angularMomentumFluxVector_.y() = angularMomentumFlux; |
331 | > | break; |
332 | > | case rnemdLz: |
333 | > | angularMomentumFluxVector_.z() = angularMomentumFlux; |
334 | > | break; |
335 | > | case rnemdKeLx: |
336 | > | angularMomentumFluxVector_.x() = angularMomentumFlux; |
337 | > | break; |
338 | > | case rnemdKeLy: |
339 | > | angularMomentumFluxVector_.y() = angularMomentumFlux; |
340 | > | break; |
341 | > | case rnemdKeLz: |
342 | > | angularMomentumFluxVector_.z() = angularMomentumFlux; |
343 | > | break; |
344 | > | default: |
345 | > | break; |
346 | > | } |
347 | > | } |
348 | > | } |
349 | ||
350 | < | // do some sanity checking |
350 | > | if (hasCoordinateOrigin) { |
351 | > | coordinateOrigin_ = rnemdParams->getCoordinateOrigin(); |
352 | > | } else { |
353 | > | coordinateOrigin_ = V3Zero; |
354 | > | } |
355 | ||
356 | < | int selectionCount = seleMan_.getSelectionCount(); |
356 | > | // do some sanity checking |
357 | ||
358 | < | int nIntegrable = info->getNGlobalIntegrableObjects(); |
358 | > | int selectionCount = seleMan_.getSelectionCount(); |
359 | ||
360 | < | if (selectionCount > nIntegrable) { |
284 | < | sprintf(painCave.errMsg, |
285 | < | "RNEMD: The current objectSelection,\n" |
286 | < | "\t\t%s\n" |
287 | < | "\thas resulted in %d selected objects. However,\n" |
288 | < | "\tthe total number of integrable objects in the system\n" |
289 | < | "\tis only %d. This is almost certainly not what you want\n" |
290 | < | "\tto do. A likely cause of this is forgetting the _RB_0\n" |
291 | < | "\tselector in the selection script!\n", |
292 | < | rnemdObjectSelection_.c_str(), |
293 | < | selectionCount, nIntegrable); |
294 | < | painCave.isFatal = 0; |
295 | < | painCave.severity = OPENMD_WARNING; |
296 | < | simError(); |
297 | < | } |
360 | > | int nIntegrable = info->getNGlobalIntegrableObjects(); |
361 | ||
362 | < | areaAccumulator_ = new Accumulator(); |
362 | > | if (selectionCount > nIntegrable) { |
363 | > | sprintf(painCave.errMsg, |
364 | > | "RNEMD: The current objectSelection,\n" |
365 | > | "\t\t%s\n" |
366 | > | "\thas resulted in %d selected objects. However,\n" |
367 | > | "\tthe total number of integrable objects in the system\n" |
368 | > | "\tis only %d. This is almost certainly not what you want\n" |
369 | > | "\tto do. A likely cause of this is forgetting the _RB_0\n" |
370 | > | "\tselector in the selection script!\n", |
371 | > | rnemdObjectSelection_.c_str(), |
372 | > | selectionCount, nIntegrable); |
373 | > | painCave.isFatal = 0; |
374 | > | painCave.severity = OPENMD_WARNING; |
375 | > | simError(); |
376 | > | } |
377 | ||
378 | < | nBins_ = rnemdParams->getOutputBins(); |
378 | > | areaAccumulator_ = new Accumulator(); |
379 | ||
380 | < | data_.resize(RNEMD::ENDINDEX); |
381 | < | OutputData z; |
305 | < | z.units = "Angstroms"; |
306 | < | z.title = "Z"; |
307 | < | z.dataType = "RealType"; |
308 | < | z.accumulator.reserve(nBins_); |
309 | < | for (unsigned int i = 0; i < nBins_; i++) |
310 | < | z.accumulator.push_back( new Accumulator() ); |
311 | < | data_[Z] = z; |
312 | < | outputMap_["Z"] = Z; |
380 | > | nBins_ = rnemdParams->getOutputBins(); |
381 | > | binWidth_ = rnemdParams->getOutputBinWidth(); |
382 | ||
383 | < | OutputData temperature; |
384 | < | temperature.units = "K"; |
385 | < | temperature.title = "Temperature"; |
386 | < | temperature.dataType = "RealType"; |
387 | < | temperature.accumulator.reserve(nBins_); |
388 | < | for (unsigned int i = 0; i < nBins_; i++) |
389 | < | temperature.accumulator.push_back( new Accumulator() ); |
390 | < | data_[TEMPERATURE] = temperature; |
391 | < | outputMap_["TEMPERATURE"] = TEMPERATURE; |
383 | > | data_.resize(RNEMD::ENDINDEX); |
384 | > | OutputData z; |
385 | > | z.units = "Angstroms"; |
386 | > | z.title = "Z"; |
387 | > | z.dataType = "RealType"; |
388 | > | z.accumulator.reserve(nBins_); |
389 | > | for (int i = 0; i < nBins_; i++) |
390 | > | z.accumulator.push_back( new Accumulator() ); |
391 | > | data_[Z] = z; |
392 | > | outputMap_["Z"] = Z; |
393 | ||
394 | < | OutputData velocity; |
395 | < | velocity.units = "angstroms/fs"; |
396 | < | velocity.title = "Velocity"; |
397 | < | velocity.dataType = "Vector3d"; |
398 | < | velocity.accumulator.reserve(nBins_); |
399 | < | for (unsigned int i = 0; i < nBins_; i++) |
400 | < | velocity.accumulator.push_back( new VectorAccumulator() ); |
401 | < | data_[VELOCITY] = velocity; |
402 | < | outputMap_["VELOCITY"] = VELOCITY; |
333 | < | |
334 | < | OutputData density; |
335 | < | density.units = "g cm^-3"; |
336 | < | density.title = "Density"; |
337 | < | density.dataType = "RealType"; |
338 | < | density.accumulator.reserve(nBins_); |
339 | < | for (unsigned int i = 0; i < nBins_; i++) |
340 | < | density.accumulator.push_back( new Accumulator() ); |
341 | < | data_[DENSITY] = density; |
342 | < | outputMap_["DENSITY"] = DENSITY; |
394 | > | OutputData r; |
395 | > | r.units = "Angstroms"; |
396 | > | r.title = "R"; |
397 | > | r.dataType = "RealType"; |
398 | > | r.accumulator.reserve(nBins_); |
399 | > | for (int i = 0; i < nBins_; i++) |
400 | > | r.accumulator.push_back( new Accumulator() ); |
401 | > | data_[R] = r; |
402 | > | outputMap_["R"] = R; |
403 | ||
404 | < | if (hasOutputFields) { |
405 | < | parseOutputFileFormat(rnemdParams->getOutputFields()); |
406 | < | } else { |
407 | < | outputMask_.set(Z); |
408 | < | switch (rnemdFluxType_) { |
409 | < | case rnemdKE: |
410 | < | case rnemdRotKE: |
411 | < | case rnemdFullKE: |
412 | < | outputMask_.set(TEMPERATURE); |
353 | < | break; |
354 | < | case rnemdPx: |
355 | < | case rnemdPy: |
356 | < | outputMask_.set(VELOCITY); |
357 | < | break; |
358 | < | case rnemdPz: |
359 | < | case rnemdPvector: |
360 | < | outputMask_.set(VELOCITY); |
361 | < | outputMask_.set(DENSITY); |
362 | < | break; |
363 | < | case rnemdKePx: |
364 | < | case rnemdKePy: |
365 | < | outputMask_.set(TEMPERATURE); |
366 | < | outputMask_.set(VELOCITY); |
367 | < | break; |
368 | < | case rnemdKePvector: |
369 | < | outputMask_.set(TEMPERATURE); |
370 | < | outputMask_.set(VELOCITY); |
371 | < | outputMask_.set(DENSITY); |
372 | < | break; |
373 | < | default: |
374 | < | break; |
375 | < | } |
376 | < | } |
377 | < | |
378 | < | if (hasOutputFileName) { |
379 | < | rnemdFileName_ = rnemdParams->getOutputFileName(); |
380 | < | } else { |
381 | < | rnemdFileName_ = getPrefix(info->getFinalConfigFileName()) + ".rnemd"; |
382 | < | } |
404 | > | OutputData temperature; |
405 | > | temperature.units = "K"; |
406 | > | temperature.title = "Temperature"; |
407 | > | temperature.dataType = "RealType"; |
408 | > | temperature.accumulator.reserve(nBins_); |
409 | > | for (int i = 0; i < nBins_; i++) |
410 | > | temperature.accumulator.push_back( new Accumulator() ); |
411 | > | data_[TEMPERATURE] = temperature; |
412 | > | outputMap_["TEMPERATURE"] = TEMPERATURE; |
413 | ||
414 | < | exchangeTime_ = rnemdParams->getExchangeTime(); |
414 | > | OutputData velocity; |
415 | > | velocity.units = "angstroms/fs"; |
416 | > | velocity.title = "Velocity"; |
417 | > | velocity.dataType = "Vector3d"; |
418 | > | velocity.accumulator.reserve(nBins_); |
419 | > | for (int i = 0; i < nBins_; i++) |
420 | > | velocity.accumulator.push_back( new VectorAccumulator() ); |
421 | > | data_[VELOCITY] = velocity; |
422 | > | outputMap_["VELOCITY"] = VELOCITY; |
423 | ||
424 | < | Snapshot* currentSnap_ = info->getSnapshotManager()->getCurrentSnapshot(); |
425 | < | Mat3x3d hmat = currentSnap_->getHmat(); |
426 | < | |
427 | < | // Target exchange quantities (in each exchange) = 2 Lx Ly dt flux |
428 | < | // Lx, Ly = box dimensions in x & y |
429 | < | // dt = exchange time interval |
430 | < | // flux = target flux |
424 | > | OutputData angularVelocity; |
425 | > | angularVelocity.units = "angstroms^2/fs"; |
426 | > | angularVelocity.title = "AngularVelocity"; |
427 | > | angularVelocity.dataType = "Vector3d"; |
428 | > | angularVelocity.accumulator.reserve(nBins_); |
429 | > | for (int i = 0; i < nBins_; i++) |
430 | > | angularVelocity.accumulator.push_back( new VectorAccumulator() ); |
431 | > | data_[ANGULARVELOCITY] = angularVelocity; |
432 | > | outputMap_["ANGULARVELOCITY"] = ANGULARVELOCITY; |
433 | ||
434 | < | RealType area = currentSnap_->getXYarea(); |
435 | < | kineticTarget_ = 2.0 * kineticFlux_ * exchangeTime_ * area; |
436 | < | momentumTarget_ = 2.0 * momentumFluxVector_ * exchangeTime_ * area; |
434 | > | OutputData density; |
435 | > | density.units = "g cm^-3"; |
436 | > | density.title = "Density"; |
437 | > | density.dataType = "RealType"; |
438 | > | density.accumulator.reserve(nBins_); |
439 | > | for (int i = 0; i < nBins_; i++) |
440 | > | density.accumulator.push_back( new Accumulator() ); |
441 | > | data_[DENSITY] = density; |
442 | > | outputMap_["DENSITY"] = DENSITY; |
443 | ||
444 | < | // total exchange sums are zeroed out at the beginning: |
444 | > | if (hasOutputFields) { |
445 | > | parseOutputFileFormat(rnemdParams->getOutputFields()); |
446 | > | } else { |
447 | > | if (usePeriodicBoundaryConditions_) |
448 | > | outputMask_.set(Z); |
449 | > | else |
450 | > | outputMask_.set(R); |
451 | > | switch (rnemdFluxType_) { |
452 | > | case rnemdKE: |
453 | > | case rnemdRotKE: |
454 | > | case rnemdFullKE: |
455 | > | outputMask_.set(TEMPERATURE); |
456 | > | break; |
457 | > | case rnemdPx: |
458 | > | case rnemdPy: |
459 | > | outputMask_.set(VELOCITY); |
460 | > | break; |
461 | > | case rnemdPz: |
462 | > | case rnemdPvector: |
463 | > | outputMask_.set(VELOCITY); |
464 | > | outputMask_.set(DENSITY); |
465 | > | break; |
466 | > | case rnemdLx: |
467 | > | case rnemdLy: |
468 | > | case rnemdLz: |
469 | > | case rnemdLvector: |
470 | > | outputMask_.set(ANGULARVELOCITY); |
471 | > | break; |
472 | > | case rnemdKeLx: |
473 | > | case rnemdKeLy: |
474 | > | case rnemdKeLz: |
475 | > | case rnemdKeLvector: |
476 | > | outputMask_.set(TEMPERATURE); |
477 | > | outputMask_.set(ANGULARVELOCITY); |
478 | > | break; |
479 | > | case rnemdKePx: |
480 | > | case rnemdKePy: |
481 | > | outputMask_.set(TEMPERATURE); |
482 | > | outputMask_.set(VELOCITY); |
483 | > | break; |
484 | > | case rnemdKePvector: |
485 | > | outputMask_.set(TEMPERATURE); |
486 | > | outputMask_.set(VELOCITY); |
487 | > | outputMask_.set(DENSITY); |
488 | > | break; |
489 | > | default: |
490 | > | break; |
491 | > | } |
492 | > | } |
493 | > | |
494 | > | if (hasOutputFileName) { |
495 | > | rnemdFileName_ = rnemdParams->getOutputFileName(); |
496 | > | } else { |
497 | > | rnemdFileName_ = getPrefix(info->getFinalConfigFileName()) + ".rnemd"; |
498 | > | } |
499 | ||
500 | < | kineticExchange_ = 0.0; |
401 | < | momentumExchange_ = V3Zero; |
500 | > | exchangeTime_ = rnemdParams->getExchangeTime(); |
501 | ||
502 | < | if (hasSlabWidth) |
503 | < | slabWidth_ = rnemdParams->getSlabWidth(); |
504 | < | else |
505 | < | slabWidth_ = hmat(2,2) / 10.0; |
506 | < | |
507 | < | if (hasSlabACenter) |
508 | < | slabACenter_ = rnemdParams->getSlabACenter(); |
509 | < | else |
510 | < | slabACenter_ = 0.0; |
502 | > | Snapshot* currentSnap_ = info->getSnapshotManager()->getCurrentSnapshot(); |
503 | > | // total exchange sums are zeroed out at the beginning: |
504 | > | |
505 | > | kineticExchange_ = 0.0; |
506 | > | momentumExchange_ = V3Zero; |
507 | > | angularMomentumExchange_ = V3Zero; |
508 | > | |
509 | > | std::ostringstream selectionAstream; |
510 | > | std::ostringstream selectionBstream; |
511 | ||
512 | < | if (hasSlabBCenter) |
513 | < | slabBCenter_ = rnemdParams->getSlabBCenter(); |
514 | < | else |
515 | < | slabBCenter_ = hmat(2,2) / 2.0; |
512 | > | if (hasSelectionA_) { |
513 | > | selectionA_ = rnemdParams->getSelectionA(); |
514 | > | } else { |
515 | > | if (usePeriodicBoundaryConditions_) { |
516 | > | Mat3x3d hmat = currentSnap_->getHmat(); |
517 | > | |
518 | > | if (hasSlabWidth) |
519 | > | slabWidth_ = rnemdParams->getSlabWidth(); |
520 | > | else |
521 | > | slabWidth_ = hmat(2,2) / 10.0; |
522 | > | |
523 | > | if (hasSlabACenter) |
524 | > | slabACenter_ = rnemdParams->getSlabACenter(); |
525 | > | else |
526 | > | slabACenter_ = 0.0; |
527 | > | |
528 | > | selectionAstream << "select wrappedz > " |
529 | > | << slabACenter_ - 0.5*slabWidth_ |
530 | > | << " && wrappedz < " |
531 | > | << slabACenter_ + 0.5*slabWidth_; |
532 | > | selectionA_ = selectionAstream.str(); |
533 | > | } else { |
534 | > | if (hasSphereARadius) |
535 | > | sphereARadius_ = rnemdParams->getSphereARadius(); |
536 | > | else { |
537 | > | // use an initial guess to the size of the inner slab to be 1/10 the |
538 | > | // radius of an approximately spherical hull: |
539 | > | Thermo thermo(info); |
540 | > | RealType hVol = thermo.getHullVolume(); |
541 | > | sphereARadius_ = 0.1 * pow((3.0 * hVol / (4.0 * M_PI)), 1.0/3.0); |
542 | > | } |
543 | > | selectionAstream << "select r < " << sphereARadius_; |
544 | > | selectionA_ = selectionAstream.str(); |
545 | > | } |
546 | > | } |
547 | ||
548 | + | if (hasSelectionB_) { |
549 | + | selectionB_ = rnemdParams->getSelectionB(); |
550 | + | } else { |
551 | + | if (usePeriodicBoundaryConditions_) { |
552 | + | Mat3x3d hmat = currentSnap_->getHmat(); |
553 | + | |
554 | + | if (hasSlabWidth) |
555 | + | slabWidth_ = rnemdParams->getSlabWidth(); |
556 | + | else |
557 | + | slabWidth_ = hmat(2,2) / 10.0; |
558 | + | |
559 | + | if (hasSlabBCenter) |
560 | + | slabBCenter_ = rnemdParams->getSlabBCenter(); |
561 | + | else |
562 | + | slabBCenter_ = hmat(2,2) / 2.0; |
563 | + | |
564 | + | selectionBstream << "select wrappedz > " |
565 | + | << slabBCenter_ - 0.5*slabWidth_ |
566 | + | << " && wrappedz < " |
567 | + | << slabBCenter_ + 0.5*slabWidth_; |
568 | + | selectionB_ = selectionBstream.str(); |
569 | + | } else { |
570 | + | if (hasSphereBRadius_) { |
571 | + | sphereBRadius_ = rnemdParams->getSphereBRadius(); |
572 | + | selectionBstream << "select r > " << sphereBRadius_; |
573 | + | selectionB_ = selectionBstream.str(); |
574 | + | } else { |
575 | + | selectionB_ = "select hull"; |
576 | + | hasSelectionB_ = true; |
577 | + | } |
578 | + | } |
579 | + | } |
580 | + | } |
581 | + | |
582 | + | // object evaluator: |
583 | + | evaluator_.loadScriptString(rnemdObjectSelection_); |
584 | + | seleMan_.setSelectionSet(evaluator_.evaluate()); |
585 | + | evaluatorA_.loadScriptString(selectionA_); |
586 | + | evaluatorB_.loadScriptString(selectionB_); |
587 | + | seleManA_.setSelectionSet(evaluatorA_.evaluate()); |
588 | + | seleManB_.setSelectionSet(evaluatorB_.evaluate()); |
589 | + | commonA_ = seleManA_ & seleMan_; |
590 | + | commonB_ = seleManB_ & seleMan_; |
591 | } | |
592 | < | |
592 | > | |
593 | > | |
594 | RNEMD::~RNEMD() { | |
595 | if (!doRNEMD_) return; | |
596 | #ifdef IS_MPI | |
# | Line 430 | Line 604 | namespace OpenMD { | |
604 | #ifdef IS_MPI | |
605 | } | |
606 | #endif | |
607 | + | |
608 | + | // delete all of the objects we created: |
609 | + | delete areaAccumulator_; |
610 | + | data_.clear(); |
611 | } | |
612 | ||
613 | < | bool RNEMD::inSlabA(Vector3d pos) { |
436 | < | return (abs(pos.z() - slabACenter_) < 0.5*slabWidth_); |
437 | < | } |
438 | < | bool RNEMD::inSlabB(Vector3d pos) { |
439 | < | return (abs(pos.z() - slabBCenter_) < 0.5*slabWidth_); |
440 | < | } |
441 | < | |
442 | < | void RNEMD::doSwap() { |
613 | > | void RNEMD::doSwap(SelectionManager& smanA, SelectionManager& smanB) { |
614 | if (!doRNEMD_) return; | |
615 | + | int selei; |
616 | + | int selej; |
617 | + | |
618 | Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); | |
619 | Mat3x3d hmat = currentSnap_->getHmat(); | |
620 | ||
447 | – | seleMan_.setSelectionSet(evaluator_.evaluate()); |
448 | – | |
449 | – | int selei; |
621 | StuntDouble* sd; | |
451 | – | int idx; |
622 | ||
623 | RealType min_val; | |
624 | bool min_found = false; | |
# | Line 458 | Line 628 | namespace OpenMD { | |
628 | bool max_found = false; | |
629 | StuntDouble* max_sd; | |
630 | ||
631 | < | for (sd = seleMan_.beginSelected(selei); sd != NULL; |
632 | < | sd = seleMan_.nextSelected(selei)) { |
631 | > | for (sd = seleManA_.beginSelected(selei); sd != NULL; |
632 | > | sd = seleManA_.nextSelected(selei)) { |
633 | ||
464 | – | idx = sd->getLocalIndex(); |
465 | – | |
634 | Vector3d pos = sd->getPos(); | |
635 | < | |
635 | > | |
636 | // wrap the stuntdouble's position back into the box: | |
637 | < | |
637 | > | |
638 | if (usePeriodicBoundaryConditions_) | |
639 | currentSnap_->wrapVector(pos); | |
640 | < | bool inA = inSlabA(pos); |
641 | < | bool inB = inSlabB(pos); |
642 | < | |
643 | < | if (inA || inB) { |
640 | > | |
641 | > | RealType mass = sd->getMass(); |
642 | > | Vector3d vel = sd->getVel(); |
643 | > | RealType value; |
644 | > | |
645 | > | switch(rnemdFluxType_) { |
646 | > | case rnemdKE : |
647 | ||
648 | < | RealType mass = sd->getMass(); |
649 | < | Vector3d vel = sd->getVel(); |
650 | < | RealType value; |
651 | < | |
652 | < | switch(rnemdFluxType_) { |
482 | < | case rnemdKE : |
648 | > | value = mass * vel.lengthSquare(); |
649 | > | |
650 | > | if (sd->isDirectional()) { |
651 | > | Vector3d angMom = sd->getJ(); |
652 | > | Mat3x3d I = sd->getI(); |
653 | ||
654 | < | value = mass * vel.lengthSquare(); |
655 | < | |
656 | < | if (sd->isDirectional()) { |
657 | < | Vector3d angMom = sd->getJ(); |
658 | < | Mat3x3d I = sd->getI(); |
659 | < | |
660 | < | if (sd->isLinear()) { |
661 | < | int i = sd->linearAxis(); |
662 | < | int j = (i + 1) % 3; |
663 | < | int k = (i + 2) % 3; |
664 | < | value += angMom[j] * angMom[j] / I(j, j) + |
665 | < | angMom[k] * angMom[k] / I(k, k); |
666 | < | } else { |
667 | < | value += angMom[0]*angMom[0]/I(0, 0) |
668 | < | + angMom[1]*angMom[1]/I(1, 1) |
669 | < | + angMom[2]*angMom[2]/I(2, 2); |
670 | < | } |
671 | < | } //angular momenta exchange enabled |
672 | < | value *= 0.5; |
673 | < | break; |
674 | < | case rnemdPx : |
675 | < | value = mass * vel[0]; |
676 | < | break; |
677 | < | case rnemdPy : |
678 | < | value = mass * vel[1]; |
679 | < | break; |
680 | < | case rnemdPz : |
681 | < | value = mass * vel[2]; |
682 | < | break; |
683 | < | default : |
684 | < | break; |
654 | > | if (sd->isLinear()) { |
655 | > | int i = sd->linearAxis(); |
656 | > | int j = (i + 1) % 3; |
657 | > | int k = (i + 2) % 3; |
658 | > | value += angMom[j] * angMom[j] / I(j, j) + |
659 | > | angMom[k] * angMom[k] / I(k, k); |
660 | > | } else { |
661 | > | value += angMom[0]*angMom[0]/I(0, 0) |
662 | > | + angMom[1]*angMom[1]/I(1, 1) |
663 | > | + angMom[2]*angMom[2]/I(2, 2); |
664 | > | } |
665 | > | } //angular momenta exchange enabled |
666 | > | value *= 0.5; |
667 | > | break; |
668 | > | case rnemdPx : |
669 | > | value = mass * vel[0]; |
670 | > | break; |
671 | > | case rnemdPy : |
672 | > | value = mass * vel[1]; |
673 | > | break; |
674 | > | case rnemdPz : |
675 | > | value = mass * vel[2]; |
676 | > | break; |
677 | > | default : |
678 | > | break; |
679 | > | } |
680 | > | if (!max_found) { |
681 | > | max_val = value; |
682 | > | max_sd = sd; |
683 | > | max_found = true; |
684 | > | } else { |
685 | > | if (max_val < value) { |
686 | > | max_val = value; |
687 | > | max_sd = sd; |
688 | } | |
689 | + | } |
690 | + | } |
691 | ||
692 | < | if (inA == 0) { |
693 | < | if (!min_found) { |
694 | < | min_val = value; |
695 | < | min_sd = sd; |
696 | < | min_found = true; |
697 | < | } else { |
698 | < | if (min_val > value) { |
699 | < | min_val = value; |
700 | < | min_sd = sd; |
701 | < | } |
702 | < | } |
703 | < | } else { |
704 | < | if (!max_found) { |
705 | < | max_val = value; |
706 | < | max_sd = sd; |
707 | < | max_found = true; |
708 | < | } else { |
709 | < | if (max_val < value) { |
710 | < | max_val = value; |
711 | < | max_sd = sd; |
712 | < | } |
713 | < | } |
714 | < | } |
692 | > | for (sd = seleManB_.beginSelected(selej); sd != NULL; |
693 | > | sd = seleManB_.nextSelected(selej)) { |
694 | > | |
695 | > | Vector3d pos = sd->getPos(); |
696 | > | |
697 | > | // wrap the stuntdouble's position back into the box: |
698 | > | |
699 | > | if (usePeriodicBoundaryConditions_) |
700 | > | currentSnap_->wrapVector(pos); |
701 | > | |
702 | > | RealType mass = sd->getMass(); |
703 | > | Vector3d vel = sd->getVel(); |
704 | > | RealType value; |
705 | > | |
706 | > | switch(rnemdFluxType_) { |
707 | > | case rnemdKE : |
708 | > | |
709 | > | value = mass * vel.lengthSquare(); |
710 | > | |
711 | > | if (sd->isDirectional()) { |
712 | > | Vector3d angMom = sd->getJ(); |
713 | > | Mat3x3d I = sd->getI(); |
714 | > | |
715 | > | if (sd->isLinear()) { |
716 | > | int i = sd->linearAxis(); |
717 | > | int j = (i + 1) % 3; |
718 | > | int k = (i + 2) % 3; |
719 | > | value += angMom[j] * angMom[j] / I(j, j) + |
720 | > | angMom[k] * angMom[k] / I(k, k); |
721 | > | } else { |
722 | > | value += angMom[0]*angMom[0]/I(0, 0) |
723 | > | + angMom[1]*angMom[1]/I(1, 1) |
724 | > | + angMom[2]*angMom[2]/I(2, 2); |
725 | > | } |
726 | > | } //angular momenta exchange enabled |
727 | > | value *= 0.5; |
728 | > | break; |
729 | > | case rnemdPx : |
730 | > | value = mass * vel[0]; |
731 | > | break; |
732 | > | case rnemdPy : |
733 | > | value = mass * vel[1]; |
734 | > | break; |
735 | > | case rnemdPz : |
736 | > | value = mass * vel[2]; |
737 | > | break; |
738 | > | default : |
739 | > | break; |
740 | } | |
741 | + | |
742 | + | if (!min_found) { |
743 | + | min_val = value; |
744 | + | min_sd = sd; |
745 | + | min_found = true; |
746 | + | } else { |
747 | + | if (min_val > value) { |
748 | + | min_val = value; |
749 | + | min_sd = sd; |
750 | + | } |
751 | + | } |
752 | } | |
753 | ||
754 | < | #ifdef IS_MPI |
755 | < | int nProc, worldRank; |
754 | > | #ifdef IS_MPI |
755 | > | int worldRank = MPI::COMM_WORLD.Get_rank(); |
756 | ||
546 | – | nProc = MPI::COMM_WORLD.Get_size(); |
547 | – | worldRank = MPI::COMM_WORLD.Get_rank(); |
548 | – | |
757 | bool my_min_found = min_found; | |
758 | bool my_max_found = max_found; | |
759 | ||
# | Line 769 | Line 977 | namespace OpenMD { | |
977 | } | |
978 | } | |
979 | ||
980 | < | void RNEMD::doNIVS() { |
980 | > | void RNEMD::doNIVS(SelectionManager& smanA, SelectionManager& smanB) { |
981 | if (!doRNEMD_) return; | |
982 | + | int selei; |
983 | + | int selej; |
984 | + | |
985 | Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); | |
986 | + | RealType time = currentSnap_->getTime(); |
987 | Mat3x3d hmat = currentSnap_->getHmat(); | |
988 | ||
777 | – | seleMan_.setSelectionSet(evaluator_.evaluate()); |
778 | – | |
779 | – | int selei; |
989 | StuntDouble* sd; | |
781 | – | int idx; |
990 | ||
991 | vector<StuntDouble*> hotBin, coldBin; | |
992 | ||
# | Line 797 | Line 1005 | namespace OpenMD { | |
1005 | RealType Kcz = 0.0; | |
1006 | RealType Kcw = 0.0; | |
1007 | ||
1008 | < | for (sd = seleMan_.beginSelected(selei); sd != NULL; |
1009 | < | sd = seleMan_.nextSelected(selei)) { |
1008 | > | for (sd = smanA.beginSelected(selei); sd != NULL; |
1009 | > | sd = smanA.nextSelected(selei)) { |
1010 | ||
803 | – | idx = sd->getLocalIndex(); |
804 | – | |
1011 | Vector3d pos = sd->getPos(); | |
1012 | < | |
1012 | > | |
1013 | // wrap the stuntdouble's position back into the box: | |
1014 | < | |
1014 | > | |
1015 | if (usePeriodicBoundaryConditions_) | |
1016 | currentSnap_->wrapVector(pos); | |
1017 | < | |
1018 | < | // which bin is this stuntdouble in? |
1019 | < | bool inA = inSlabA(pos); |
1020 | < | bool inB = inSlabB(pos); |
1017 | > | |
1018 | > | |
1019 | > | RealType mass = sd->getMass(); |
1020 | > | Vector3d vel = sd->getVel(); |
1021 | > | |
1022 | > | hotBin.push_back(sd); |
1023 | > | Phx += mass * vel.x(); |
1024 | > | Phy += mass * vel.y(); |
1025 | > | Phz += mass * vel.z(); |
1026 | > | Khx += mass * vel.x() * vel.x(); |
1027 | > | Khy += mass * vel.y() * vel.y(); |
1028 | > | Khz += mass * vel.z() * vel.z(); |
1029 | > | if (sd->isDirectional()) { |
1030 | > | Vector3d angMom = sd->getJ(); |
1031 | > | Mat3x3d I = sd->getI(); |
1032 | > | if (sd->isLinear()) { |
1033 | > | int i = sd->linearAxis(); |
1034 | > | int j = (i + 1) % 3; |
1035 | > | int k = (i + 2) % 3; |
1036 | > | Khw += angMom[j] * angMom[j] / I(j, j) + |
1037 | > | angMom[k] * angMom[k] / I(k, k); |
1038 | > | } else { |
1039 | > | Khw += angMom[0]*angMom[0]/I(0, 0) |
1040 | > | + angMom[1]*angMom[1]/I(1, 1) |
1041 | > | + angMom[2]*angMom[2]/I(2, 2); |
1042 | > | } |
1043 | > | } |
1044 | > | } |
1045 | > | for (sd = smanB.beginSelected(selej); sd != NULL; |
1046 | > | sd = smanB.nextSelected(selej)) { |
1047 | > | Vector3d pos = sd->getPos(); |
1048 | > | |
1049 | > | // wrap the stuntdouble's position back into the box: |
1050 | > | |
1051 | > | if (usePeriodicBoundaryConditions_) |
1052 | > | currentSnap_->wrapVector(pos); |
1053 | > | |
1054 | > | RealType mass = sd->getMass(); |
1055 | > | Vector3d vel = sd->getVel(); |
1056 | ||
1057 | < | if (inA || inB) { |
1058 | < | |
1059 | < | RealType mass = sd->getMass(); |
1060 | < | Vector3d vel = sd->getVel(); |
1061 | < | |
1062 | < | if (inA) { |
1063 | < | hotBin.push_back(sd); |
1064 | < | Phx += mass * vel.x(); |
1065 | < | Phy += mass * vel.y(); |
1066 | < | Phz += mass * vel.z(); |
1067 | < | Khx += mass * vel.x() * vel.x(); |
1068 | < | Khy += mass * vel.y() * vel.y(); |
1069 | < | Khz += mass * vel.z() * vel.z(); |
1070 | < | if (sd->isDirectional()) { |
1071 | < | Vector3d angMom = sd->getJ(); |
1072 | < | Mat3x3d I = sd->getI(); |
1073 | < | if (sd->isLinear()) { |
1074 | < | int i = sd->linearAxis(); |
1075 | < | int j = (i + 1) % 3; |
1076 | < | int k = (i + 2) % 3; |
1077 | < | Khw += angMom[j] * angMom[j] / I(j, j) + |
837 | < | angMom[k] * angMom[k] / I(k, k); |
838 | < | } else { |
839 | < | Khw += angMom[0]*angMom[0]/I(0, 0) |
840 | < | + angMom[1]*angMom[1]/I(1, 1) |
841 | < | + angMom[2]*angMom[2]/I(2, 2); |
842 | < | } |
843 | < | } |
844 | < | } else { |
845 | < | coldBin.push_back(sd); |
846 | < | Pcx += mass * vel.x(); |
847 | < | Pcy += mass * vel.y(); |
848 | < | Pcz += mass * vel.z(); |
849 | < | Kcx += mass * vel.x() * vel.x(); |
850 | < | Kcy += mass * vel.y() * vel.y(); |
851 | < | Kcz += mass * vel.z() * vel.z(); |
852 | < | if (sd->isDirectional()) { |
853 | < | Vector3d angMom = sd->getJ(); |
854 | < | Mat3x3d I = sd->getI(); |
855 | < | if (sd->isLinear()) { |
856 | < | int i = sd->linearAxis(); |
857 | < | int j = (i + 1) % 3; |
858 | < | int k = (i + 2) % 3; |
859 | < | Kcw += angMom[j] * angMom[j] / I(j, j) + |
860 | < | angMom[k] * angMom[k] / I(k, k); |
861 | < | } else { |
862 | < | Kcw += angMom[0]*angMom[0]/I(0, 0) |
863 | < | + angMom[1]*angMom[1]/I(1, 1) |
864 | < | + angMom[2]*angMom[2]/I(2, 2); |
865 | < | } |
866 | < | } |
867 | < | } |
1057 | > | coldBin.push_back(sd); |
1058 | > | Pcx += mass * vel.x(); |
1059 | > | Pcy += mass * vel.y(); |
1060 | > | Pcz += mass * vel.z(); |
1061 | > | Kcx += mass * vel.x() * vel.x(); |
1062 | > | Kcy += mass * vel.y() * vel.y(); |
1063 | > | Kcz += mass * vel.z() * vel.z(); |
1064 | > | if (sd->isDirectional()) { |
1065 | > | Vector3d angMom = sd->getJ(); |
1066 | > | Mat3x3d I = sd->getI(); |
1067 | > | if (sd->isLinear()) { |
1068 | > | int i = sd->linearAxis(); |
1069 | > | int j = (i + 1) % 3; |
1070 | > | int k = (i + 2) % 3; |
1071 | > | Kcw += angMom[j] * angMom[j] / I(j, j) + |
1072 | > | angMom[k] * angMom[k] / I(k, k); |
1073 | > | } else { |
1074 | > | Kcw += angMom[0]*angMom[0]/I(0, 0) |
1075 | > | + angMom[1]*angMom[1]/I(1, 1) |
1076 | > | + angMom[2]*angMom[2]/I(2, 2); |
1077 | > | } |
1078 | } | |
1079 | } | |
1080 | ||
# | Line 941 | Line 1151 | namespace OpenMD { | |
1151 | //if w is in the right range, so should be x, y, z. | |
1152 | vector<StuntDouble*>::iterator sdi; | |
1153 | Vector3d vel; | |
1154 | < | for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) { |
1154 | > | for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) { |
1155 | if (rnemdFluxType_ == rnemdFullKE) { | |
1156 | vel = (*sdi)->getVel() * c; | |
1157 | (*sdi)->setVel(vel); | |
# | Line 952 | Line 1162 | namespace OpenMD { | |
1162 | } | |
1163 | } | |
1164 | w = sqrt(w); | |
1165 | < | for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) { |
1165 | > | for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) { |
1166 | if (rnemdFluxType_ == rnemdFullKE) { | |
1167 | vel = (*sdi)->getVel(); | |
1168 | vel.x() *= x; | |
# | Line 1071 | Line 1281 | namespace OpenMD { | |
1281 | vector<RealType>::iterator ri; | |
1282 | RealType r1, r2, alpha0; | |
1283 | vector<pair<RealType,RealType> > rps; | |
1284 | < | for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) { |
1284 | > | for (ri = realRoots.begin(); ri !=realRoots.end(); ++ri) { |
1285 | r2 = *ri; | |
1286 | //check if FindRealRoots() give the right answer | |
1287 | if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) { | |
# | Line 1103 | Line 1313 | namespace OpenMD { | |
1313 | RealType diff; | |
1314 | pair<RealType,RealType> bestPair = make_pair(1.0, 1.0); | |
1315 | vector<pair<RealType,RealType> >::iterator rpi; | |
1316 | < | for (rpi = rps.begin(); rpi != rps.end(); rpi++) { |
1316 | > | for (rpi = rps.begin(); rpi != rps.end(); ++rpi) { |
1317 | r1 = (*rpi).first; | |
1318 | r2 = (*rpi).second; | |
1319 | switch(rnemdFluxType_) { | |
# | Line 1170 | Line 1380 | namespace OpenMD { | |
1380 | } | |
1381 | vector<StuntDouble*>::iterator sdi; | |
1382 | Vector3d vel; | |
1383 | < | for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) { |
1383 | > | for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) { |
1384 | vel = (*sdi)->getVel(); | |
1385 | vel.x() *= x; | |
1386 | vel.y() *= y; | |
# | Line 1181 | Line 1391 | namespace OpenMD { | |
1391 | x = 1.0 + px * (1.0 - x); | |
1392 | y = 1.0 + py * (1.0 - y); | |
1393 | z = 1.0 + pz * (1.0 - z); | |
1394 | < | for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) { |
1394 | > | for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) { |
1395 | vel = (*sdi)->getVel(); | |
1396 | vel.x() *= x; | |
1397 | vel.y() *= y; | |
# | Line 1214 | Line 1424 | namespace OpenMD { | |
1424 | failTrialCount_++; | |
1425 | } | |
1426 | } | |
1427 | < | |
1428 | < | void RNEMD::doVSS() { |
1427 | > | |
1428 | > | void RNEMD::doVSS(SelectionManager& smanA, SelectionManager& smanB) { |
1429 | if (!doRNEMD_) return; | |
1430 | + | int selei; |
1431 | + | int selej; |
1432 | + | |
1433 | Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); | |
1434 | RealType time = currentSnap_->getTime(); | |
1435 | Mat3x3d hmat = currentSnap_->getHmat(); | |
1436 | ||
1224 | – | seleMan_.setSelectionSet(evaluator_.evaluate()); |
1225 | – | |
1226 | – | int selei; |
1437 | StuntDouble* sd; | |
1228 | – | int idx; |
1438 | ||
1439 | vector<StuntDouble*> hotBin, coldBin; | |
1440 | ||
1441 | Vector3d Ph(V3Zero); | |
1442 | + | Vector3d Lh(V3Zero); |
1443 | RealType Mh = 0.0; | |
1444 | + | Mat3x3d Ih(0.0); |
1445 | RealType Kh = 0.0; | |
1446 | Vector3d Pc(V3Zero); | |
1447 | + | Vector3d Lc(V3Zero); |
1448 | RealType Mc = 0.0; | |
1449 | + | Mat3x3d Ic(0.0); |
1450 | RealType Kc = 0.0; | |
1238 | – | |
1451 | ||
1452 | < | for (sd = seleMan_.beginSelected(selei); sd != NULL; |
1453 | < | sd = seleMan_.nextSelected(selei)) { |
1452 | > | // Constraints can be on only the linear or angular momentum, but |
1453 | > | // not both. Usually, the user will specify which they want, but |
1454 | > | // in case they don't, the use of periodic boundaries should make |
1455 | > | // the choice for us. |
1456 | > | bool doLinearPart = false; |
1457 | > | bool doAngularPart = false; |
1458 | ||
1459 | < | idx = sd->getLocalIndex(); |
1459 | > | switch (rnemdFluxType_) { |
1460 | > | case rnemdPx: |
1461 | > | case rnemdPy: |
1462 | > | case rnemdPz: |
1463 | > | case rnemdPvector: |
1464 | > | case rnemdKePx: |
1465 | > | case rnemdKePy: |
1466 | > | case rnemdKePvector: |
1467 | > | doLinearPart = true; |
1468 | > | break; |
1469 | > | case rnemdLx: |
1470 | > | case rnemdLy: |
1471 | > | case rnemdLz: |
1472 | > | case rnemdLvector: |
1473 | > | case rnemdKeLx: |
1474 | > | case rnemdKeLy: |
1475 | > | case rnemdKeLz: |
1476 | > | case rnemdKeLvector: |
1477 | > | doAngularPart = true; |
1478 | > | break; |
1479 | > | case rnemdKE: |
1480 | > | case rnemdRotKE: |
1481 | > | case rnemdFullKE: |
1482 | > | default: |
1483 | > | if (usePeriodicBoundaryConditions_) |
1484 | > | doLinearPart = true; |
1485 | > | else |
1486 | > | doAngularPart = true; |
1487 | > | break; |
1488 | > | } |
1489 | > | |
1490 | > | for (sd = smanA.beginSelected(selei); sd != NULL; |
1491 | > | sd = smanA.nextSelected(selei)) { |
1492 | ||
1493 | Vector3d pos = sd->getPos(); | |
1494 | ||
1495 | // wrap the stuntdouble's position back into the box: | |
1496 | + | |
1497 | + | if (usePeriodicBoundaryConditions_) |
1498 | + | currentSnap_->wrapVector(pos); |
1499 | + | |
1500 | + | RealType mass = sd->getMass(); |
1501 | + | Vector3d vel = sd->getVel(); |
1502 | + | Vector3d rPos = sd->getPos() - coordinateOrigin_; |
1503 | + | RealType r2; |
1504 | + | |
1505 | + | hotBin.push_back(sd); |
1506 | + | Ph += mass * vel; |
1507 | + | Mh += mass; |
1508 | + | Kh += mass * vel.lengthSquare(); |
1509 | + | Lh += mass * cross(rPos, vel); |
1510 | + | Ih -= outProduct(rPos, rPos) * mass; |
1511 | + | r2 = rPos.lengthSquare(); |
1512 | + | Ih(0, 0) += mass * r2; |
1513 | + | Ih(1, 1) += mass * r2; |
1514 | + | Ih(2, 2) += mass * r2; |
1515 | + | |
1516 | + | if (rnemdFluxType_ == rnemdFullKE) { |
1517 | + | if (sd->isDirectional()) { |
1518 | + | Vector3d angMom = sd->getJ(); |
1519 | + | Mat3x3d I = sd->getI(); |
1520 | + | if (sd->isLinear()) { |
1521 | + | int i = sd->linearAxis(); |
1522 | + | int j = (i + 1) % 3; |
1523 | + | int k = (i + 2) % 3; |
1524 | + | Kh += angMom[j] * angMom[j] / I(j, j) + |
1525 | + | angMom[k] * angMom[k] / I(k, k); |
1526 | + | } else { |
1527 | + | Kh += angMom[0] * angMom[0] / I(0, 0) + |
1528 | + | angMom[1] * angMom[1] / I(1, 1) + |
1529 | + | angMom[2] * angMom[2] / I(2, 2); |
1530 | + | } |
1531 | + | } |
1532 | + | } |
1533 | + | } |
1534 | + | for (sd = smanB.beginSelected(selej); sd != NULL; |
1535 | + | sd = smanB.nextSelected(selej)) { |
1536 | ||
1537 | + | Vector3d pos = sd->getPos(); |
1538 | + | |
1539 | + | // wrap the stuntdouble's position back into the box: |
1540 | + | |
1541 | if (usePeriodicBoundaryConditions_) | |
1542 | currentSnap_->wrapVector(pos); | |
1543 | + | |
1544 | + | RealType mass = sd->getMass(); |
1545 | + | Vector3d vel = sd->getVel(); |
1546 | + | Vector3d rPos = sd->getPos() - coordinateOrigin_; |
1547 | + | RealType r2; |
1548 | ||
1549 | < | // which bin is this stuntdouble in? |
1550 | < | bool inA = inSlabA(pos); |
1551 | < | bool inB = inSlabB(pos); |
1549 | > | coldBin.push_back(sd); |
1550 | > | Pc += mass * vel; |
1551 | > | Mc += mass; |
1552 | > | Kc += mass * vel.lengthSquare(); |
1553 | > | Lc += mass * cross(rPos, vel); |
1554 | > | Ic -= outProduct(rPos, rPos) * mass; |
1555 | > | r2 = rPos.lengthSquare(); |
1556 | > | Ic(0, 0) += mass * r2; |
1557 | > | Ic(1, 1) += mass * r2; |
1558 | > | Ic(2, 2) += mass * r2; |
1559 | ||
1560 | < | if (inA || inB) { |
1561 | < | |
1562 | < | RealType mass = sd->getMass(); |
1563 | < | Vector3d vel = sd->getVel(); |
1564 | < | |
1565 | < | if (inA) { |
1566 | < | hotBin.push_back(sd); |
1567 | < | Ph += mass * vel; |
1568 | < | Mh += mass; |
1569 | < | Kh += mass * vel.lengthSquare(); |
1570 | < | if (rnemdFluxType_ == rnemdFullKE) { |
1571 | < | if (sd->isDirectional()) { |
1572 | < | Vector3d angMom = sd->getJ(); |
1573 | < | Mat3x3d I = sd->getI(); |
1574 | < | if (sd->isLinear()) { |
1575 | < | int i = sd->linearAxis(); |
1272 | < | int j = (i + 1) % 3; |
1273 | < | int k = (i + 2) % 3; |
1274 | < | Kh += angMom[j] * angMom[j] / I(j, j) + |
1275 | < | angMom[k] * angMom[k] / I(k, k); |
1276 | < | } else { |
1277 | < | Kh += angMom[0] * angMom[0] / I(0, 0) + |
1278 | < | angMom[1] * angMom[1] / I(1, 1) + |
1279 | < | angMom[2] * angMom[2] / I(2, 2); |
1280 | < | } |
1281 | < | } |
1282 | < | } |
1283 | < | } else { //midBin_ |
1284 | < | coldBin.push_back(sd); |
1285 | < | Pc += mass * vel; |
1286 | < | Mc += mass; |
1287 | < | Kc += mass * vel.lengthSquare(); |
1288 | < | if (rnemdFluxType_ == rnemdFullKE) { |
1289 | < | if (sd->isDirectional()) { |
1290 | < | Vector3d angMom = sd->getJ(); |
1291 | < | Mat3x3d I = sd->getI(); |
1292 | < | if (sd->isLinear()) { |
1293 | < | int i = sd->linearAxis(); |
1294 | < | int j = (i + 1) % 3; |
1295 | < | int k = (i + 2) % 3; |
1296 | < | Kc += angMom[j] * angMom[j] / I(j, j) + |
1297 | < | angMom[k] * angMom[k] / I(k, k); |
1298 | < | } else { |
1299 | < | Kc += angMom[0] * angMom[0] / I(0, 0) + |
1300 | < | angMom[1] * angMom[1] / I(1, 1) + |
1301 | < | angMom[2] * angMom[2] / I(2, 2); |
1302 | < | } |
1303 | < | } |
1304 | < | } |
1305 | < | } |
1560 | > | if (rnemdFluxType_ == rnemdFullKE) { |
1561 | > | if (sd->isDirectional()) { |
1562 | > | Vector3d angMom = sd->getJ(); |
1563 | > | Mat3x3d I = sd->getI(); |
1564 | > | if (sd->isLinear()) { |
1565 | > | int i = sd->linearAxis(); |
1566 | > | int j = (i + 1) % 3; |
1567 | > | int k = (i + 2) % 3; |
1568 | > | Kc += angMom[j] * angMom[j] / I(j, j) + |
1569 | > | angMom[k] * angMom[k] / I(k, k); |
1570 | > | } else { |
1571 | > | Kc += angMom[0] * angMom[0] / I(0, 0) + |
1572 | > | angMom[1] * angMom[1] / I(1, 1) + |
1573 | > | angMom[2] * angMom[2] / I(2, 2); |
1574 | > | } |
1575 | > | } |
1576 | } | |
1577 | } | |
1578 | ||
# | Line 1312 | Line 1582 | namespace OpenMD { | |
1582 | #ifdef IS_MPI | |
1583 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Ph[0], 3, MPI::REALTYPE, MPI::SUM); | |
1584 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pc[0], 3, MPI::REALTYPE, MPI::SUM); | |
1585 | + | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Lh[0], 3, MPI::REALTYPE, MPI::SUM); |
1586 | + | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Lc[0], 3, MPI::REALTYPE, MPI::SUM); |
1587 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mh, 1, MPI::REALTYPE, MPI::SUM); | |
1588 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kh, 1, MPI::REALTYPE, MPI::SUM); | |
1589 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mc, 1, MPI::REALTYPE, MPI::SUM); | |
1590 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kc, 1, MPI::REALTYPE, MPI::SUM); | |
1591 | + | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, Ih.getArrayPointer(), 9, |
1592 | + | MPI::REALTYPE, MPI::SUM); |
1593 | + | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, Ic.getArrayPointer(), 9, |
1594 | + | MPI::REALTYPE, MPI::SUM); |
1595 | #endif | |
1596 | + | |
1597 | ||
1598 | + | Vector3d ac, acrec, bc, bcrec; |
1599 | + | Vector3d ah, ahrec, bh, bhrec; |
1600 | + | RealType cNumerator, cDenominator; |
1601 | + | RealType hNumerator, hDenominator; |
1602 | + | |
1603 | + | |
1604 | bool successfulExchange = false; | |
1605 | if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty | |
1606 | Vector3d vc = Pc / Mc; | |
1607 | < | Vector3d ac = -momentumTarget_ / Mc + vc; |
1608 | < | Vector3d acrec = -momentumTarget_ / Mc; |
1609 | < | RealType cNumerator = Kc - kineticTarget_ - 0.5 * Mc * ac.lengthSquare(); |
1607 | > | ac = -momentumTarget_ / Mc + vc; |
1608 | > | acrec = -momentumTarget_ / Mc; |
1609 | > | |
1610 | > | // We now need the inverse of the inertia tensor to calculate the |
1611 | > | // angular velocity of the cold slab; |
1612 | > | Mat3x3d Ici = Ic.inverse(); |
1613 | > | Vector3d omegac = Ici * Lc; |
1614 | > | bc = -(Ici * angularMomentumTarget_) + omegac; |
1615 | > | bcrec = bc - omegac; |
1616 | > | |
1617 | > | cNumerator = Kc - kineticTarget_; |
1618 | > | if (doLinearPart) |
1619 | > | cNumerator -= 0.5 * Mc * ac.lengthSquare(); |
1620 | > | |
1621 | > | if (doAngularPart) |
1622 | > | cNumerator -= 0.5 * ( dot(bc, Ic * bc)); |
1623 | > | |
1624 | if (cNumerator > 0.0) { | |
1625 | < | RealType cDenominator = Kc - 0.5 * Mc * vc.lengthSquare(); |
1625 | > | |
1626 | > | cDenominator = Kc; |
1627 | > | |
1628 | > | if (doLinearPart) |
1629 | > | cDenominator -= 0.5 * Mc * vc.lengthSquare(); |
1630 | > | |
1631 | > | if (doAngularPart) |
1632 | > | cDenominator -= 0.5*(dot(omegac, Ic * omegac)); |
1633 | > | |
1634 | if (cDenominator > 0.0) { | |
1635 | RealType c = sqrt(cNumerator / cDenominator); | |
1636 | if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients | |
1637 | + | |
1638 | Vector3d vh = Ph / Mh; | |
1639 | < | Vector3d ah = momentumTarget_ / Mh + vh; |
1640 | < | Vector3d ahrec = momentumTarget_ / Mh; |
1641 | < | RealType hNumerator = Kh + kineticTarget_ |
1642 | < | - 0.5 * Mh * ah.lengthSquare(); |
1643 | < | if (hNumerator > 0.0) { |
1644 | < | RealType hDenominator = Kh - 0.5 * Mh * vh.lengthSquare(); |
1639 | > | ah = momentumTarget_ / Mh + vh; |
1640 | > | ahrec = momentumTarget_ / Mh; |
1641 | > | |
1642 | > | // We now need the inverse of the inertia tensor to |
1643 | > | // calculate the angular velocity of the hot slab; |
1644 | > | Mat3x3d Ihi = Ih.inverse(); |
1645 | > | Vector3d omegah = Ihi * Lh; |
1646 | > | bh = (Ihi * angularMomentumTarget_) + omegah; |
1647 | > | bhrec = bh - omegah; |
1648 | > | |
1649 | > | hNumerator = Kh + kineticTarget_; |
1650 | > | if (doLinearPart) |
1651 | > | hNumerator -= 0.5 * Mh * ah.lengthSquare(); |
1652 | > | |
1653 | > | if (doAngularPart) |
1654 | > | hNumerator -= 0.5 * ( dot(bh, Ih * bh)); |
1655 | > | |
1656 | > | if (hNumerator > 0.0) { |
1657 | > | |
1658 | > | hDenominator = Kh; |
1659 | > | if (doLinearPart) |
1660 | > | hDenominator -= 0.5 * Mh * vh.lengthSquare(); |
1661 | > | if (doAngularPart) |
1662 | > | hDenominator -= 0.5*(dot(omegah, Ih * omegah)); |
1663 | > | |
1664 | if (hDenominator > 0.0) { | |
1665 | RealType h = sqrt(hNumerator / hDenominator); | |
1666 | if ((h > 0.9) && (h < 1.1)) { | |
1667 | < | |
1667 | > | |
1668 | vector<StuntDouble*>::iterator sdi; | |
1669 | Vector3d vel; | |
1670 | < | for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) { |
1670 | > | Vector3d rPos; |
1671 | > | |
1672 | > | for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) { |
1673 | //vel = (*sdi)->getVel(); | |
1674 | < | vel = ((*sdi)->getVel() - vc) * c + ac; |
1674 | > | rPos = (*sdi)->getPos() - coordinateOrigin_; |
1675 | > | if (doLinearPart) |
1676 | > | vel = ((*sdi)->getVel() - vc) * c + ac; |
1677 | > | if (doAngularPart) |
1678 | > | vel = ((*sdi)->getVel() - cross(omegac, rPos)) * c + cross(bc, rPos); |
1679 | > | |
1680 | (*sdi)->setVel(vel); | |
1681 | if (rnemdFluxType_ == rnemdFullKE) { | |
1682 | if ((*sdi)->isDirectional()) { | |
# | Line 1353 | Line 1685 | namespace OpenMD { | |
1685 | } | |
1686 | } | |
1687 | } | |
1688 | < | for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) { |
1688 | > | for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) { |
1689 | //vel = (*sdi)->getVel(); | |
1690 | < | vel = ((*sdi)->getVel() - vh) * h + ah; |
1690 | > | rPos = (*sdi)->getPos() - coordinateOrigin_; |
1691 | > | if (doLinearPart) |
1692 | > | vel = ((*sdi)->getVel() - vh) * h + ah; |
1693 | > | if (doAngularPart) |
1694 | > | vel = ((*sdi)->getVel() - cross(omegah, rPos)) * h + cross(bh, rPos); |
1695 | > | |
1696 | (*sdi)->setVel(vel); | |
1697 | if (rnemdFluxType_ == rnemdFullKE) { | |
1698 | if ((*sdi)->isDirectional()) { | |
# | Line 1367 | Line 1704 | namespace OpenMD { | |
1704 | successfulExchange = true; | |
1705 | kineticExchange_ += kineticTarget_; | |
1706 | momentumExchange_ += momentumTarget_; | |
1707 | + | angularMomentumExchange_ += angularMomentumTarget_; |
1708 | } | |
1709 | } | |
1710 | } | |
# | Line 1386 | Line 1724 | namespace OpenMD { | |
1724 | } | |
1725 | } | |
1726 | ||
1727 | + | RealType RNEMD::getDividingArea() { |
1728 | + | |
1729 | + | if (hasDividingArea_) return dividingArea_; |
1730 | + | |
1731 | + | RealType areaA, areaB; |
1732 | + | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
1733 | + | |
1734 | + | if (hasSelectionA_) { |
1735 | + | int isd; |
1736 | + | StuntDouble* sd; |
1737 | + | vector<StuntDouble*> aSites; |
1738 | + | seleManA_.setSelectionSet(evaluatorA_.evaluate()); |
1739 | + | for (sd = seleManA_.beginSelected(isd); sd != NULL; |
1740 | + | sd = seleManA_.nextSelected(isd)) { |
1741 | + | aSites.push_back(sd); |
1742 | + | } |
1743 | + | ConvexHull* surfaceMeshA = new ConvexHull(); |
1744 | + | surfaceMeshA->computeHull(aSites); |
1745 | + | areaA = surfaceMeshA->getArea(); |
1746 | + | delete surfaceMeshA; |
1747 | + | |
1748 | + | } else { |
1749 | + | if (usePeriodicBoundaryConditions_) { |
1750 | + | // in periodic boundaries, the surface area is twice the x-y |
1751 | + | // area of the current box: |
1752 | + | areaA = 2.0 * snap->getXYarea(); |
1753 | + | } else { |
1754 | + | // in non-periodic simulations, without explicitly setting |
1755 | + | // selections, the sphere radius sets the surface area of the |
1756 | + | // dividing surface: |
1757 | + | areaA = 4.0 * M_PI * pow(sphereARadius_, 2); |
1758 | + | } |
1759 | + | } |
1760 | + | |
1761 | + | |
1762 | + | |
1763 | + | if (hasSelectionB_) { |
1764 | + | int isd; |
1765 | + | StuntDouble* sd; |
1766 | + | vector<StuntDouble*> bSites; |
1767 | + | seleManB_.setSelectionSet(evaluatorB_.evaluate()); |
1768 | + | for (sd = seleManB_.beginSelected(isd); sd != NULL; |
1769 | + | sd = seleManB_.nextSelected(isd)) { |
1770 | + | bSites.push_back(sd); |
1771 | + | } |
1772 | + | ConvexHull* surfaceMeshB = new ConvexHull(); |
1773 | + | surfaceMeshB->computeHull(bSites); |
1774 | + | areaB = surfaceMeshB->getArea(); |
1775 | + | delete surfaceMeshB; |
1776 | + | |
1777 | + | } else { |
1778 | + | if (usePeriodicBoundaryConditions_) { |
1779 | + | // in periodic boundaries, the surface area is twice the x-y |
1780 | + | // area of the current box: |
1781 | + | areaB = 2.0 * snap->getXYarea(); |
1782 | + | } else { |
1783 | + | // in non-periodic simulations, without explicitly setting |
1784 | + | // selections, but if a sphereBradius has been set, just use that: |
1785 | + | areaB = 4.0 * M_PI * pow(sphereBRadius_, 2); |
1786 | + | } |
1787 | + | } |
1788 | + | |
1789 | + | dividingArea_ = min(areaA, areaB); |
1790 | + | hasDividingArea_ = true; |
1791 | + | return dividingArea_; |
1792 | + | } |
1793 | + | |
1794 | void RNEMD::doRNEMD() { | |
1795 | if (!doRNEMD_) return; | |
1796 | trialCount_++; | |
1797 | + | |
1798 | + | // object evaluator: |
1799 | + | evaluator_.loadScriptString(rnemdObjectSelection_); |
1800 | + | seleMan_.setSelectionSet(evaluator_.evaluate()); |
1801 | + | |
1802 | + | evaluatorA_.loadScriptString(selectionA_); |
1803 | + | evaluatorB_.loadScriptString(selectionB_); |
1804 | + | |
1805 | + | seleManA_.setSelectionSet(evaluatorA_.evaluate()); |
1806 | + | seleManB_.setSelectionSet(evaluatorB_.evaluate()); |
1807 | + | |
1808 | + | commonA_ = seleManA_ & seleMan_; |
1809 | + | commonB_ = seleManB_ & seleMan_; |
1810 | + | |
1811 | + | // Target exchange quantities (in each exchange) = dividingArea * dt * flux |
1812 | + | // dt = exchange time interval |
1813 | + | // flux = target flux |
1814 | + | // dividingArea = smallest dividing surface between the two regions |
1815 | + | |
1816 | + | hasDividingArea_ = false; |
1817 | + | RealType area = getDividingArea(); |
1818 | + | |
1819 | + | kineticTarget_ = kineticFlux_ * exchangeTime_ * area; |
1820 | + | momentumTarget_ = momentumFluxVector_ * exchangeTime_ * area; |
1821 | + | angularMomentumTarget_ = angularMomentumFluxVector_ * exchangeTime_ * area; |
1822 | + | |
1823 | switch(rnemdMethod_) { | |
1824 | case rnemdSwap: | |
1825 | < | doSwap(); |
1825 | > | doSwap(commonA_, commonB_); |
1826 | break; | |
1827 | case rnemdNIVS: | |
1828 | < | doNIVS(); |
1828 | > | doNIVS(commonA_, commonB_); |
1829 | break; | |
1830 | case rnemdVSS: | |
1831 | < | doVSS(); |
1831 | > | doVSS(commonA_, commonB_); |
1832 | break; | |
1833 | case rnemdUnkownMethod: | |
1834 | default : | |
# | Line 1408 | Line 1839 | namespace OpenMD { | |
1839 | void RNEMD::collectData() { | |
1840 | if (!doRNEMD_) return; | |
1841 | Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); | |
1842 | + | |
1843 | + | // collectData can be called more frequently than the doRNEMD, so use the |
1844 | + | // computed area from the last exchange time: |
1845 | + | RealType area = getDividingArea(); |
1846 | + | areaAccumulator_->add(area); |
1847 | Mat3x3d hmat = currentSnap_->getHmat(); | |
1412 | – | |
1413 | – | areaAccumulator_->add(currentSnap_->getXYarea()); |
1414 | – | |
1848 | seleMan_.setSelectionSet(evaluator_.evaluate()); | |
1849 | ||
1850 | int selei(0); | |
1851 | StuntDouble* sd; | |
1852 | < | int idx; |
1852 | > | int binNo; |
1853 | ||
1854 | vector<RealType> binMass(nBins_, 0.0); | |
1855 | vector<RealType> binPx(nBins_, 0.0); | |
1856 | vector<RealType> binPy(nBins_, 0.0); | |
1857 | vector<RealType> binPz(nBins_, 0.0); | |
1858 | + | vector<RealType> binOmegax(nBins_, 0.0); |
1859 | + | vector<RealType> binOmegay(nBins_, 0.0); |
1860 | + | vector<RealType> binOmegaz(nBins_, 0.0); |
1861 | vector<RealType> binKE(nBins_, 0.0); | |
1862 | vector<int> binDOF(nBins_, 0); | |
1863 | vector<int> binCount(nBins_, 0); | |
# | Line 1429 | Line 1865 | namespace OpenMD { | |
1865 | // alternative approach, track all molecules instead of only those | |
1866 | // selected for scaling/swapping: | |
1867 | /* | |
1868 | < | SimInfo::MoleculeIterator miter; |
1869 | < | vector<StuntDouble*>::iterator iiter; |
1870 | < | Molecule* mol; |
1871 | < | StuntDouble* sd; |
1872 | < | for (mol = info_->beginMolecule(miter); mol != NULL; |
1868 | > | SimInfo::MoleculeIterator miter; |
1869 | > | vector<StuntDouble*>::iterator iiter; |
1870 | > | Molecule* mol; |
1871 | > | StuntDouble* sd; |
1872 | > | for (mol = info_->beginMolecule(miter); mol != NULL; |
1873 | mol = info_->nextMolecule(miter)) | |
1874 | sd is essentially sd | |
1875 | < | for (sd = mol->beginIntegrableObject(iiter); |
1876 | < | sd != NULL; |
1877 | < | sd = mol->nextIntegrableObject(iiter)) |
1875 | > | for (sd = mol->beginIntegrableObject(iiter); |
1876 | > | sd != NULL; |
1877 | > | sd = mol->nextIntegrableObject(iiter)) |
1878 | */ | |
1879 | ||
1880 | for (sd = seleMan_.beginSelected(selei); sd != NULL; | |
1881 | < | sd = seleMan_.nextSelected(selei)) { |
1881 | > | sd = seleMan_.nextSelected(selei)) { |
1882 | ||
1447 | – | idx = sd->getLocalIndex(); |
1448 | – | |
1883 | Vector3d pos = sd->getPos(); | |
1884 | ||
1885 | // wrap the stuntdouble's position back into the box: | |
1886 | ||
1887 | < | if (usePeriodicBoundaryConditions_) |
1887 | > | if (usePeriodicBoundaryConditions_) { |
1888 | currentSnap_->wrapVector(pos); | |
1889 | + | // which bin is this stuntdouble in? |
1890 | + | // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)] |
1891 | + | // Shift molecules by half a box to have bins start at 0 |
1892 | + | // The modulo operator is used to wrap the case when we are |
1893 | + | // beyond the end of the bins back to the beginning. |
1894 | + | binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_; |
1895 | + | } else { |
1896 | + | Vector3d rPos = pos - coordinateOrigin_; |
1897 | + | binNo = int(rPos.length() / binWidth_); |
1898 | + | } |
1899 | ||
1456 | – | |
1457 | – | // which bin is this stuntdouble in? |
1458 | – | // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)] |
1459 | – | // Shift molecules by half a box to have bins start at 0 |
1460 | – | // The modulo operator is used to wrap the case when we are |
1461 | – | // beyond the end of the bins back to the beginning. |
1462 | – | int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_; |
1463 | – | |
1900 | RealType mass = sd->getMass(); | |
1901 | Vector3d vel = sd->getVel(); | |
1902 | < | |
1903 | < | binCount[binNo]++; |
1904 | < | binMass[binNo] += mass; |
1905 | < | binPx[binNo] += mass*vel.x(); |
1906 | < | binPy[binNo] += mass*vel.y(); |
1907 | < | binPz[binNo] += mass*vel.z(); |
1908 | < | binKE[binNo] += 0.5 * (mass * vel.lengthSquare()); |
1909 | < | binDOF[binNo] += 3; |
1910 | < | |
1911 | < | if (sd->isDirectional()) { |
1912 | < | Vector3d angMom = sd->getJ(); |
1913 | < | Mat3x3d I = sd->getI(); |
1914 | < | if (sd->isLinear()) { |
1915 | < | int i = sd->linearAxis(); |
1916 | < | int j = (i + 1) % 3; |
1917 | < | int k = (i + 2) % 3; |
1918 | < | binKE[binNo] += 0.5 * (angMom[j] * angMom[j] / I(j, j) + |
1919 | < | angMom[k] * angMom[k] / I(k, k)); |
1920 | < | binDOF[binNo] += 2; |
1921 | < | } else { |
1922 | < | binKE[binNo] += 0.5 * (angMom[0] * angMom[0] / I(0, 0) + |
1923 | < | angMom[1] * angMom[1] / I(1, 1) + |
1924 | < | angMom[2] * angMom[2] / I(2, 2)); |
1925 | < | binDOF[binNo] += 3; |
1902 | > | Vector3d rPos = sd->getPos() - coordinateOrigin_; |
1903 | > | Vector3d aVel = cross(rPos, vel); |
1904 | > | |
1905 | > | if (binNo >= 0 && binNo < nBins_) { |
1906 | > | binCount[binNo]++; |
1907 | > | binMass[binNo] += mass; |
1908 | > | binPx[binNo] += mass*vel.x(); |
1909 | > | binPy[binNo] += mass*vel.y(); |
1910 | > | binPz[binNo] += mass*vel.z(); |
1911 | > | binOmegax[binNo] += aVel.x(); |
1912 | > | binOmegay[binNo] += aVel.y(); |
1913 | > | binOmegaz[binNo] += aVel.z(); |
1914 | > | binKE[binNo] += 0.5 * (mass * vel.lengthSquare()); |
1915 | > | binDOF[binNo] += 3; |
1916 | > | |
1917 | > | if (sd->isDirectional()) { |
1918 | > | Vector3d angMom = sd->getJ(); |
1919 | > | Mat3x3d I = sd->getI(); |
1920 | > | if (sd->isLinear()) { |
1921 | > | int i = sd->linearAxis(); |
1922 | > | int j = (i + 1) % 3; |
1923 | > | int k = (i + 2) % 3; |
1924 | > | binKE[binNo] += 0.5 * (angMom[j] * angMom[j] / I(j, j) + |
1925 | > | angMom[k] * angMom[k] / I(k, k)); |
1926 | > | binDOF[binNo] += 2; |
1927 | > | } else { |
1928 | > | binKE[binNo] += 0.5 * (angMom[0] * angMom[0] / I(0, 0) + |
1929 | > | angMom[1] * angMom[1] / I(1, 1) + |
1930 | > | angMom[2] * angMom[2] / I(2, 2)); |
1931 | > | binDOF[binNo] += 3; |
1932 | > | } |
1933 | } | |
1934 | } | |
1935 | } | |
# | Line 1502 | Line 1945 | namespace OpenMD { | |
1945 | nBins_, MPI::REALTYPE, MPI::SUM); | |
1946 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPz[0], | |
1947 | nBins_, MPI::REALTYPE, MPI::SUM); | |
1948 | + | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binOmegax[0], |
1949 | + | nBins_, MPI::REALTYPE, MPI::SUM); |
1950 | + | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binOmegay[0], |
1951 | + | nBins_, MPI::REALTYPE, MPI::SUM); |
1952 | + | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binOmegaz[0], |
1953 | + | nBins_, MPI::REALTYPE, MPI::SUM); |
1954 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binKE[0], | |
1955 | nBins_, MPI::REALTYPE, MPI::SUM); | |
1956 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binDOF[0], | |
# | Line 1509 | Line 1958 | namespace OpenMD { | |
1958 | #endif | |
1959 | ||
1960 | Vector3d vel; | |
1961 | + | Vector3d aVel; |
1962 | RealType den; | |
1963 | RealType temp; | |
1964 | RealType z; | |
1965 | + | RealType r; |
1966 | for (int i = 0; i < nBins_; i++) { | |
1967 | < | z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat(2,2); |
1967 | > | if (usePeriodicBoundaryConditions_) { |
1968 | > | z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat(2,2); |
1969 | > | den = binMass[i] * nBins_ * PhysicalConstants::densityConvert |
1970 | > | / currentSnap_->getVolume() ; |
1971 | > | } else { |
1972 | > | r = (((RealType)i + 0.5) * binWidth_); |
1973 | > | RealType rinner = (RealType)i * binWidth_; |
1974 | > | RealType router = (RealType)(i+1) * binWidth_; |
1975 | > | den = binMass[i] * 3.0 * PhysicalConstants::densityConvert |
1976 | > | / (4.0 * M_PI * (pow(router,3) - pow(rinner,3))); |
1977 | > | } |
1978 | vel.x() = binPx[i] / binMass[i]; | |
1979 | vel.y() = binPy[i] / binMass[i]; | |
1980 | vel.z() = binPz[i] / binMass[i]; | |
1981 | + | aVel.x() = binOmegax[i] / binCount[i]; |
1982 | + | aVel.y() = binOmegay[i] / binCount[i]; |
1983 | + | aVel.z() = binOmegaz[i] / binCount[i]; |
1984 | ||
1521 | – | den = binMass[i] * nBins_ * PhysicalConstants::densityConvert |
1522 | – | / currentSnap_->getVolume() ; |
1523 | – | |
1985 | if (binCount[i] > 0) { | |
1986 | // only add values if there are things to add | |
1987 | temp = 2.0 * binKE[i] / (binDOF[i] * PhysicalConstants::kb * | |
# | Line 1532 | Line 1993 | namespace OpenMD { | |
1993 | case Z: | |
1994 | dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(z); | |
1995 | break; | |
1996 | + | case R: |
1997 | + | dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(r); |
1998 | + | break; |
1999 | case TEMPERATURE: | |
2000 | dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(temp); | |
2001 | break; | |
2002 | case VELOCITY: | |
2003 | dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(vel); | |
2004 | break; | |
2005 | + | case ANGULARVELOCITY: |
2006 | + | dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(aVel); |
2007 | + | break; |
2008 | case DENSITY: | |
2009 | dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(den); | |
2010 | break; | |
# | Line 1546 | Line 2013 | namespace OpenMD { | |
2013 | } | |
2014 | } | |
2015 | } | |
2016 | + | hasData_ = true; |
2017 | } | |
2018 | ||
2019 | void RNEMD::getStarted() { | |
2020 | if (!doRNEMD_) return; | |
2021 | + | hasDividingArea_ = false; |
2022 | collectData(); | |
2023 | writeOutputFile(); | |
2024 | } | |
# | Line 1577 | Line 2046 | namespace OpenMD { | |
2046 | ||
2047 | void RNEMD::writeOutputFile() { | |
2048 | if (!doRNEMD_) return; | |
2049 | + | if (!hasData_) return; |
2050 | ||
2051 | #ifdef IS_MPI | |
2052 | // If we're the root node, should we print out the results | |
# | Line 1598 | Line 2068 | namespace OpenMD { | |
2068 | RealType time = currentSnap_->getTime(); | |
2069 | RealType avgArea; | |
2070 | areaAccumulator_->getAverage(avgArea); | |
1601 | – | RealType Jz = kineticExchange_ / (2.0 * time * avgArea) |
1602 | – | / PhysicalConstants::energyConvert; |
1603 | – | Vector3d JzP = momentumExchange_ / (2.0 * time * avgArea); |
2071 | ||
2072 | + | RealType Jz(0.0); |
2073 | + | Vector3d JzP(V3Zero); |
2074 | + | Vector3d JzL(V3Zero); |
2075 | + | if (time >= info_->getSimParams()->getDt()) { |
2076 | + | Jz = kineticExchange_ / (time * avgArea) |
2077 | + | / PhysicalConstants::energyConvert; |
2078 | + | JzP = momentumExchange_ / (time * avgArea); |
2079 | + | JzL = angularMomentumExchange_ / (time * avgArea); |
2080 | + | } |
2081 | + | |
2082 | rnemdFile_ << "#######################################################\n"; | |
2083 | rnemdFile_ << "# RNEMD {\n"; | |
2084 | ||
# | Line 1620 | Line 2097 | namespace OpenMD { | |
2097 | ||
2098 | rnemdFile_ << "# objectSelection = \"" | |
2099 | << rnemdObjectSelection_ << "\";\n"; | |
2100 | < | rnemdFile_ << "# slabWidth = " << slabWidth_ << ";\n"; |
2101 | < | rnemdFile_ << "# slabAcenter = " << slabACenter_ << ";\n"; |
1625 | < | rnemdFile_ << "# slabBcenter = " << slabBCenter_ << ";\n"; |
2100 | > | rnemdFile_ << "# selectionA = \"" << selectionA_ << "\";\n"; |
2101 | > | rnemdFile_ << "# selectionB = \"" << selectionB_ << "\";\n"; |
2102 | rnemdFile_ << "# }\n"; | |
2103 | rnemdFile_ << "#######################################################\n"; | |
2104 | rnemdFile_ << "# RNEMD report:\n"; | |
2105 | < | rnemdFile_ << "# running time = " << time << " fs\n"; |
2106 | < | rnemdFile_ << "# target flux:\n"; |
2107 | < | rnemdFile_ << "# kinetic = " |
2105 | > | rnemdFile_ << "# running time = " << time << " fs\n"; |
2106 | > | rnemdFile_ << "# Target flux:\n"; |
2107 | > | rnemdFile_ << "# kinetic = " |
2108 | << kineticFlux_ / PhysicalConstants::energyConvert | |
2109 | << " (kcal/mol/A^2/fs)\n"; | |
2110 | < | rnemdFile_ << "# momentum = " << momentumFluxVector_ |
2110 | > | rnemdFile_ << "# momentum = " << momentumFluxVector_ |
2111 | << " (amu/A/fs^2)\n"; | |
2112 | < | rnemdFile_ << "# target one-time exchanges:\n"; |
2113 | < | rnemdFile_ << "# kinetic = " |
2112 | > | rnemdFile_ << "# angular momentum = " << angularMomentumFluxVector_ |
2113 | > | << " (amu/A^2/fs^2)\n"; |
2114 | > | rnemdFile_ << "# Target one-time exchanges:\n"; |
2115 | > | rnemdFile_ << "# kinetic = " |
2116 | << kineticTarget_ / PhysicalConstants::energyConvert | |
2117 | << " (kcal/mol)\n"; | |
2118 | < | rnemdFile_ << "# momentum = " << momentumTarget_ |
2118 | > | rnemdFile_ << "# momentum = " << momentumTarget_ |
2119 | << " (amu*A/fs)\n"; | |
2120 | < | rnemdFile_ << "# actual exchange totals:\n"; |
2121 | < | rnemdFile_ << "# kinetic = " |
2120 | > | rnemdFile_ << "# angular momentum = " << angularMomentumTarget_ |
2121 | > | << " (amu*A^2/fs)\n"; |
2122 | > | rnemdFile_ << "# Actual exchange totals:\n"; |
2123 | > | rnemdFile_ << "# kinetic = " |
2124 | << kineticExchange_ / PhysicalConstants::energyConvert | |
2125 | << " (kcal/mol)\n"; | |
2126 | < | rnemdFile_ << "# momentum = " << momentumExchange_ |
2126 | > | rnemdFile_ << "# momentum = " << momentumExchange_ |
2127 | << " (amu*A/fs)\n"; | |
2128 | < | rnemdFile_ << "# actual flux:\n"; |
2129 | < | rnemdFile_ << "# kinetic = " << Jz |
2128 | > | rnemdFile_ << "# angular momentum = " << angularMomentumExchange_ |
2129 | > | << " (amu*A^2/fs)\n"; |
2130 | > | rnemdFile_ << "# Actual flux:\n"; |
2131 | > | rnemdFile_ << "# kinetic = " << Jz |
2132 | << " (kcal/mol/A^2/fs)\n"; | |
2133 | < | rnemdFile_ << "# momentum = " << JzP |
2133 | > | rnemdFile_ << "# momentum = " << JzP |
2134 | << " (amu/A/fs^2)\n"; | |
2135 | < | rnemdFile_ << "# exchange statistics:\n"; |
2136 | < | rnemdFile_ << "# attempted = " << trialCount_ << "\n"; |
2137 | < | rnemdFile_ << "# failed = " << failTrialCount_ << "\n"; |
2135 | > | rnemdFile_ << "# angular momentum = " << JzL |
2136 | > | << " (amu/A^2/fs^2)\n"; |
2137 | > | rnemdFile_ << "# Exchange statistics:\n"; |
2138 | > | rnemdFile_ << "# attempted = " << trialCount_ << "\n"; |
2139 | > | rnemdFile_ << "# failed = " << failTrialCount_ << "\n"; |
2140 | if (rnemdMethod_ == rnemdNIVS) { | |
2141 | < | rnemdFile_ << "# NIVS root-check errors = " |
2141 | > | rnemdFile_ << "# NIVS root-check errors = " |
2142 | << failRootCount_ << "\n"; | |
2143 | } | |
2144 | rnemdFile_ << "#######################################################\n"; | |
# | Line 1675 | Line 2159 | namespace OpenMD { | |
2159 | ||
2160 | rnemdFile_.precision(8); | |
2161 | ||
2162 | < | for (unsigned int j = 0; j < nBins_; j++) { |
2162 | > | for (int j = 0; j < nBins_; j++) { |
2163 | ||
2164 | for (unsigned int i = 0; i < outputMask_.size(); ++i) { | |
2165 | if (outputMask_[i]) { | |
2166 | if (data_[i].dataType == "RealType") | |
2167 | writeReal(i,j); | |
2168 | < | else if (data_[i].dataType == "Vector3d") |
2168 | > | else if (data_[i].dataType == "Vector3d") |
2169 | writeVector(i,j); | |
2170 | else { | |
2171 | sprintf( painCave.errMsg, | |
# | Line 1701 | Line 2185 | namespace OpenMD { | |
2185 | rnemdFile_ << "#######################################################\n"; | |
2186 | ||
2187 | ||
2188 | < | for (unsigned int j = 0; j < nBins_; j++) { |
2188 | > | for (int j = 0; j < nBins_; j++) { |
2189 | rnemdFile_ << "#"; | |
2190 | for (unsigned int i = 0; i < outputMask_.size(); ++i) { | |
2191 | if (outputMask_[i]) { | |
# | Line 1734 | Line 2218 | namespace OpenMD { | |
2218 | void RNEMD::writeReal(int index, unsigned int bin) { | |
2219 | if (!doRNEMD_) return; | |
2220 | assert(index >=0 && index < ENDINDEX); | |
2221 | < | assert(bin < nBins_); |
2221 | > | assert(int(bin) < nBins_); |
2222 | RealType s; | |
2223 | + | int count; |
2224 | ||
2225 | < | data_[index].accumulator[bin]->getAverage(s); |
2225 | > | count = data_[index].accumulator[bin]->count(); |
2226 | > | if (count == 0) return; |
2227 | ||
2228 | + | dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getAverage(s); |
2229 | + | |
2230 | if (! isinf(s) && ! isnan(s)) { | |
2231 | rnemdFile_ << "\t" << s; | |
2232 | } else{ | |
2233 | sprintf( painCave.errMsg, | |
2234 | < | "RNEMD detected a numerical error writing: %s for bin %d", |
2234 | > | "RNEMD detected a numerical error writing: %s for bin %u", |
2235 | data_[index].title.c_str(), bin); | |
2236 | painCave.isFatal = 1; | |
2237 | simError(); | |
# | Line 1753 | Line 2241 | namespace OpenMD { | |
2241 | void RNEMD::writeVector(int index, unsigned int bin) { | |
2242 | if (!doRNEMD_) return; | |
2243 | assert(index >=0 && index < ENDINDEX); | |
2244 | < | assert(bin < nBins_); |
2244 | > | assert(int(bin) < nBins_); |
2245 | Vector3d s; | |
2246 | + | int count; |
2247 | + | |
2248 | + | count = data_[index].accumulator[bin]->count(); |
2249 | + | |
2250 | + | if (count == 0) return; |
2251 | + | |
2252 | dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getAverage(s); | |
2253 | if (isinf(s[0]) || isnan(s[0]) || | |
2254 | isinf(s[1]) || isnan(s[1]) || | |
2255 | isinf(s[2]) || isnan(s[2]) ) { | |
2256 | sprintf( painCave.errMsg, | |
2257 | < | "RNEMD detected a numerical error writing: %s for bin %d", |
2257 | > | "RNEMD detected a numerical error writing: %s for bin %u", |
2258 | data_[index].title.c_str(), bin); | |
2259 | painCave.isFatal = 1; | |
2260 | simError(); | |
# | Line 1772 | Line 2266 | namespace OpenMD { | |
2266 | void RNEMD::writeRealStdDev(int index, unsigned int bin) { | |
2267 | if (!doRNEMD_) return; | |
2268 | assert(index >=0 && index < ENDINDEX); | |
2269 | < | assert(bin < nBins_); |
2269 | > | assert(int(bin) < nBins_); |
2270 | RealType s; | |
2271 | + | int count; |
2272 | ||
2273 | < | data_[index].accumulator[bin]->getStdDev(s); |
2273 | > | count = data_[index].accumulator[bin]->count(); |
2274 | > | if (count == 0) return; |
2275 | ||
2276 | + | dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getStdDev(s); |
2277 | + | |
2278 | if (! isinf(s) && ! isnan(s)) { | |
2279 | rnemdFile_ << "\t" << s; | |
2280 | } else{ | |
2281 | sprintf( painCave.errMsg, | |
2282 | < | "RNEMD detected a numerical error writing: %s std. dev. for bin %d", |
2282 | > | "RNEMD detected a numerical error writing: %s std. dev. for bin %u", |
2283 | data_[index].title.c_str(), bin); | |
2284 | painCave.isFatal = 1; | |
2285 | simError(); | |
# | Line 1791 | Line 2289 | namespace OpenMD { | |
2289 | void RNEMD::writeVectorStdDev(int index, unsigned int bin) { | |
2290 | if (!doRNEMD_) return; | |
2291 | assert(index >=0 && index < ENDINDEX); | |
2292 | < | assert(bin < nBins_); |
2292 | > | assert(int(bin) < nBins_); |
2293 | Vector3d s; | |
2294 | + | int count; |
2295 | + | |
2296 | + | count = data_[index].accumulator[bin]->count(); |
2297 | + | if (count == 0) return; |
2298 | + | |
2299 | dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getStdDev(s); | |
2300 | if (isinf(s[0]) || isnan(s[0]) || | |
2301 | isinf(s[1]) || isnan(s[1]) || | |
2302 | isinf(s[2]) || isnan(s[2]) ) { | |
2303 | sprintf( painCave.errMsg, | |
2304 | < | "RNEMD detected a numerical error writing: %s std. dev. for bin %d", |
2304 | > | "RNEMD detected a numerical error writing: %s std. dev. for bin %u", |
2305 | data_[index].title.c_str(), bin); | |
2306 | painCave.isFatal = 1; | |
2307 | simError(); |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |