| 35 | 
  | 
 *                                                                       | 
| 36 | 
  | 
 * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).              | 
| 37 | 
  | 
 * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).           | 
| 38 | 
< | 
 * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).           | 
| 38 | 
> | 
 * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).           | 
| 39 | 
  | 
 * [4]  Vardeman & Gezelter, in progress (2009).                         | 
| 40 | 
  | 
 */ | 
| 41 | 
  | 
 | 
| 42 | 
  | 
#include <cmath> | 
| 43 | 
+ | 
#include <sstream> | 
| 44 | 
+ | 
#include <string> | 
| 45 | 
+ | 
 | 
| 46 | 
  | 
#include "rnemd/RNEMD.hpp" | 
| 47 | 
  | 
#include "math/Vector3.hpp" | 
| 48 | 
  | 
#include "math/Vector.hpp" | 
| 52 | 
  | 
#include "primitives/StuntDouble.hpp" | 
| 53 | 
  | 
#include "utils/PhysicalConstants.hpp" | 
| 54 | 
  | 
#include "utils/Tuple.hpp" | 
| 55 | 
+ | 
#include "brains/Thermo.hpp" | 
| 56 | 
+ | 
#include "math/ConvexHull.hpp" | 
| 57 | 
  | 
#ifdef IS_MPI | 
| 58 | 
  | 
#include <mpi.h> | 
| 59 | 
  | 
#endif | 
| 60 | 
  | 
 | 
| 61 | 
+ | 
#ifdef _MSC_VER | 
| 62 | 
+ | 
#define isnan(x) _isnan((x)) | 
| 63 | 
+ | 
#define isinf(x) (!_finite(x) && !_isnan(x)) | 
| 64 | 
+ | 
#endif | 
| 65 | 
+ | 
 | 
| 66 | 
  | 
#define HONKING_LARGE_VALUE 1.0e10 | 
| 67 | 
  | 
 | 
| 68 | 
  | 
using namespace std; | 
| 69 | 
  | 
namespace OpenMD { | 
| 70 | 
  | 
   | 
| 71 | 
  | 
  RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info),  | 
| 72 | 
+ | 
                                evaluatorA_(info), seleManA_(info),  | 
| 73 | 
+ | 
                                commonA_(info), evaluatorB_(info),  | 
| 74 | 
+ | 
                                seleManB_(info), commonB_(info),  | 
| 75 | 
+ | 
                                hasData_(false), hasDividingArea_(false), | 
| 76 | 
  | 
                                usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) { | 
| 77 | 
  | 
 | 
| 78 | 
  | 
    trialCount_ = 0; | 
| 79 | 
  | 
    failTrialCount_ = 0; | 
| 80 | 
  | 
    failRootCount_ = 0; | 
| 81 | 
  | 
 | 
| 82 | 
< | 
    int seedValue; | 
| 69 | 
< | 
    Globals * simParams = info->getSimParams(); | 
| 82 | 
> | 
    Globals* simParams = info->getSimParams(); | 
| 83 | 
  | 
    RNEMDParameters* rnemdParams = simParams->getRNEMDParameters(); | 
| 84 | 
  | 
 | 
| 85 | 
  | 
    doRNEMD_ = rnemdParams->getUseRNEMD(); | 
| 94 | 
  | 
    stringToFluxType_["Py"]  = rnemdPy; | 
| 95 | 
  | 
    stringToFluxType_["Pz"]  = rnemdPz; | 
| 96 | 
  | 
    stringToFluxType_["Pvector"]  = rnemdPvector; | 
| 97 | 
+ | 
    stringToFluxType_["Lx"]  = rnemdLx; | 
| 98 | 
+ | 
    stringToFluxType_["Ly"]  = rnemdLy; | 
| 99 | 
+ | 
    stringToFluxType_["Lz"]  = rnemdLz; | 
| 100 | 
+ | 
    stringToFluxType_["Lvector"]  = rnemdLvector; | 
| 101 | 
  | 
    stringToFluxType_["KE+Px"]  = rnemdKePx; | 
| 102 | 
  | 
    stringToFluxType_["KE+Py"]  = rnemdKePy; | 
| 103 | 
  | 
    stringToFluxType_["KE+Pvector"]  = rnemdKePvector; | 
| 104 | 
+ | 
    stringToFluxType_["KE+Lx"]  = rnemdKeLx; | 
| 105 | 
+ | 
    stringToFluxType_["KE+Ly"]  = rnemdKeLy; | 
| 106 | 
+ | 
    stringToFluxType_["KE+Lz"]  = rnemdKeLz; | 
| 107 | 
+ | 
    stringToFluxType_["KE+Lvector"]  = rnemdKeLvector; | 
| 108 | 
  | 
 | 
| 109 | 
  | 
    runTime_ = simParams->getRunTime(); | 
| 110 | 
  | 
    statusTime_ = simParams->getStatusTime(); | 
| 111 | 
  | 
 | 
| 91 | 
– | 
    rnemdObjectSelection_ = rnemdParams->getObjectSelection(); | 
| 92 | 
– | 
    evaluator_.loadScriptString(rnemdObjectSelection_); | 
| 93 | 
– | 
    seleMan_.setSelectionSet(evaluator_.evaluate()); | 
| 94 | 
– | 
 | 
| 112 | 
  | 
    const string methStr = rnemdParams->getMethod(); | 
| 113 | 
  | 
    bool hasFluxType = rnemdParams->haveFluxType(); | 
| 114 | 
  | 
 | 
| 115 | 
+ | 
    rnemdObjectSelection_ = rnemdParams->getObjectSelection(); | 
| 116 | 
+ | 
 | 
| 117 | 
  | 
    string fluxStr; | 
| 118 | 
  | 
    if (hasFluxType) { | 
| 119 | 
  | 
      fluxStr = rnemdParams->getFluxType(); | 
| 121 | 
  | 
      sprintf(painCave.errMsg,  | 
| 122 | 
  | 
              "RNEMD: No fluxType was set in the md file.  This parameter,\n" | 
| 123 | 
  | 
              "\twhich must be one of the following values:\n" | 
| 124 | 
< | 
              "\tKE, Px, Py, Pz, Pvector, KE+Px, KE+Py, KE+Pvector\n" | 
| 124 | 
> | 
              "\tKE, Px, Py, Pz, Pvector, Lx, Ly, Lz, Lvector,\n" | 
| 125 | 
> | 
              "\tKE+Px, KE+Py, KE+Pvector, KE+Lx, KE+Ly, KE+Lz, KE+Lvector\n" | 
| 126 | 
  | 
              "\tmust be set to use RNEMD\n"); | 
| 127 | 
  | 
      painCave.isFatal = 1; | 
| 128 | 
  | 
      painCave.severity = OPENMD_ERROR; | 
| 132 | 
  | 
    bool hasKineticFlux = rnemdParams->haveKineticFlux(); | 
| 133 | 
  | 
    bool hasMomentumFlux = rnemdParams->haveMomentumFlux(); | 
| 134 | 
  | 
    bool hasMomentumFluxVector = rnemdParams->haveMomentumFluxVector(); | 
| 135 | 
+ | 
    bool hasAngularMomentumFlux = rnemdParams->haveAngularMomentumFlux(); | 
| 136 | 
+ | 
    bool hasAngularMomentumFluxVector = rnemdParams->haveAngularMomentumFluxVector(); | 
| 137 | 
+ | 
    hasSelectionA_ = rnemdParams->haveSelectionA(); | 
| 138 | 
+ | 
    hasSelectionB_ = rnemdParams->haveSelectionB(); | 
| 139 | 
  | 
    bool hasSlabWidth = rnemdParams->haveSlabWidth(); | 
| 140 | 
  | 
    bool hasSlabACenter = rnemdParams->haveSlabACenter(); | 
| 141 | 
  | 
    bool hasSlabBCenter = rnemdParams->haveSlabBCenter(); | 
| 142 | 
+ | 
    bool hasSphereARadius = rnemdParams->haveSphereARadius(); | 
| 143 | 
+ | 
    hasSphereBRadius_ = rnemdParams->haveSphereBRadius(); | 
| 144 | 
+ | 
    bool hasCoordinateOrigin = rnemdParams->haveCoordinateOrigin(); | 
| 145 | 
  | 
    bool hasOutputFileName = rnemdParams->haveOutputFileName(); | 
| 146 | 
  | 
    bool hasOutputFields = rnemdParams->haveOutputFields(); | 
| 147 | 
  | 
     | 
| 226 | 
  | 
      case rnemdPz: | 
| 227 | 
  | 
        hasCorrectFlux = hasMomentumFlux; | 
| 228 | 
  | 
        break; | 
| 229 | 
+ | 
      case rnemdLx: | 
| 230 | 
+ | 
      case rnemdLy: | 
| 231 | 
+ | 
      case rnemdLz: | 
| 232 | 
+ | 
        hasCorrectFlux = hasAngularMomentumFlux; | 
| 233 | 
+ | 
        break; | 
| 234 | 
  | 
      case rnemdPvector: | 
| 235 | 
  | 
        hasCorrectFlux = hasMomentumFluxVector; | 
| 236 | 
  | 
        break; | 
| 237 | 
+ | 
      case rnemdLvector: | 
| 238 | 
+ | 
        hasCorrectFlux = hasAngularMomentumFluxVector; | 
| 239 | 
+ | 
        break; | 
| 240 | 
  | 
      case rnemdKePx: | 
| 241 | 
  | 
      case rnemdKePy: | 
| 242 | 
  | 
        hasCorrectFlux = hasMomentumFlux && hasKineticFlux; | 
| 243 | 
  | 
        break; | 
| 244 | 
+ | 
      case rnemdKeLx: | 
| 245 | 
+ | 
      case rnemdKeLy: | 
| 246 | 
+ | 
      case rnemdKeLz: | 
| 247 | 
+ | 
        hasCorrectFlux = hasAngularMomentumFlux && hasKineticFlux; | 
| 248 | 
+ | 
        break; | 
| 249 | 
  | 
      case rnemdKePvector: | 
| 250 | 
  | 
        hasCorrectFlux = hasMomentumFluxVector && hasKineticFlux; | 
| 251 | 
  | 
        break; | 
| 252 | 
+ | 
      case rnemdKeLvector: | 
| 253 | 
+ | 
        hasCorrectFlux = hasAngularMomentumFluxVector && hasKineticFlux; | 
| 254 | 
+ | 
        break; | 
| 255 | 
  | 
      default: | 
| 256 | 
  | 
        methodFluxMismatch = true; | 
| 257 | 
  | 
        break; | 
| 274 | 
  | 
      sprintf(painCave.errMsg,  | 
| 275 | 
  | 
              "RNEMD: The current method, %s, and flux type, %s,\n" | 
| 276 | 
  | 
              "\tdid not have the correct flux value specified. Options\n" | 
| 277 | 
< | 
              "\tinclude: kineticFlux, momentumFlux, and momentumFluxVector\n", | 
| 277 | 
> | 
              "\tinclude: kineticFlux, momentumFlux, angularMomentumFlux,\n" | 
| 278 | 
> | 
              "\tmomentumFluxVector, and angularMomentumFluxVector.\n", | 
| 279 | 
  | 
              methStr.c_str(), fluxStr.c_str()); | 
| 280 | 
  | 
      painCave.isFatal = 1; | 
| 281 | 
  | 
      painCave.severity = OPENMD_ERROR; | 
| 315 | 
  | 
        default: | 
| 316 | 
  | 
          break; | 
| 317 | 
  | 
        } | 
| 318 | 
< | 
      }     | 
| 319 | 
< | 
    } | 
| 318 | 
> | 
      } | 
| 319 | 
> | 
      if (hasAngularMomentumFluxVector) { | 
| 320 | 
> | 
        angularMomentumFluxVector_ = rnemdParams->getAngularMomentumFluxVector(); | 
| 321 | 
> | 
      } else { | 
| 322 | 
> | 
        angularMomentumFluxVector_ = V3Zero; | 
| 323 | 
> | 
        if (hasAngularMomentumFlux) { | 
| 324 | 
> | 
          RealType angularMomentumFlux = rnemdParams->getAngularMomentumFlux(); | 
| 325 | 
> | 
          switch (rnemdFluxType_) { | 
| 326 | 
> | 
          case rnemdLx: | 
| 327 | 
> | 
            angularMomentumFluxVector_.x() = angularMomentumFlux; | 
| 328 | 
> | 
            break; | 
| 329 | 
> | 
          case rnemdLy: | 
| 330 | 
> | 
            angularMomentumFluxVector_.y() = angularMomentumFlux; | 
| 331 | 
> | 
            break; | 
| 332 | 
> | 
          case rnemdLz: | 
| 333 | 
> | 
            angularMomentumFluxVector_.z() = angularMomentumFlux; | 
| 334 | 
> | 
            break; | 
| 335 | 
> | 
          case rnemdKeLx: | 
| 336 | 
> | 
            angularMomentumFluxVector_.x() = angularMomentumFlux; | 
| 337 | 
> | 
            break; | 
| 338 | 
> | 
          case rnemdKeLy: | 
| 339 | 
> | 
            angularMomentumFluxVector_.y() = angularMomentumFlux; | 
| 340 | 
> | 
            break; | 
| 341 | 
> | 
          case rnemdKeLz: | 
| 342 | 
> | 
            angularMomentumFluxVector_.z() = angularMomentumFlux; | 
| 343 | 
> | 
            break; | 
| 344 | 
> | 
          default: | 
| 345 | 
> | 
            break; | 
| 346 | 
> | 
          } | 
| 347 | 
> | 
        }         | 
| 348 | 
> | 
      } | 
| 349 | 
  | 
 | 
| 350 | 
< | 
    // do some sanity checking | 
| 350 | 
> | 
      if (hasCoordinateOrigin) { | 
| 351 | 
> | 
        coordinateOrigin_ = rnemdParams->getCoordinateOrigin(); | 
| 352 | 
> | 
      } else { | 
| 353 | 
> | 
        coordinateOrigin_ = V3Zero; | 
| 354 | 
> | 
      } | 
| 355 | 
  | 
 | 
| 356 | 
< | 
    int selectionCount = seleMan_.getSelectionCount(); | 
| 356 | 
> | 
      // do some sanity checking | 
| 357 | 
  | 
 | 
| 358 | 
< | 
    int nIntegrable = info->getNGlobalIntegrableObjects(); | 
| 358 | 
> | 
      int selectionCount = seleMan_.getSelectionCount(); | 
| 359 | 
  | 
 | 
| 360 | 
< | 
    if (selectionCount > nIntegrable) { | 
| 284 | 
< | 
      sprintf(painCave.errMsg,  | 
| 285 | 
< | 
              "RNEMD: The current objectSelection,\n" | 
| 286 | 
< | 
              "\t\t%s\n" | 
| 287 | 
< | 
              "\thas resulted in %d selected objects.  However,\n" | 
| 288 | 
< | 
              "\tthe total number of integrable objects in the system\n" | 
| 289 | 
< | 
              "\tis only %d.  This is almost certainly not what you want\n" | 
| 290 | 
< | 
              "\tto do.  A likely cause of this is forgetting the _RB_0\n" | 
| 291 | 
< | 
              "\tselector in the selection script!\n",  | 
| 292 | 
< | 
              rnemdObjectSelection_.c_str(),  | 
| 293 | 
< | 
              selectionCount, nIntegrable); | 
| 294 | 
< | 
      painCave.isFatal = 0; | 
| 295 | 
< | 
      painCave.severity = OPENMD_WARNING; | 
| 296 | 
< | 
      simError(); | 
| 297 | 
< | 
    } | 
| 360 | 
> | 
      int nIntegrable = info->getNGlobalIntegrableObjects(); | 
| 361 | 
  | 
 | 
| 362 | 
< | 
    areaAccumulator_ = new Accumulator(); | 
| 362 | 
> | 
      if (selectionCount > nIntegrable) { | 
| 363 | 
> | 
        sprintf(painCave.errMsg,  | 
| 364 | 
> | 
                "RNEMD: The current objectSelection,\n" | 
| 365 | 
> | 
                "\t\t%s\n" | 
| 366 | 
> | 
                "\thas resulted in %d selected objects.  However,\n" | 
| 367 | 
> | 
                "\tthe total number of integrable objects in the system\n" | 
| 368 | 
> | 
                "\tis only %d.  This is almost certainly not what you want\n" | 
| 369 | 
> | 
                "\tto do.  A likely cause of this is forgetting the _RB_0\n" | 
| 370 | 
> | 
                "\tselector in the selection script!\n",  | 
| 371 | 
> | 
                rnemdObjectSelection_.c_str(),  | 
| 372 | 
> | 
                selectionCount, nIntegrable); | 
| 373 | 
> | 
        painCave.isFatal = 0; | 
| 374 | 
> | 
        painCave.severity = OPENMD_WARNING; | 
| 375 | 
> | 
        simError(); | 
| 376 | 
> | 
      } | 
| 377 | 
  | 
 | 
| 378 | 
< | 
    nBins_ = rnemdParams->getOutputBins(); | 
| 378 | 
> | 
      areaAccumulator_ = new Accumulator(); | 
| 379 | 
  | 
 | 
| 380 | 
< | 
    data_.resize(RNEMD::ENDINDEX); | 
| 381 | 
< | 
    OutputData z; | 
| 305 | 
< | 
    z.units =  "Angstroms"; | 
| 306 | 
< | 
    z.title =  "Z"; | 
| 307 | 
< | 
    z.dataType = "RealType"; | 
| 308 | 
< | 
    z.accumulator.reserve(nBins_); | 
| 309 | 
< | 
    for (unsigned int i = 0; i < nBins_; i++)  | 
| 310 | 
< | 
      z.accumulator.push_back( new Accumulator() ); | 
| 311 | 
< | 
    data_[Z] = z; | 
| 312 | 
< | 
    outputMap_["Z"] =  Z; | 
| 380 | 
> | 
      nBins_ = rnemdParams->getOutputBins(); | 
| 381 | 
> | 
      binWidth_ = rnemdParams->getOutputBinWidth(); | 
| 382 | 
  | 
 | 
| 383 | 
< | 
    OutputData temperature; | 
| 384 | 
< | 
    temperature.units =  "K"; | 
| 385 | 
< | 
    temperature.title =  "Temperature"; | 
| 386 | 
< | 
    temperature.dataType = "RealType"; | 
| 387 | 
< | 
    temperature.accumulator.reserve(nBins_); | 
| 388 | 
< | 
    for (unsigned int i = 0; i < nBins_; i++)  | 
| 389 | 
< | 
      temperature.accumulator.push_back( new Accumulator() ); | 
| 390 | 
< | 
    data_[TEMPERATURE] = temperature; | 
| 391 | 
< | 
    outputMap_["TEMPERATURE"] =  TEMPERATURE; | 
| 383 | 
> | 
      data_.resize(RNEMD::ENDINDEX); | 
| 384 | 
> | 
      OutputData z; | 
| 385 | 
> | 
      z.units =  "Angstroms"; | 
| 386 | 
> | 
      z.title =  "Z"; | 
| 387 | 
> | 
      z.dataType = "RealType"; | 
| 388 | 
> | 
      z.accumulator.reserve(nBins_); | 
| 389 | 
> | 
      for (int i = 0; i < nBins_; i++)  | 
| 390 | 
> | 
        z.accumulator.push_back( new Accumulator() ); | 
| 391 | 
> | 
      data_[Z] = z; | 
| 392 | 
> | 
      outputMap_["Z"] =  Z; | 
| 393 | 
  | 
 | 
| 394 | 
< | 
    OutputData velocity; | 
| 395 | 
< | 
    velocity.units = "angstroms/fs"; | 
| 396 | 
< | 
    velocity.title =  "Velocity";   | 
| 397 | 
< | 
    velocity.dataType = "Vector3d"; | 
| 398 | 
< | 
    velocity.accumulator.reserve(nBins_); | 
| 399 | 
< | 
    for (unsigned int i = 0; i < nBins_; i++)  | 
| 400 | 
< | 
      velocity.accumulator.push_back( new VectorAccumulator() ); | 
| 401 | 
< | 
    data_[VELOCITY] = velocity; | 
| 402 | 
< | 
    outputMap_["VELOCITY"] = VELOCITY; | 
| 333 | 
< | 
 | 
| 334 | 
< | 
    OutputData density; | 
| 335 | 
< | 
    density.units =  "g cm^-3"; | 
| 336 | 
< | 
    density.title =  "Density"; | 
| 337 | 
< | 
    density.dataType = "RealType"; | 
| 338 | 
< | 
    density.accumulator.reserve(nBins_); | 
| 339 | 
< | 
    for (unsigned int i = 0; i < nBins_; i++)  | 
| 340 | 
< | 
      density.accumulator.push_back( new Accumulator() ); | 
| 341 | 
< | 
    data_[DENSITY] = density; | 
| 342 | 
< | 
    outputMap_["DENSITY"] =  DENSITY; | 
| 394 | 
> | 
      OutputData r; | 
| 395 | 
> | 
      r.units =  "Angstroms"; | 
| 396 | 
> | 
      r.title =  "R"; | 
| 397 | 
> | 
      r.dataType = "RealType"; | 
| 398 | 
> | 
      r.accumulator.reserve(nBins_); | 
| 399 | 
> | 
      for (int i = 0; i < nBins_; i++)  | 
| 400 | 
> | 
        r.accumulator.push_back( new Accumulator() ); | 
| 401 | 
> | 
      data_[R] = r; | 
| 402 | 
> | 
      outputMap_["R"] =  R; | 
| 403 | 
  | 
 | 
| 404 | 
< | 
    if (hasOutputFields) { | 
| 405 | 
< | 
      parseOutputFileFormat(rnemdParams->getOutputFields()); | 
| 406 | 
< | 
    } else { | 
| 407 | 
< | 
      outputMask_.set(Z); | 
| 408 | 
< | 
      switch (rnemdFluxType_) { | 
| 409 | 
< | 
      case rnemdKE: | 
| 410 | 
< | 
      case rnemdRotKE: | 
| 411 | 
< | 
      case rnemdFullKE: | 
| 412 | 
< | 
        outputMask_.set(TEMPERATURE); | 
| 353 | 
< | 
        break; | 
| 354 | 
< | 
      case rnemdPx: | 
| 355 | 
< | 
      case rnemdPy: | 
| 356 | 
< | 
        outputMask_.set(VELOCITY); | 
| 357 | 
< | 
        break; | 
| 358 | 
< | 
      case rnemdPz:         | 
| 359 | 
< | 
      case rnemdPvector: | 
| 360 | 
< | 
        outputMask_.set(VELOCITY); | 
| 361 | 
< | 
        outputMask_.set(DENSITY); | 
| 362 | 
< | 
        break; | 
| 363 | 
< | 
      case rnemdKePx: | 
| 364 | 
< | 
      case rnemdKePy: | 
| 365 | 
< | 
        outputMask_.set(TEMPERATURE); | 
| 366 | 
< | 
        outputMask_.set(VELOCITY); | 
| 367 | 
< | 
        break; | 
| 368 | 
< | 
      case rnemdKePvector: | 
| 369 | 
< | 
        outputMask_.set(TEMPERATURE); | 
| 370 | 
< | 
        outputMask_.set(VELOCITY); | 
| 371 | 
< | 
        outputMask_.set(DENSITY);         | 
| 372 | 
< | 
        break; | 
| 373 | 
< | 
      default: | 
| 374 | 
< | 
        break; | 
| 375 | 
< | 
      } | 
| 376 | 
< | 
    } | 
| 377 | 
< | 
       | 
| 378 | 
< | 
    if (hasOutputFileName) { | 
| 379 | 
< | 
      rnemdFileName_ = rnemdParams->getOutputFileName(); | 
| 380 | 
< | 
    } else { | 
| 381 | 
< | 
      rnemdFileName_ = getPrefix(info->getFinalConfigFileName()) + ".rnemd"; | 
| 382 | 
< | 
    }           | 
| 404 | 
> | 
      OutputData temperature; | 
| 405 | 
> | 
      temperature.units =  "K"; | 
| 406 | 
> | 
      temperature.title =  "Temperature"; | 
| 407 | 
> | 
      temperature.dataType = "RealType"; | 
| 408 | 
> | 
      temperature.accumulator.reserve(nBins_); | 
| 409 | 
> | 
      for (int i = 0; i < nBins_; i++)  | 
| 410 | 
> | 
        temperature.accumulator.push_back( new Accumulator() ); | 
| 411 | 
> | 
      data_[TEMPERATURE] = temperature; | 
| 412 | 
> | 
      outputMap_["TEMPERATURE"] =  TEMPERATURE; | 
| 413 | 
  | 
 | 
| 414 | 
< | 
    exchangeTime_ = rnemdParams->getExchangeTime(); | 
| 414 | 
> | 
      OutputData velocity; | 
| 415 | 
> | 
      velocity.units = "angstroms/fs"; | 
| 416 | 
> | 
      velocity.title =  "Velocity";   | 
| 417 | 
> | 
      velocity.dataType = "Vector3d"; | 
| 418 | 
> | 
      velocity.accumulator.reserve(nBins_); | 
| 419 | 
> | 
      for (int i = 0; i < nBins_; i++)  | 
| 420 | 
> | 
        velocity.accumulator.push_back( new VectorAccumulator() ); | 
| 421 | 
> | 
      data_[VELOCITY] = velocity; | 
| 422 | 
> | 
      outputMap_["VELOCITY"] = VELOCITY; | 
| 423 | 
  | 
 | 
| 424 | 
< | 
    Snapshot* currentSnap_ = info->getSnapshotManager()->getCurrentSnapshot(); | 
| 425 | 
< | 
    Mat3x3d hmat = currentSnap_->getHmat(); | 
| 426 | 
< | 
   | 
| 427 | 
< | 
    // Target exchange quantities (in each exchange) =  2 Lx Ly dt flux | 
| 428 | 
< | 
    // Lx, Ly = box dimensions in x & y | 
| 429 | 
< | 
    // dt = exchange time interval | 
| 430 | 
< | 
    // flux = target flux | 
| 424 | 
> | 
      OutputData angularVelocity; | 
| 425 | 
> | 
      angularVelocity.units = "angstroms^2/fs"; | 
| 426 | 
> | 
      angularVelocity.title =  "AngularVelocity";   | 
| 427 | 
> | 
      angularVelocity.dataType = "Vector3d"; | 
| 428 | 
> | 
      angularVelocity.accumulator.reserve(nBins_); | 
| 429 | 
> | 
      for (int i = 0; i < nBins_; i++)  | 
| 430 | 
> | 
        angularVelocity.accumulator.push_back( new VectorAccumulator() ); | 
| 431 | 
> | 
      data_[ANGULARVELOCITY] = angularVelocity; | 
| 432 | 
> | 
      outputMap_["ANGULARVELOCITY"] = ANGULARVELOCITY; | 
| 433 | 
  | 
 | 
| 434 | 
< | 
    RealType area = currentSnap_->getXYarea(); | 
| 435 | 
< | 
    kineticTarget_ = 2.0 * kineticFlux_ * exchangeTime_ * area; | 
| 436 | 
< | 
    momentumTarget_ = 2.0 * momentumFluxVector_ * exchangeTime_ * area; | 
| 434 | 
> | 
      OutputData density; | 
| 435 | 
> | 
      density.units =  "g cm^-3"; | 
| 436 | 
> | 
      density.title =  "Density"; | 
| 437 | 
> | 
      density.dataType = "RealType"; | 
| 438 | 
> | 
      density.accumulator.reserve(nBins_); | 
| 439 | 
> | 
      for (int i = 0; i < nBins_; i++)  | 
| 440 | 
> | 
        density.accumulator.push_back( new Accumulator() ); | 
| 441 | 
> | 
      data_[DENSITY] = density; | 
| 442 | 
> | 
      outputMap_["DENSITY"] =  DENSITY; | 
| 443 | 
  | 
 | 
| 444 | 
< | 
    // total exchange sums are zeroed out at the beginning: | 
| 444 | 
> | 
      if (hasOutputFields) { | 
| 445 | 
> | 
        parseOutputFileFormat(rnemdParams->getOutputFields()); | 
| 446 | 
> | 
      } else { | 
| 447 | 
> | 
        if (usePeriodicBoundaryConditions_) | 
| 448 | 
> | 
          outputMask_.set(Z); | 
| 449 | 
> | 
        else | 
| 450 | 
> | 
          outputMask_.set(R); | 
| 451 | 
> | 
        switch (rnemdFluxType_) { | 
| 452 | 
> | 
        case rnemdKE: | 
| 453 | 
> | 
        case rnemdRotKE: | 
| 454 | 
> | 
        case rnemdFullKE: | 
| 455 | 
> | 
          outputMask_.set(TEMPERATURE); | 
| 456 | 
> | 
          break; | 
| 457 | 
> | 
        case rnemdPx: | 
| 458 | 
> | 
        case rnemdPy: | 
| 459 | 
> | 
          outputMask_.set(VELOCITY); | 
| 460 | 
> | 
          break; | 
| 461 | 
> | 
        case rnemdPz:         | 
| 462 | 
> | 
        case rnemdPvector: | 
| 463 | 
> | 
          outputMask_.set(VELOCITY); | 
| 464 | 
> | 
          outputMask_.set(DENSITY); | 
| 465 | 
> | 
          break; | 
| 466 | 
> | 
        case rnemdLx: | 
| 467 | 
> | 
        case rnemdLy: | 
| 468 | 
> | 
        case rnemdLz: | 
| 469 | 
> | 
        case rnemdLvector: | 
| 470 | 
> | 
          outputMask_.set(ANGULARVELOCITY); | 
| 471 | 
> | 
          break; | 
| 472 | 
> | 
        case rnemdKeLx: | 
| 473 | 
> | 
        case rnemdKeLy: | 
| 474 | 
> | 
        case rnemdKeLz: | 
| 475 | 
> | 
        case rnemdKeLvector: | 
| 476 | 
> | 
          outputMask_.set(TEMPERATURE); | 
| 477 | 
> | 
          outputMask_.set(ANGULARVELOCITY); | 
| 478 | 
> | 
          break; | 
| 479 | 
> | 
        case rnemdKePx: | 
| 480 | 
> | 
        case rnemdKePy: | 
| 481 | 
> | 
          outputMask_.set(TEMPERATURE); | 
| 482 | 
> | 
          outputMask_.set(VELOCITY); | 
| 483 | 
> | 
          break; | 
| 484 | 
> | 
        case rnemdKePvector: | 
| 485 | 
> | 
          outputMask_.set(TEMPERATURE); | 
| 486 | 
> | 
          outputMask_.set(VELOCITY); | 
| 487 | 
> | 
          outputMask_.set(DENSITY);         | 
| 488 | 
> | 
          break; | 
| 489 | 
> | 
        default: | 
| 490 | 
> | 
          break; | 
| 491 | 
> | 
        } | 
| 492 | 
> | 
      } | 
| 493 | 
> | 
       | 
| 494 | 
> | 
      if (hasOutputFileName) { | 
| 495 | 
> | 
        rnemdFileName_ = rnemdParams->getOutputFileName(); | 
| 496 | 
> | 
      } else { | 
| 497 | 
> | 
        rnemdFileName_ = getPrefix(info->getFinalConfigFileName()) + ".rnemd"; | 
| 498 | 
> | 
      }           | 
| 499 | 
  | 
 | 
| 500 | 
< | 
    kineticExchange_ = 0.0; | 
| 401 | 
< | 
    momentumExchange_ = V3Zero; | 
| 500 | 
> | 
      exchangeTime_ = rnemdParams->getExchangeTime(); | 
| 501 | 
  | 
 | 
| 502 | 
< | 
    if (hasSlabWidth)  | 
| 503 | 
< | 
      slabWidth_ = rnemdParams->getSlabWidth(); | 
| 504 | 
< | 
    else | 
| 505 | 
< | 
      slabWidth_ = hmat(2,2) / 10.0; | 
| 506 | 
< | 
   | 
| 507 | 
< | 
    if (hasSlabACenter)  | 
| 508 | 
< | 
      slabACenter_ = rnemdParams->getSlabACenter(); | 
| 509 | 
< | 
    else  | 
| 510 | 
< | 
      slabACenter_ = 0.0; | 
| 502 | 
> | 
      Snapshot* currentSnap_ = info->getSnapshotManager()->getCurrentSnapshot(); | 
| 503 | 
> | 
      // total exchange sums are zeroed out at the beginning: | 
| 504 | 
> | 
 | 
| 505 | 
> | 
      kineticExchange_ = 0.0; | 
| 506 | 
> | 
      momentumExchange_ = V3Zero; | 
| 507 | 
> | 
      angularMomentumExchange_ = V3Zero; | 
| 508 | 
> | 
 | 
| 509 | 
> | 
      std::ostringstream selectionAstream; | 
| 510 | 
> | 
      std::ostringstream selectionBstream; | 
| 511 | 
  | 
     | 
| 512 | 
< | 
    if (hasSlabBCenter)  | 
| 513 | 
< | 
      slabBCenter_ = rnemdParams->getSlabBCenter(); | 
| 514 | 
< | 
    else  | 
| 515 | 
< | 
      slabBCenter_ = hmat(2,2) / 2.0; | 
| 512 | 
> | 
      if (hasSelectionA_) { | 
| 513 | 
> | 
        selectionA_ = rnemdParams->getSelectionA(); | 
| 514 | 
> | 
      } else { | 
| 515 | 
> | 
        if (usePeriodicBoundaryConditions_) {      | 
| 516 | 
> | 
          Mat3x3d hmat = currentSnap_->getHmat(); | 
| 517 | 
> | 
         | 
| 518 | 
> | 
          if (hasSlabWidth)  | 
| 519 | 
> | 
            slabWidth_ = rnemdParams->getSlabWidth(); | 
| 520 | 
> | 
          else | 
| 521 | 
> | 
            slabWidth_ = hmat(2,2) / 10.0; | 
| 522 | 
> | 
         | 
| 523 | 
> | 
          if (hasSlabACenter)  | 
| 524 | 
> | 
            slabACenter_ = rnemdParams->getSlabACenter(); | 
| 525 | 
> | 
          else  | 
| 526 | 
> | 
            slabACenter_ = 0.0; | 
| 527 | 
> | 
         | 
| 528 | 
> | 
          selectionAstream << "select wrappedz > "  | 
| 529 | 
> | 
                           << slabACenter_ - 0.5*slabWidth_  | 
| 530 | 
> | 
                           <<  " && wrappedz < " | 
| 531 | 
> | 
                           << slabACenter_ + 0.5*slabWidth_; | 
| 532 | 
> | 
          selectionA_ = selectionAstream.str(); | 
| 533 | 
> | 
        } else { | 
| 534 | 
> | 
          if (hasSphereARadius)  | 
| 535 | 
> | 
            sphereARadius_ = rnemdParams->getSphereARadius(); | 
| 536 | 
> | 
          else { | 
| 537 | 
> | 
            // use an initial guess to the size of the inner slab to be 1/10 the | 
| 538 | 
> | 
            // radius of an approximately spherical hull: | 
| 539 | 
> | 
            Thermo thermo(info); | 
| 540 | 
> | 
            RealType hVol = thermo.getHullVolume(); | 
| 541 | 
> | 
            sphereARadius_ = 0.1 * pow((3.0 * hVol / (4.0 * M_PI)), 1.0/3.0); | 
| 542 | 
> | 
          } | 
| 543 | 
> | 
          selectionAstream << "select r < " << sphereARadius_; | 
| 544 | 
> | 
          selectionA_ = selectionAstream.str(); | 
| 545 | 
> | 
        } | 
| 546 | 
> | 
      } | 
| 547 | 
  | 
     | 
| 548 | 
+ | 
      if (hasSelectionB_) { | 
| 549 | 
+ | 
        selectionB_ = rnemdParams->getSelectionB(); | 
| 550 | 
+ | 
      } else { | 
| 551 | 
+ | 
        if (usePeriodicBoundaryConditions_) {      | 
| 552 | 
+ | 
          Mat3x3d hmat = currentSnap_->getHmat(); | 
| 553 | 
+ | 
         | 
| 554 | 
+ | 
          if (hasSlabWidth)  | 
| 555 | 
+ | 
            slabWidth_ = rnemdParams->getSlabWidth(); | 
| 556 | 
+ | 
          else | 
| 557 | 
+ | 
            slabWidth_ = hmat(2,2) / 10.0; | 
| 558 | 
+ | 
         | 
| 559 | 
+ | 
          if (hasSlabBCenter)  | 
| 560 | 
+ | 
            slabBCenter_ = rnemdParams->getSlabBCenter(); | 
| 561 | 
+ | 
          else  | 
| 562 | 
+ | 
            slabBCenter_ = hmat(2,2) / 2.0; | 
| 563 | 
+ | 
         | 
| 564 | 
+ | 
          selectionBstream << "select wrappedz > "  | 
| 565 | 
+ | 
                           << slabBCenter_ - 0.5*slabWidth_  | 
| 566 | 
+ | 
                           <<  " && wrappedz < " | 
| 567 | 
+ | 
                           << slabBCenter_ + 0.5*slabWidth_; | 
| 568 | 
+ | 
          selectionB_ = selectionBstream.str(); | 
| 569 | 
+ | 
        } else { | 
| 570 | 
+ | 
          if (hasSphereBRadius_) { | 
| 571 | 
+ | 
            sphereBRadius_ = rnemdParams->getSphereBRadius(); | 
| 572 | 
+ | 
            selectionBstream << "select r > " << sphereBRadius_; | 
| 573 | 
+ | 
            selectionB_ = selectionBstream.str(); | 
| 574 | 
+ | 
          } else { | 
| 575 | 
+ | 
            selectionB_ = "select hull"; | 
| 576 | 
+ | 
            hasSelectionB_ = true; | 
| 577 | 
+ | 
          } | 
| 578 | 
+ | 
        } | 
| 579 | 
+ | 
      } | 
| 580 | 
+ | 
    } | 
| 581 | 
+ | 
 | 
| 582 | 
+ | 
    // object evaluator: | 
| 583 | 
+ | 
    evaluator_.loadScriptString(rnemdObjectSelection_); | 
| 584 | 
+ | 
    seleMan_.setSelectionSet(evaluator_.evaluate()); | 
| 585 | 
+ | 
    evaluatorA_.loadScriptString(selectionA_); | 
| 586 | 
+ | 
    evaluatorB_.loadScriptString(selectionB_); | 
| 587 | 
+ | 
    seleManA_.setSelectionSet(evaluatorA_.evaluate()); | 
| 588 | 
+ | 
    seleManB_.setSelectionSet(evaluatorB_.evaluate()); | 
| 589 | 
+ | 
    commonA_ = seleManA_ & seleMan_; | 
| 590 | 
+ | 
    commonB_ = seleManB_ & seleMan_;   | 
| 591 | 
  | 
  } | 
| 592 | 
< | 
    | 
| 592 | 
> | 
   | 
| 593 | 
> | 
     | 
| 594 | 
  | 
  RNEMD::~RNEMD() { | 
| 595 | 
  | 
    if (!doRNEMD_) return; | 
| 596 | 
  | 
#ifdef IS_MPI | 
| 604 | 
  | 
#ifdef IS_MPI | 
| 605 | 
  | 
    } | 
| 606 | 
  | 
#endif | 
| 607 | 
+ | 
 | 
| 608 | 
+ | 
    // delete all of the objects we created: | 
| 609 | 
+ | 
    delete areaAccumulator_;     | 
| 610 | 
+ | 
    data_.clear(); | 
| 611 | 
  | 
  } | 
| 612 | 
  | 
   | 
| 613 | 
< | 
  bool RNEMD::inSlabA(Vector3d pos) { | 
| 436 | 
< | 
    return (abs(pos.z() - slabACenter_) < 0.5*slabWidth_); | 
| 437 | 
< | 
  } | 
| 438 | 
< | 
  bool RNEMD::inSlabB(Vector3d pos) { | 
| 439 | 
< | 
    return (abs(pos.z() - slabBCenter_) < 0.5*slabWidth_); | 
| 440 | 
< | 
  } | 
| 441 | 
< | 
 | 
| 442 | 
< | 
  void RNEMD::doSwap() { | 
| 613 | 
> | 
  void RNEMD::doSwap(SelectionManager& smanA, SelectionManager& smanB) { | 
| 614 | 
  | 
    if (!doRNEMD_) return; | 
| 615 | 
+ | 
    int selei; | 
| 616 | 
+ | 
    int selej; | 
| 617 | 
+ | 
 | 
| 618 | 
  | 
    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 619 | 
  | 
    Mat3x3d hmat = currentSnap_->getHmat(); | 
| 620 | 
  | 
 | 
| 447 | 
– | 
    seleMan_.setSelectionSet(evaluator_.evaluate()); | 
| 448 | 
– | 
 | 
| 449 | 
– | 
    int selei; | 
| 621 | 
  | 
    StuntDouble* sd; | 
| 451 | 
– | 
    int idx; | 
| 622 | 
  | 
 | 
| 623 | 
  | 
    RealType min_val; | 
| 624 | 
  | 
    bool min_found = false;    | 
| 628 | 
  | 
    bool max_found = false; | 
| 629 | 
  | 
    StuntDouble* max_sd; | 
| 630 | 
  | 
 | 
| 631 | 
< | 
    for (sd = seleMan_.beginSelected(selei); sd != NULL;  | 
| 632 | 
< | 
         sd = seleMan_.nextSelected(selei)) { | 
| 631 | 
> | 
    for (sd = seleManA_.beginSelected(selei); sd != NULL;  | 
| 632 | 
> | 
         sd = seleManA_.nextSelected(selei)) { | 
| 633 | 
  | 
 | 
| 464 | 
– | 
      idx = sd->getLocalIndex(); | 
| 465 | 
– | 
 | 
| 634 | 
  | 
      Vector3d pos = sd->getPos(); | 
| 635 | 
< | 
 | 
| 635 | 
> | 
       | 
| 636 | 
  | 
      // wrap the stuntdouble's position back into the box: | 
| 637 | 
< | 
 | 
| 637 | 
> | 
       | 
| 638 | 
  | 
      if (usePeriodicBoundaryConditions_) | 
| 639 | 
  | 
        currentSnap_->wrapVector(pos); | 
| 640 | 
< | 
      bool inA = inSlabA(pos); | 
| 641 | 
< | 
      bool inB = inSlabB(pos); | 
| 642 | 
< | 
 | 
| 643 | 
< | 
      if (inA || inB) { | 
| 640 | 
> | 
       | 
| 641 | 
> | 
      RealType mass = sd->getMass(); | 
| 642 | 
> | 
      Vector3d vel = sd->getVel(); | 
| 643 | 
> | 
      RealType value; | 
| 644 | 
> | 
       | 
| 645 | 
> | 
      switch(rnemdFluxType_) { | 
| 646 | 
> | 
      case rnemdKE : | 
| 647 | 
  | 
         | 
| 648 | 
< | 
        RealType mass = sd->getMass(); | 
| 649 | 
< | 
        Vector3d vel = sd->getVel(); | 
| 650 | 
< | 
        RealType value; | 
| 651 | 
< | 
         | 
| 652 | 
< | 
        switch(rnemdFluxType_) { | 
| 482 | 
< | 
        case rnemdKE : | 
| 648 | 
> | 
        value = mass * vel.lengthSquare(); | 
| 649 | 
> | 
         | 
| 650 | 
> | 
        if (sd->isDirectional()) { | 
| 651 | 
> | 
          Vector3d angMom = sd->getJ(); | 
| 652 | 
> | 
          Mat3x3d I = sd->getI(); | 
| 653 | 
  | 
           | 
| 654 | 
< | 
          value = mass * vel.lengthSquare(); | 
| 655 | 
< | 
           | 
| 656 | 
< | 
          if (sd->isDirectional()) { | 
| 657 | 
< | 
            Vector3d angMom = sd->getJ(); | 
| 658 | 
< | 
            Mat3x3d I = sd->getI(); | 
| 659 | 
< | 
             | 
| 660 | 
< | 
            if (sd->isLinear()) { | 
| 661 | 
< | 
              int i = sd->linearAxis(); | 
| 662 | 
< | 
              int j = (i + 1) % 3; | 
| 663 | 
< | 
              int k = (i + 2) % 3; | 
| 664 | 
< | 
              value += angMom[j] * angMom[j] / I(j, j) +  | 
| 665 | 
< | 
                angMom[k] * angMom[k] / I(k, k); | 
| 666 | 
< | 
            } else {                         | 
| 667 | 
< | 
              value += angMom[0]*angMom[0]/I(0, 0)  | 
| 668 | 
< | 
                + angMom[1]*angMom[1]/I(1, 1)  | 
| 669 | 
< | 
                + angMom[2]*angMom[2]/I(2, 2); | 
| 670 | 
< | 
            } | 
| 671 | 
< | 
          } //angular momenta exchange enabled | 
| 672 | 
< | 
          value *= 0.5; | 
| 673 | 
< | 
          break; | 
| 674 | 
< | 
        case rnemdPx : | 
| 675 | 
< | 
          value = mass * vel[0]; | 
| 676 | 
< | 
          break; | 
| 677 | 
< | 
        case rnemdPy : | 
| 678 | 
< | 
          value = mass * vel[1]; | 
| 679 | 
< | 
          break; | 
| 680 | 
< | 
        case rnemdPz : | 
| 681 | 
< | 
          value = mass * vel[2]; | 
| 682 | 
< | 
          break; | 
| 683 | 
< | 
        default : | 
| 684 | 
< | 
          break; | 
| 654 | 
> | 
          if (sd->isLinear()) { | 
| 655 | 
> | 
            int i = sd->linearAxis(); | 
| 656 | 
> | 
            int j = (i + 1) % 3; | 
| 657 | 
> | 
            int k = (i + 2) % 3; | 
| 658 | 
> | 
            value += angMom[j] * angMom[j] / I(j, j) +  | 
| 659 | 
> | 
              angMom[k] * angMom[k] / I(k, k); | 
| 660 | 
> | 
          } else {                         | 
| 661 | 
> | 
            value += angMom[0]*angMom[0]/I(0, 0)  | 
| 662 | 
> | 
              + angMom[1]*angMom[1]/I(1, 1)  | 
| 663 | 
> | 
              + angMom[2]*angMom[2]/I(2, 2); | 
| 664 | 
> | 
          } | 
| 665 | 
> | 
        } //angular momenta exchange enabled | 
| 666 | 
> | 
        value *= 0.5; | 
| 667 | 
> | 
        break; | 
| 668 | 
> | 
      case rnemdPx : | 
| 669 | 
> | 
        value = mass * vel[0]; | 
| 670 | 
> | 
        break; | 
| 671 | 
> | 
      case rnemdPy : | 
| 672 | 
> | 
        value = mass * vel[1]; | 
| 673 | 
> | 
        break; | 
| 674 | 
> | 
      case rnemdPz : | 
| 675 | 
> | 
        value = mass * vel[2]; | 
| 676 | 
> | 
        break; | 
| 677 | 
> | 
      default : | 
| 678 | 
> | 
        break; | 
| 679 | 
> | 
      } | 
| 680 | 
> | 
      if (!max_found) { | 
| 681 | 
> | 
        max_val = value; | 
| 682 | 
> | 
        max_sd = sd; | 
| 683 | 
> | 
        max_found = true; | 
| 684 | 
> | 
      } else { | 
| 685 | 
> | 
        if (max_val < value) { | 
| 686 | 
> | 
          max_val = value; | 
| 687 | 
> | 
          max_sd = sd; | 
| 688 | 
  | 
        } | 
| 689 | 
+ | 
      }    | 
| 690 | 
+ | 
    } | 
| 691 | 
  | 
         | 
| 692 | 
< | 
        if (inA == 0) { | 
| 693 | 
< | 
          if (!min_found) { | 
| 694 | 
< | 
            min_val = value; | 
| 695 | 
< | 
            min_sd = sd; | 
| 696 | 
< | 
            min_found = true; | 
| 697 | 
< | 
          } else { | 
| 698 | 
< | 
            if (min_val > value) { | 
| 699 | 
< | 
              min_val = value; | 
| 700 | 
< | 
              min_sd = sd; | 
| 701 | 
< | 
            } | 
| 702 | 
< | 
          } | 
| 703 | 
< | 
        } else {  | 
| 704 | 
< | 
          if (!max_found) { | 
| 705 | 
< | 
            max_val = value; | 
| 706 | 
< | 
            max_sd = sd; | 
| 707 | 
< | 
            max_found = true; | 
| 708 | 
< | 
          } else { | 
| 709 | 
< | 
            if (max_val < value) { | 
| 710 | 
< | 
              max_val = value; | 
| 711 | 
< | 
              max_sd = sd; | 
| 712 | 
< | 
            } | 
| 713 | 
< | 
          }        | 
| 714 | 
< | 
        } | 
| 692 | 
> | 
    for (sd = seleManB_.beginSelected(selej); sd != NULL;  | 
| 693 | 
> | 
         sd = seleManB_.nextSelected(selej)) { | 
| 694 | 
> | 
 | 
| 695 | 
> | 
      Vector3d pos = sd->getPos(); | 
| 696 | 
> | 
       | 
| 697 | 
> | 
      // wrap the stuntdouble's position back into the box: | 
| 698 | 
> | 
       | 
| 699 | 
> | 
      if (usePeriodicBoundaryConditions_) | 
| 700 | 
> | 
        currentSnap_->wrapVector(pos); | 
| 701 | 
> | 
       | 
| 702 | 
> | 
      RealType mass = sd->getMass(); | 
| 703 | 
> | 
      Vector3d vel = sd->getVel(); | 
| 704 | 
> | 
      RealType value; | 
| 705 | 
> | 
       | 
| 706 | 
> | 
      switch(rnemdFluxType_) { | 
| 707 | 
> | 
      case rnemdKE : | 
| 708 | 
> | 
         | 
| 709 | 
> | 
        value = mass * vel.lengthSquare(); | 
| 710 | 
> | 
         | 
| 711 | 
> | 
        if (sd->isDirectional()) { | 
| 712 | 
> | 
          Vector3d angMom = sd->getJ(); | 
| 713 | 
> | 
          Mat3x3d I = sd->getI(); | 
| 714 | 
> | 
           | 
| 715 | 
> | 
          if (sd->isLinear()) { | 
| 716 | 
> | 
            int i = sd->linearAxis(); | 
| 717 | 
> | 
            int j = (i + 1) % 3; | 
| 718 | 
> | 
            int k = (i + 2) % 3; | 
| 719 | 
> | 
            value += angMom[j] * angMom[j] / I(j, j) +  | 
| 720 | 
> | 
              angMom[k] * angMom[k] / I(k, k); | 
| 721 | 
> | 
          } else {                         | 
| 722 | 
> | 
            value += angMom[0]*angMom[0]/I(0, 0)  | 
| 723 | 
> | 
              + angMom[1]*angMom[1]/I(1, 1)  | 
| 724 | 
> | 
              + angMom[2]*angMom[2]/I(2, 2); | 
| 725 | 
> | 
          } | 
| 726 | 
> | 
        } //angular momenta exchange enabled | 
| 727 | 
> | 
        value *= 0.5; | 
| 728 | 
> | 
        break; | 
| 729 | 
> | 
      case rnemdPx : | 
| 730 | 
> | 
        value = mass * vel[0]; | 
| 731 | 
> | 
        break; | 
| 732 | 
> | 
      case rnemdPy : | 
| 733 | 
> | 
        value = mass * vel[1]; | 
| 734 | 
> | 
        break; | 
| 735 | 
> | 
      case rnemdPz : | 
| 736 | 
> | 
        value = mass * vel[2]; | 
| 737 | 
> | 
        break; | 
| 738 | 
> | 
      default : | 
| 739 | 
> | 
        break; | 
| 740 | 
  | 
      } | 
| 741 | 
+ | 
       | 
| 742 | 
+ | 
      if (!min_found) { | 
| 743 | 
+ | 
        min_val = value; | 
| 744 | 
+ | 
        min_sd = sd; | 
| 745 | 
+ | 
        min_found = true; | 
| 746 | 
+ | 
      } else { | 
| 747 | 
+ | 
        if (min_val > value) { | 
| 748 | 
+ | 
          min_val = value; | 
| 749 | 
+ | 
          min_sd = sd; | 
| 750 | 
+ | 
        } | 
| 751 | 
+ | 
      } | 
| 752 | 
  | 
    } | 
| 753 | 
  | 
     | 
| 754 | 
< | 
#ifdef IS_MPI | 
| 755 | 
< | 
    int nProc, worldRank; | 
| 754 | 
> | 
#ifdef IS_MPI     | 
| 755 | 
> | 
    int worldRank = MPI::COMM_WORLD.Get_rank(); | 
| 756 | 
  | 
     | 
| 546 | 
– | 
    nProc = MPI::COMM_WORLD.Get_size(); | 
| 547 | 
– | 
    worldRank = MPI::COMM_WORLD.Get_rank(); | 
| 548 | 
– | 
 | 
| 757 | 
  | 
    bool my_min_found = min_found; | 
| 758 | 
  | 
    bool my_max_found = max_found; | 
| 759 | 
  | 
 | 
| 977 | 
  | 
    }     | 
| 978 | 
  | 
  } | 
| 979 | 
  | 
   | 
| 980 | 
< | 
  void RNEMD::doNIVS() { | 
| 980 | 
> | 
  void RNEMD::doNIVS(SelectionManager& smanA, SelectionManager& smanB) { | 
| 981 | 
  | 
    if (!doRNEMD_) return; | 
| 982 | 
+ | 
    int selei; | 
| 983 | 
+ | 
    int selej; | 
| 984 | 
+ | 
 | 
| 985 | 
  | 
    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 986 | 
+ | 
    RealType time = currentSnap_->getTime();      | 
| 987 | 
  | 
    Mat3x3d hmat = currentSnap_->getHmat(); | 
| 988 | 
  | 
 | 
| 777 | 
– | 
    seleMan_.setSelectionSet(evaluator_.evaluate()); | 
| 778 | 
– | 
 | 
| 779 | 
– | 
    int selei; | 
| 989 | 
  | 
    StuntDouble* sd; | 
| 781 | 
– | 
    int idx; | 
| 990 | 
  | 
 | 
| 991 | 
  | 
    vector<StuntDouble*> hotBin, coldBin; | 
| 992 | 
  | 
 | 
| 1005 | 
  | 
    RealType Kcz = 0.0; | 
| 1006 | 
  | 
    RealType Kcw = 0.0; | 
| 1007 | 
  | 
 | 
| 1008 | 
< | 
    for (sd = seleMan_.beginSelected(selei); sd != NULL;  | 
| 1009 | 
< | 
         sd = seleMan_.nextSelected(selei)) { | 
| 1008 | 
> | 
    for (sd = smanA.beginSelected(selei); sd != NULL;  | 
| 1009 | 
> | 
         sd = smanA.nextSelected(selei)) { | 
| 1010 | 
  | 
 | 
| 803 | 
– | 
      idx = sd->getLocalIndex(); | 
| 804 | 
– | 
 | 
| 1011 | 
  | 
      Vector3d pos = sd->getPos(); | 
| 1012 | 
< | 
 | 
| 1012 | 
> | 
       | 
| 1013 | 
  | 
      // wrap the stuntdouble's position back into the box: | 
| 1014 | 
< | 
 | 
| 1014 | 
> | 
       | 
| 1015 | 
  | 
      if (usePeriodicBoundaryConditions_) | 
| 1016 | 
  | 
        currentSnap_->wrapVector(pos); | 
| 1017 | 
< | 
 | 
| 1018 | 
< | 
      // which bin is this stuntdouble in? | 
| 1019 | 
< | 
      bool inA = inSlabA(pos); | 
| 1020 | 
< | 
      bool inB = inSlabB(pos); | 
| 1017 | 
> | 
       | 
| 1018 | 
> | 
       | 
| 1019 | 
> | 
      RealType mass = sd->getMass(); | 
| 1020 | 
> | 
      Vector3d vel = sd->getVel(); | 
| 1021 | 
> | 
       | 
| 1022 | 
> | 
      hotBin.push_back(sd); | 
| 1023 | 
> | 
      Phx += mass * vel.x(); | 
| 1024 | 
> | 
      Phy += mass * vel.y(); | 
| 1025 | 
> | 
      Phz += mass * vel.z(); | 
| 1026 | 
> | 
      Khx += mass * vel.x() * vel.x(); | 
| 1027 | 
> | 
      Khy += mass * vel.y() * vel.y(); | 
| 1028 | 
> | 
      Khz += mass * vel.z() * vel.z(); | 
| 1029 | 
> | 
      if (sd->isDirectional()) { | 
| 1030 | 
> | 
        Vector3d angMom = sd->getJ(); | 
| 1031 | 
> | 
        Mat3x3d I = sd->getI(); | 
| 1032 | 
> | 
        if (sd->isLinear()) { | 
| 1033 | 
> | 
          int i = sd->linearAxis(); | 
| 1034 | 
> | 
          int j = (i + 1) % 3; | 
| 1035 | 
> | 
          int k = (i + 2) % 3; | 
| 1036 | 
> | 
          Khw += angMom[j] * angMom[j] / I(j, j) + | 
| 1037 | 
> | 
            angMom[k] * angMom[k] / I(k, k); | 
| 1038 | 
> | 
        } else { | 
| 1039 | 
> | 
          Khw += angMom[0]*angMom[0]/I(0, 0) | 
| 1040 | 
> | 
            + angMom[1]*angMom[1]/I(1, 1) | 
| 1041 | 
> | 
            + angMom[2]*angMom[2]/I(2, 2); | 
| 1042 | 
> | 
        } | 
| 1043 | 
> | 
      } | 
| 1044 | 
> | 
    } | 
| 1045 | 
> | 
    for (sd = smanB.beginSelected(selej); sd != NULL;  | 
| 1046 | 
> | 
         sd = smanB.nextSelected(selej)) { | 
| 1047 | 
> | 
      Vector3d pos = sd->getPos(); | 
| 1048 | 
> | 
       | 
| 1049 | 
> | 
      // wrap the stuntdouble's position back into the box: | 
| 1050 | 
> | 
       | 
| 1051 | 
> | 
      if (usePeriodicBoundaryConditions_) | 
| 1052 | 
> | 
        currentSnap_->wrapVector(pos); | 
| 1053 | 
> | 
             | 
| 1054 | 
> | 
      RealType mass = sd->getMass(); | 
| 1055 | 
> | 
      Vector3d vel = sd->getVel(); | 
| 1056 | 
  | 
 | 
| 1057 | 
< | 
      if (inA || inB) { | 
| 1058 | 
< | 
                | 
| 1059 | 
< | 
        RealType mass = sd->getMass(); | 
| 1060 | 
< | 
        Vector3d vel = sd->getVel(); | 
| 1061 | 
< | 
        | 
| 1062 | 
< | 
        if (inA) { | 
| 1063 | 
< | 
          hotBin.push_back(sd); | 
| 1064 | 
< | 
          Phx += mass * vel.x(); | 
| 1065 | 
< | 
          Phy += mass * vel.y(); | 
| 1066 | 
< | 
          Phz += mass * vel.z(); | 
| 1067 | 
< | 
          Khx += mass * vel.x() * vel.x(); | 
| 1068 | 
< | 
          Khy += mass * vel.y() * vel.y(); | 
| 1069 | 
< | 
          Khz += mass * vel.z() * vel.z(); | 
| 1070 | 
< | 
          if (sd->isDirectional()) { | 
| 1071 | 
< | 
            Vector3d angMom = sd->getJ(); | 
| 1072 | 
< | 
            Mat3x3d I = sd->getI(); | 
| 1073 | 
< | 
            if (sd->isLinear()) { | 
| 1074 | 
< | 
              int i = sd->linearAxis(); | 
| 1075 | 
< | 
              int j = (i + 1) % 3; | 
| 1076 | 
< | 
              int k = (i + 2) % 3; | 
| 1077 | 
< | 
              Khw += angMom[j] * angMom[j] / I(j, j) + | 
| 837 | 
< | 
                angMom[k] * angMom[k] / I(k, k); | 
| 838 | 
< | 
            } else { | 
| 839 | 
< | 
              Khw += angMom[0]*angMom[0]/I(0, 0) | 
| 840 | 
< | 
                + angMom[1]*angMom[1]/I(1, 1) | 
| 841 | 
< | 
                + angMom[2]*angMom[2]/I(2, 2); | 
| 842 | 
< | 
            } | 
| 843 | 
< | 
          } | 
| 844 | 
< | 
        } else {  | 
| 845 | 
< | 
          coldBin.push_back(sd); | 
| 846 | 
< | 
          Pcx += mass * vel.x(); | 
| 847 | 
< | 
          Pcy += mass * vel.y(); | 
| 848 | 
< | 
          Pcz += mass * vel.z(); | 
| 849 | 
< | 
          Kcx += mass * vel.x() * vel.x(); | 
| 850 | 
< | 
          Kcy += mass * vel.y() * vel.y(); | 
| 851 | 
< | 
          Kcz += mass * vel.z() * vel.z(); | 
| 852 | 
< | 
          if (sd->isDirectional()) { | 
| 853 | 
< | 
            Vector3d angMom = sd->getJ(); | 
| 854 | 
< | 
            Mat3x3d I = sd->getI(); | 
| 855 | 
< | 
            if (sd->isLinear()) { | 
| 856 | 
< | 
              int i = sd->linearAxis(); | 
| 857 | 
< | 
              int j = (i + 1) % 3; | 
| 858 | 
< | 
              int k = (i + 2) % 3; | 
| 859 | 
< | 
              Kcw += angMom[j] * angMom[j] / I(j, j) + | 
| 860 | 
< | 
                angMom[k] * angMom[k] / I(k, k); | 
| 861 | 
< | 
            } else { | 
| 862 | 
< | 
              Kcw += angMom[0]*angMom[0]/I(0, 0) | 
| 863 | 
< | 
                + angMom[1]*angMom[1]/I(1, 1) | 
| 864 | 
< | 
                + angMom[2]*angMom[2]/I(2, 2); | 
| 865 | 
< | 
            } | 
| 866 | 
< | 
          } | 
| 867 | 
< | 
        } | 
| 1057 | 
> | 
      coldBin.push_back(sd); | 
| 1058 | 
> | 
      Pcx += mass * vel.x(); | 
| 1059 | 
> | 
      Pcy += mass * vel.y(); | 
| 1060 | 
> | 
      Pcz += mass * vel.z(); | 
| 1061 | 
> | 
      Kcx += mass * vel.x() * vel.x(); | 
| 1062 | 
> | 
      Kcy += mass * vel.y() * vel.y(); | 
| 1063 | 
> | 
      Kcz += mass * vel.z() * vel.z(); | 
| 1064 | 
> | 
      if (sd->isDirectional()) { | 
| 1065 | 
> | 
        Vector3d angMom = sd->getJ(); | 
| 1066 | 
> | 
        Mat3x3d I = sd->getI(); | 
| 1067 | 
> | 
        if (sd->isLinear()) { | 
| 1068 | 
> | 
          int i = sd->linearAxis(); | 
| 1069 | 
> | 
          int j = (i + 1) % 3; | 
| 1070 | 
> | 
          int k = (i + 2) % 3; | 
| 1071 | 
> | 
          Kcw += angMom[j] * angMom[j] / I(j, j) + | 
| 1072 | 
> | 
            angMom[k] * angMom[k] / I(k, k); | 
| 1073 | 
> | 
        } else { | 
| 1074 | 
> | 
          Kcw += angMom[0]*angMom[0]/I(0, 0) | 
| 1075 | 
> | 
            + angMom[1]*angMom[1]/I(1, 1) | 
| 1076 | 
> | 
            + angMom[2]*angMom[2]/I(2, 2); | 
| 1077 | 
> | 
        } | 
| 1078 | 
  | 
      } | 
| 1079 | 
  | 
    } | 
| 1080 | 
  | 
     | 
| 1151 | 
  | 
          //if w is in the right range, so should be x, y, z. | 
| 1152 | 
  | 
          vector<StuntDouble*>::iterator sdi; | 
| 1153 | 
  | 
          Vector3d vel; | 
| 1154 | 
< | 
          for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) { | 
| 1154 | 
> | 
          for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) { | 
| 1155 | 
  | 
            if (rnemdFluxType_ == rnemdFullKE) { | 
| 1156 | 
  | 
              vel = (*sdi)->getVel() * c; | 
| 1157 | 
  | 
              (*sdi)->setVel(vel); | 
| 1162 | 
  | 
            } | 
| 1163 | 
  | 
          } | 
| 1164 | 
  | 
          w = sqrt(w); | 
| 1165 | 
< | 
          for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) { | 
| 1165 | 
> | 
          for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) { | 
| 1166 | 
  | 
            if (rnemdFluxType_ == rnemdFullKE) { | 
| 1167 | 
  | 
              vel = (*sdi)->getVel(); | 
| 1168 | 
  | 
              vel.x() *= x; | 
| 1281 | 
  | 
      vector<RealType>::iterator ri; | 
| 1282 | 
  | 
      RealType r1, r2, alpha0; | 
| 1283 | 
  | 
      vector<pair<RealType,RealType> > rps; | 
| 1284 | 
< | 
      for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) { | 
| 1284 | 
> | 
      for (ri = realRoots.begin(); ri !=realRoots.end(); ++ri) { | 
| 1285 | 
  | 
        r2 = *ri; | 
| 1286 | 
  | 
        //check if FindRealRoots() give the right answer | 
| 1287 | 
  | 
        if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) { | 
| 1313 | 
  | 
        RealType diff; | 
| 1314 | 
  | 
        pair<RealType,RealType> bestPair = make_pair(1.0, 1.0); | 
| 1315 | 
  | 
        vector<pair<RealType,RealType> >::iterator rpi; | 
| 1316 | 
< | 
        for (rpi = rps.begin(); rpi != rps.end(); rpi++) { | 
| 1316 | 
> | 
        for (rpi = rps.begin(); rpi != rps.end(); ++rpi) { | 
| 1317 | 
  | 
          r1 = (*rpi).first; | 
| 1318 | 
  | 
          r2 = (*rpi).second; | 
| 1319 | 
  | 
          switch(rnemdFluxType_) { | 
| 1380 | 
  | 
        } | 
| 1381 | 
  | 
        vector<StuntDouble*>::iterator sdi; | 
| 1382 | 
  | 
        Vector3d vel; | 
| 1383 | 
< | 
        for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) { | 
| 1383 | 
> | 
        for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) { | 
| 1384 | 
  | 
          vel = (*sdi)->getVel(); | 
| 1385 | 
  | 
          vel.x() *= x; | 
| 1386 | 
  | 
          vel.y() *= y; | 
| 1391 | 
  | 
        x = 1.0 + px * (1.0 - x); | 
| 1392 | 
  | 
        y = 1.0 + py * (1.0 - y); | 
| 1393 | 
  | 
        z = 1.0 + pz * (1.0 - z); | 
| 1394 | 
< | 
        for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) { | 
| 1394 | 
> | 
        for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) { | 
| 1395 | 
  | 
          vel = (*sdi)->getVel(); | 
| 1396 | 
  | 
          vel.x() *= x; | 
| 1397 | 
  | 
          vel.y() *= y; | 
| 1424 | 
  | 
      failTrialCount_++; | 
| 1425 | 
  | 
    } | 
| 1426 | 
  | 
  } | 
| 1427 | 
< | 
 | 
| 1428 | 
< | 
  void RNEMD::doVSS() { | 
| 1427 | 
> | 
   | 
| 1428 | 
> | 
  void RNEMD::doVSS(SelectionManager& smanA, SelectionManager& smanB) { | 
| 1429 | 
  | 
    if (!doRNEMD_) return; | 
| 1430 | 
+ | 
    int selei; | 
| 1431 | 
+ | 
    int selej; | 
| 1432 | 
+ | 
 | 
| 1433 | 
  | 
    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 1434 | 
  | 
    RealType time = currentSnap_->getTime();      | 
| 1435 | 
  | 
    Mat3x3d hmat = currentSnap_->getHmat(); | 
| 1436 | 
  | 
 | 
| 1224 | 
– | 
    seleMan_.setSelectionSet(evaluator_.evaluate()); | 
| 1225 | 
– | 
 | 
| 1226 | 
– | 
    int selei; | 
| 1437 | 
  | 
    StuntDouble* sd; | 
| 1228 | 
– | 
    int idx; | 
| 1438 | 
  | 
 | 
| 1439 | 
  | 
    vector<StuntDouble*> hotBin, coldBin; | 
| 1440 | 
  | 
 | 
| 1441 | 
  | 
    Vector3d Ph(V3Zero); | 
| 1442 | 
+ | 
    Vector3d Lh(V3Zero); | 
| 1443 | 
  | 
    RealType Mh = 0.0; | 
| 1444 | 
+ | 
    Mat3x3d Ih(0.0); | 
| 1445 | 
  | 
    RealType Kh = 0.0; | 
| 1446 | 
  | 
    Vector3d Pc(V3Zero); | 
| 1447 | 
+ | 
    Vector3d Lc(V3Zero); | 
| 1448 | 
  | 
    RealType Mc = 0.0; | 
| 1449 | 
+ | 
    Mat3x3d Ic(0.0); | 
| 1450 | 
  | 
    RealType Kc = 0.0; | 
| 1238 | 
– | 
     | 
| 1451 | 
  | 
 | 
| 1452 | 
< | 
    for (sd = seleMan_.beginSelected(selei); sd != NULL;  | 
| 1453 | 
< | 
         sd = seleMan_.nextSelected(selei)) { | 
| 1452 | 
> | 
    // Constraints can be on only the linear or angular momentum, but | 
| 1453 | 
> | 
    // not both.  Usually, the user will specify which they want, but | 
| 1454 | 
> | 
    // in case they don't, the use of periodic boundaries should make | 
| 1455 | 
> | 
    // the choice for us. | 
| 1456 | 
> | 
    bool doLinearPart = false; | 
| 1457 | 
> | 
    bool doAngularPart = false; | 
| 1458 | 
  | 
 | 
| 1459 | 
< | 
      idx = sd->getLocalIndex(); | 
| 1459 | 
> | 
    switch (rnemdFluxType_) { | 
| 1460 | 
> | 
    case rnemdPx: | 
| 1461 | 
> | 
    case rnemdPy: | 
| 1462 | 
> | 
    case rnemdPz: | 
| 1463 | 
> | 
    case rnemdPvector: | 
| 1464 | 
> | 
    case rnemdKePx: | 
| 1465 | 
> | 
    case rnemdKePy: | 
| 1466 | 
> | 
    case rnemdKePvector: | 
| 1467 | 
> | 
      doLinearPart = true; | 
| 1468 | 
> | 
      break; | 
| 1469 | 
> | 
    case rnemdLx: | 
| 1470 | 
> | 
    case rnemdLy: | 
| 1471 | 
> | 
    case rnemdLz: | 
| 1472 | 
> | 
    case rnemdLvector: | 
| 1473 | 
> | 
    case rnemdKeLx: | 
| 1474 | 
> | 
    case rnemdKeLy: | 
| 1475 | 
> | 
    case rnemdKeLz: | 
| 1476 | 
> | 
    case rnemdKeLvector: | 
| 1477 | 
> | 
      doAngularPart = true; | 
| 1478 | 
> | 
      break; | 
| 1479 | 
> | 
    case rnemdKE: | 
| 1480 | 
> | 
    case rnemdRotKE: | 
| 1481 | 
> | 
    case rnemdFullKE: | 
| 1482 | 
> | 
    default: | 
| 1483 | 
> | 
      if (usePeriodicBoundaryConditions_)  | 
| 1484 | 
> | 
        doLinearPart = true; | 
| 1485 | 
> | 
      else | 
| 1486 | 
> | 
        doAngularPart = true; | 
| 1487 | 
> | 
      break; | 
| 1488 | 
> | 
    } | 
| 1489 | 
> | 
     | 
| 1490 | 
> | 
    for (sd = smanA.beginSelected(selei); sd != NULL;  | 
| 1491 | 
> | 
         sd = smanA.nextSelected(selei)) { | 
| 1492 | 
  | 
 | 
| 1493 | 
  | 
      Vector3d pos = sd->getPos(); | 
| 1494 | 
  | 
 | 
| 1495 | 
  | 
      // wrap the stuntdouble's position back into the box: | 
| 1496 | 
+ | 
       | 
| 1497 | 
+ | 
      if (usePeriodicBoundaryConditions_) | 
| 1498 | 
+ | 
        currentSnap_->wrapVector(pos); | 
| 1499 | 
+ | 
       | 
| 1500 | 
+ | 
      RealType mass = sd->getMass(); | 
| 1501 | 
+ | 
      Vector3d vel = sd->getVel(); | 
| 1502 | 
+ | 
      Vector3d rPos = sd->getPos() - coordinateOrigin_; | 
| 1503 | 
+ | 
      RealType r2; | 
| 1504 | 
+ | 
       | 
| 1505 | 
+ | 
      hotBin.push_back(sd); | 
| 1506 | 
+ | 
      Ph += mass * vel; | 
| 1507 | 
+ | 
      Mh += mass; | 
| 1508 | 
+ | 
      Kh += mass * vel.lengthSquare(); | 
| 1509 | 
+ | 
      Lh += mass * cross(rPos, vel); | 
| 1510 | 
+ | 
      Ih -= outProduct(rPos, rPos) * mass; | 
| 1511 | 
+ | 
      r2 = rPos.lengthSquare(); | 
| 1512 | 
+ | 
      Ih(0, 0) += mass * r2; | 
| 1513 | 
+ | 
      Ih(1, 1) += mass * r2; | 
| 1514 | 
+ | 
      Ih(2, 2) += mass * r2; | 
| 1515 | 
+ | 
       | 
| 1516 | 
+ | 
      if (rnemdFluxType_ == rnemdFullKE) { | 
| 1517 | 
+ | 
        if (sd->isDirectional()) { | 
| 1518 | 
+ | 
          Vector3d angMom = sd->getJ(); | 
| 1519 | 
+ | 
          Mat3x3d I = sd->getI(); | 
| 1520 | 
+ | 
          if (sd->isLinear()) { | 
| 1521 | 
+ | 
            int i = sd->linearAxis(); | 
| 1522 | 
+ | 
            int j = (i + 1) % 3; | 
| 1523 | 
+ | 
            int k = (i + 2) % 3; | 
| 1524 | 
+ | 
            Kh += angMom[j] * angMom[j] / I(j, j) + | 
| 1525 | 
+ | 
              angMom[k] * angMom[k] / I(k, k); | 
| 1526 | 
+ | 
          } else { | 
| 1527 | 
+ | 
            Kh += angMom[0] * angMom[0] / I(0, 0) + | 
| 1528 | 
+ | 
              angMom[1] * angMom[1] / I(1, 1) + | 
| 1529 | 
+ | 
              angMom[2] * angMom[2] / I(2, 2); | 
| 1530 | 
+ | 
          } | 
| 1531 | 
+ | 
        } | 
| 1532 | 
+ | 
      } | 
| 1533 | 
+ | 
    } | 
| 1534 | 
+ | 
    for (sd = smanB.beginSelected(selej); sd != NULL;  | 
| 1535 | 
+ | 
         sd = smanB.nextSelected(selej)) { | 
| 1536 | 
  | 
 | 
| 1537 | 
+ | 
      Vector3d pos = sd->getPos(); | 
| 1538 | 
+ | 
       | 
| 1539 | 
+ | 
      // wrap the stuntdouble's position back into the box: | 
| 1540 | 
+ | 
       | 
| 1541 | 
  | 
      if (usePeriodicBoundaryConditions_) | 
| 1542 | 
  | 
        currentSnap_->wrapVector(pos); | 
| 1543 | 
+ | 
       | 
| 1544 | 
+ | 
      RealType mass = sd->getMass(); | 
| 1545 | 
+ | 
      Vector3d vel = sd->getVel(); | 
| 1546 | 
+ | 
      Vector3d rPos = sd->getPos() - coordinateOrigin_; | 
| 1547 | 
+ | 
      RealType r2; | 
| 1548 | 
  | 
 | 
| 1549 | 
< | 
      // which bin is this stuntdouble in? | 
| 1550 | 
< | 
      bool inA = inSlabA(pos); | 
| 1551 | 
< | 
      bool inB = inSlabB(pos); | 
| 1549 | 
> | 
      coldBin.push_back(sd); | 
| 1550 | 
> | 
      Pc += mass * vel; | 
| 1551 | 
> | 
      Mc += mass; | 
| 1552 | 
> | 
      Kc += mass * vel.lengthSquare(); | 
| 1553 | 
> | 
      Lc += mass * cross(rPos, vel); | 
| 1554 | 
> | 
      Ic -= outProduct(rPos, rPos) * mass; | 
| 1555 | 
> | 
      r2 = rPos.lengthSquare(); | 
| 1556 | 
> | 
      Ic(0, 0) += mass * r2; | 
| 1557 | 
> | 
      Ic(1, 1) += mass * r2; | 
| 1558 | 
> | 
      Ic(2, 2) += mass * r2; | 
| 1559 | 
  | 
       | 
| 1560 | 
< | 
      if (inA || inB) { | 
| 1561 | 
< | 
         | 
| 1562 | 
< | 
        RealType mass = sd->getMass(); | 
| 1563 | 
< | 
        Vector3d vel = sd->getVel(); | 
| 1564 | 
< | 
        | 
| 1565 | 
< | 
        if (inA) { | 
| 1566 | 
< | 
          hotBin.push_back(sd); | 
| 1567 | 
< | 
          Ph += mass * vel; | 
| 1568 | 
< | 
          Mh += mass; | 
| 1569 | 
< | 
          Kh += mass * vel.lengthSquare(); | 
| 1570 | 
< | 
          if (rnemdFluxType_ == rnemdFullKE) { | 
| 1571 | 
< | 
            if (sd->isDirectional()) { | 
| 1572 | 
< | 
              Vector3d angMom = sd->getJ(); | 
| 1573 | 
< | 
              Mat3x3d I = sd->getI(); | 
| 1574 | 
< | 
              if (sd->isLinear()) { | 
| 1575 | 
< | 
                int i = sd->linearAxis(); | 
| 1272 | 
< | 
                int j = (i + 1) % 3; | 
| 1273 | 
< | 
                int k = (i + 2) % 3; | 
| 1274 | 
< | 
                Kh += angMom[j] * angMom[j] / I(j, j) + | 
| 1275 | 
< | 
                  angMom[k] * angMom[k] / I(k, k); | 
| 1276 | 
< | 
              } else { | 
| 1277 | 
< | 
                Kh += angMom[0] * angMom[0] / I(0, 0) + | 
| 1278 | 
< | 
                  angMom[1] * angMom[1] / I(1, 1) + | 
| 1279 | 
< | 
                  angMom[2] * angMom[2] / I(2, 2); | 
| 1280 | 
< | 
              } | 
| 1281 | 
< | 
            } | 
| 1282 | 
< | 
          } | 
| 1283 | 
< | 
        } else { //midBin_ | 
| 1284 | 
< | 
          coldBin.push_back(sd); | 
| 1285 | 
< | 
          Pc += mass * vel; | 
| 1286 | 
< | 
          Mc += mass; | 
| 1287 | 
< | 
          Kc += mass * vel.lengthSquare(); | 
| 1288 | 
< | 
          if (rnemdFluxType_ == rnemdFullKE) { | 
| 1289 | 
< | 
            if (sd->isDirectional()) { | 
| 1290 | 
< | 
              Vector3d angMom = sd->getJ(); | 
| 1291 | 
< | 
              Mat3x3d I = sd->getI(); | 
| 1292 | 
< | 
              if (sd->isLinear()) { | 
| 1293 | 
< | 
                int i = sd->linearAxis(); | 
| 1294 | 
< | 
                int j = (i + 1) % 3; | 
| 1295 | 
< | 
                int k = (i + 2) % 3; | 
| 1296 | 
< | 
                Kc += angMom[j] * angMom[j] / I(j, j) + | 
| 1297 | 
< | 
                  angMom[k] * angMom[k] / I(k, k); | 
| 1298 | 
< | 
              } else { | 
| 1299 | 
< | 
                Kc += angMom[0] * angMom[0] / I(0, 0) + | 
| 1300 | 
< | 
                  angMom[1] * angMom[1] / I(1, 1) + | 
| 1301 | 
< | 
                  angMom[2] * angMom[2] / I(2, 2); | 
| 1302 | 
< | 
              } | 
| 1303 | 
< | 
            } | 
| 1304 | 
< | 
          } | 
| 1305 | 
< | 
        } | 
| 1560 | 
> | 
      if (rnemdFluxType_ == rnemdFullKE) { | 
| 1561 | 
> | 
        if (sd->isDirectional()) { | 
| 1562 | 
> | 
          Vector3d angMom = sd->getJ(); | 
| 1563 | 
> | 
          Mat3x3d I = sd->getI(); | 
| 1564 | 
> | 
          if (sd->isLinear()) { | 
| 1565 | 
> | 
            int i = sd->linearAxis(); | 
| 1566 | 
> | 
            int j = (i + 1) % 3; | 
| 1567 | 
> | 
            int k = (i + 2) % 3; | 
| 1568 | 
> | 
            Kc += angMom[j] * angMom[j] / I(j, j) + | 
| 1569 | 
> | 
              angMom[k] * angMom[k] / I(k, k); | 
| 1570 | 
> | 
          } else { | 
| 1571 | 
> | 
            Kc += angMom[0] * angMom[0] / I(0, 0) + | 
| 1572 | 
> | 
              angMom[1] * angMom[1] / I(1, 1) + | 
| 1573 | 
> | 
              angMom[2] * angMom[2] / I(2, 2); | 
| 1574 | 
> | 
          } | 
| 1575 | 
> | 
        } | 
| 1576 | 
  | 
      } | 
| 1577 | 
  | 
    } | 
| 1578 | 
  | 
     | 
| 1582 | 
  | 
#ifdef IS_MPI | 
| 1583 | 
  | 
    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Ph[0], 3, MPI::REALTYPE, MPI::SUM); | 
| 1584 | 
  | 
    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pc[0], 3, MPI::REALTYPE, MPI::SUM); | 
| 1585 | 
+ | 
    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Lh[0], 3, MPI::REALTYPE, MPI::SUM); | 
| 1586 | 
+ | 
    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Lc[0], 3, MPI::REALTYPE, MPI::SUM); | 
| 1587 | 
  | 
    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mh, 1, MPI::REALTYPE, MPI::SUM); | 
| 1588 | 
  | 
    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kh, 1, MPI::REALTYPE, MPI::SUM); | 
| 1589 | 
  | 
    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mc, 1, MPI::REALTYPE, MPI::SUM); | 
| 1590 | 
  | 
    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kc, 1, MPI::REALTYPE, MPI::SUM); | 
| 1591 | 
+ | 
    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, Ih.getArrayPointer(), 9,  | 
| 1592 | 
+ | 
                              MPI::REALTYPE, MPI::SUM); | 
| 1593 | 
+ | 
    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, Ic.getArrayPointer(), 9,  | 
| 1594 | 
+ | 
                              MPI::REALTYPE, MPI::SUM); | 
| 1595 | 
  | 
#endif | 
| 1596 | 
+ | 
     | 
| 1597 | 
  | 
 | 
| 1598 | 
+ | 
    Vector3d ac, acrec, bc, bcrec; | 
| 1599 | 
+ | 
    Vector3d ah, ahrec, bh, bhrec; | 
| 1600 | 
+ | 
    RealType cNumerator, cDenominator; | 
| 1601 | 
+ | 
    RealType hNumerator, hDenominator; | 
| 1602 | 
+ | 
 | 
| 1603 | 
+ | 
 | 
| 1604 | 
  | 
    bool successfulExchange = false; | 
| 1605 | 
  | 
    if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty | 
| 1606 | 
  | 
      Vector3d vc = Pc / Mc; | 
| 1607 | 
< | 
      Vector3d ac = -momentumTarget_ / Mc + vc; | 
| 1608 | 
< | 
      Vector3d acrec = -momentumTarget_ / Mc; | 
| 1609 | 
< | 
      RealType cNumerator = Kc - kineticTarget_ - 0.5 * Mc * ac.lengthSquare(); | 
| 1607 | 
> | 
      ac = -momentumTarget_ / Mc + vc; | 
| 1608 | 
> | 
      acrec = -momentumTarget_ / Mc; | 
| 1609 | 
> | 
       | 
| 1610 | 
> | 
      // We now need the inverse of the inertia tensor to calculate the  | 
| 1611 | 
> | 
      // angular velocity of the cold slab; | 
| 1612 | 
> | 
      Mat3x3d Ici = Ic.inverse(); | 
| 1613 | 
> | 
      Vector3d omegac = Ici * Lc; | 
| 1614 | 
> | 
      bc  = -(Ici * angularMomentumTarget_) + omegac; | 
| 1615 | 
> | 
      bcrec = bc - omegac; | 
| 1616 | 
> | 
       | 
| 1617 | 
> | 
      cNumerator = Kc - kineticTarget_; | 
| 1618 | 
> | 
      if (doLinearPart)  | 
| 1619 | 
> | 
        cNumerator -= 0.5 * Mc * ac.lengthSquare(); | 
| 1620 | 
> | 
       | 
| 1621 | 
> | 
      if (doAngularPart) | 
| 1622 | 
> | 
        cNumerator -= 0.5 * ( dot(bc, Ic * bc)); | 
| 1623 | 
> | 
 | 
| 1624 | 
  | 
      if (cNumerator > 0.0) { | 
| 1625 | 
< | 
        RealType cDenominator = Kc - 0.5 * Mc * vc.lengthSquare(); | 
| 1625 | 
> | 
         | 
| 1626 | 
> | 
        cDenominator = Kc; | 
| 1627 | 
> | 
 | 
| 1628 | 
> | 
        if (doLinearPart) | 
| 1629 | 
> | 
          cDenominator -= 0.5 * Mc * vc.lengthSquare(); | 
| 1630 | 
> | 
 | 
| 1631 | 
> | 
        if (doAngularPart) | 
| 1632 | 
> | 
          cDenominator -= 0.5*(dot(omegac, Ic * omegac)); | 
| 1633 | 
> | 
         | 
| 1634 | 
  | 
        if (cDenominator > 0.0) { | 
| 1635 | 
  | 
          RealType c = sqrt(cNumerator / cDenominator); | 
| 1636 | 
  | 
          if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients | 
| 1637 | 
+ | 
             | 
| 1638 | 
  | 
            Vector3d vh = Ph / Mh; | 
| 1639 | 
< | 
            Vector3d ah = momentumTarget_ / Mh + vh; | 
| 1640 | 
< | 
            Vector3d ahrec = momentumTarget_ / Mh; | 
| 1641 | 
< | 
            RealType hNumerator = Kh + kineticTarget_ | 
| 1642 | 
< | 
              - 0.5 * Mh * ah.lengthSquare(); | 
| 1643 | 
< | 
            if (hNumerator > 0.0) { | 
| 1644 | 
< | 
              RealType hDenominator = Kh - 0.5 * Mh * vh.lengthSquare(); | 
| 1639 | 
> | 
            ah = momentumTarget_ / Mh + vh; | 
| 1640 | 
> | 
            ahrec = momentumTarget_ / Mh; | 
| 1641 | 
> | 
             | 
| 1642 | 
> | 
            // We now need the inverse of the inertia tensor to | 
| 1643 | 
> | 
            // calculate the angular velocity of the hot slab; | 
| 1644 | 
> | 
            Mat3x3d Ihi = Ih.inverse(); | 
| 1645 | 
> | 
            Vector3d omegah = Ihi * Lh; | 
| 1646 | 
> | 
            bh  = (Ihi * angularMomentumTarget_) + omegah; | 
| 1647 | 
> | 
            bhrec = bh - omegah; | 
| 1648 | 
> | 
             | 
| 1649 | 
> | 
            hNumerator = Kh + kineticTarget_; | 
| 1650 | 
> | 
            if (doLinearPart)  | 
| 1651 | 
> | 
              hNumerator -= 0.5 * Mh * ah.lengthSquare(); | 
| 1652 | 
> | 
             | 
| 1653 | 
> | 
            if (doAngularPart) | 
| 1654 | 
> | 
              hNumerator -= 0.5 * ( dot(bh, Ih * bh)); | 
| 1655 | 
> | 
               | 
| 1656 | 
> | 
            if (hNumerator > 0.0) { | 
| 1657 | 
> | 
               | 
| 1658 | 
> | 
              hDenominator = Kh; | 
| 1659 | 
> | 
              if (doLinearPart)  | 
| 1660 | 
> | 
                hDenominator -= 0.5 * Mh * vh.lengthSquare(); | 
| 1661 | 
> | 
              if (doAngularPart) | 
| 1662 | 
> | 
                hDenominator -= 0.5*(dot(omegah, Ih * omegah)); | 
| 1663 | 
> | 
               | 
| 1664 | 
  | 
              if (hDenominator > 0.0) { | 
| 1665 | 
  | 
                RealType h = sqrt(hNumerator / hDenominator); | 
| 1666 | 
  | 
                if ((h > 0.9) && (h < 1.1)) { | 
| 1667 | 
< | 
 | 
| 1667 | 
> | 
                   | 
| 1668 | 
  | 
                  vector<StuntDouble*>::iterator sdi; | 
| 1669 | 
  | 
                  Vector3d vel; | 
| 1670 | 
< | 
                  for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) { | 
| 1670 | 
> | 
                  Vector3d rPos; | 
| 1671 | 
> | 
                   | 
| 1672 | 
> | 
                  for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) { | 
| 1673 | 
  | 
                    //vel = (*sdi)->getVel(); | 
| 1674 | 
< | 
                    vel = ((*sdi)->getVel() - vc) * c + ac; | 
| 1674 | 
> | 
                    rPos = (*sdi)->getPos() - coordinateOrigin_; | 
| 1675 | 
> | 
                    if (doLinearPart) | 
| 1676 | 
> | 
                      vel = ((*sdi)->getVel() - vc) * c + ac; | 
| 1677 | 
> | 
                    if (doAngularPart) | 
| 1678 | 
> | 
                      vel = ((*sdi)->getVel() - cross(omegac, rPos)) * c + cross(bc, rPos); | 
| 1679 | 
> | 
 | 
| 1680 | 
  | 
                    (*sdi)->setVel(vel); | 
| 1681 | 
  | 
                    if (rnemdFluxType_ == rnemdFullKE) { | 
| 1682 | 
  | 
                      if ((*sdi)->isDirectional()) { | 
| 1685 | 
  | 
                      } | 
| 1686 | 
  | 
                    } | 
| 1687 | 
  | 
                  } | 
| 1688 | 
< | 
                  for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) { | 
| 1688 | 
> | 
                  for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) { | 
| 1689 | 
  | 
                    //vel = (*sdi)->getVel(); | 
| 1690 | 
< | 
                    vel = ((*sdi)->getVel() - vh) * h + ah; | 
| 1690 | 
> | 
                    rPos = (*sdi)->getPos() - coordinateOrigin_; | 
| 1691 | 
> | 
                    if (doLinearPart) | 
| 1692 | 
> | 
                      vel = ((*sdi)->getVel() - vh) * h + ah;      | 
| 1693 | 
> | 
                    if (doAngularPart) | 
| 1694 | 
> | 
                      vel = ((*sdi)->getVel() - cross(omegah, rPos)) * h + cross(bh, rPos);      | 
| 1695 | 
> | 
 | 
| 1696 | 
  | 
                    (*sdi)->setVel(vel); | 
| 1697 | 
  | 
                    if (rnemdFluxType_ == rnemdFullKE) { | 
| 1698 | 
  | 
                      if ((*sdi)->isDirectional()) { | 
| 1704 | 
  | 
                  successfulExchange = true; | 
| 1705 | 
  | 
                  kineticExchange_ += kineticTarget_; | 
| 1706 | 
  | 
                  momentumExchange_ += momentumTarget_; | 
| 1707 | 
+ | 
                  angularMomentumExchange_ += angularMomentumTarget_; | 
| 1708 | 
  | 
                } | 
| 1709 | 
  | 
              } | 
| 1710 | 
  | 
            } | 
| 1724 | 
  | 
    } | 
| 1725 | 
  | 
  } | 
| 1726 | 
  | 
 | 
| 1727 | 
+ | 
  RealType RNEMD::getDividingArea() { | 
| 1728 | 
+ | 
 | 
| 1729 | 
+ | 
    if (hasDividingArea_) return dividingArea_; | 
| 1730 | 
+ | 
 | 
| 1731 | 
+ | 
    RealType areaA, areaB; | 
| 1732 | 
+ | 
    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 1733 | 
+ | 
 | 
| 1734 | 
+ | 
    if (hasSelectionA_) { | 
| 1735 | 
+ | 
      int isd; | 
| 1736 | 
+ | 
      StuntDouble* sd; | 
| 1737 | 
+ | 
      vector<StuntDouble*> aSites; | 
| 1738 | 
+ | 
      seleManA_.setSelectionSet(evaluatorA_.evaluate()); | 
| 1739 | 
+ | 
      for (sd = seleManA_.beginSelected(isd); sd != NULL;  | 
| 1740 | 
+ | 
           sd = seleManA_.nextSelected(isd)) { | 
| 1741 | 
+ | 
        aSites.push_back(sd); | 
| 1742 | 
+ | 
      } | 
| 1743 | 
+ | 
      ConvexHull* surfaceMeshA = new ConvexHull(); | 
| 1744 | 
+ | 
      surfaceMeshA->computeHull(aSites); | 
| 1745 | 
+ | 
      areaA = surfaceMeshA->getArea(); | 
| 1746 | 
+ | 
      delete surfaceMeshA; | 
| 1747 | 
+ | 
 | 
| 1748 | 
+ | 
    } else { | 
| 1749 | 
+ | 
      if (usePeriodicBoundaryConditions_) { | 
| 1750 | 
+ | 
        // in periodic boundaries, the surface area is twice the x-y | 
| 1751 | 
+ | 
        // area of the current box: | 
| 1752 | 
+ | 
        areaA = 2.0 * snap->getXYarea(); | 
| 1753 | 
+ | 
      } else { | 
| 1754 | 
+ | 
        // in non-periodic simulations, without explicitly setting | 
| 1755 | 
+ | 
        // selections, the sphere radius sets the surface area of the | 
| 1756 | 
+ | 
        // dividing surface: | 
| 1757 | 
+ | 
        areaA = 4.0 * M_PI * pow(sphereARadius_, 2); | 
| 1758 | 
+ | 
      } | 
| 1759 | 
+ | 
    } | 
| 1760 | 
+ | 
 | 
| 1761 | 
+ | 
 | 
| 1762 | 
+ | 
 | 
| 1763 | 
+ | 
    if (hasSelectionB_) { | 
| 1764 | 
+ | 
      int isd; | 
| 1765 | 
+ | 
      StuntDouble* sd; | 
| 1766 | 
+ | 
      vector<StuntDouble*> bSites; | 
| 1767 | 
+ | 
      seleManB_.setSelectionSet(evaluatorB_.evaluate()); | 
| 1768 | 
+ | 
      for (sd = seleManB_.beginSelected(isd); sd != NULL;  | 
| 1769 | 
+ | 
           sd = seleManB_.nextSelected(isd)) { | 
| 1770 | 
+ | 
        bSites.push_back(sd); | 
| 1771 | 
+ | 
      } | 
| 1772 | 
+ | 
      ConvexHull* surfaceMeshB = new ConvexHull();     | 
| 1773 | 
+ | 
      surfaceMeshB->computeHull(bSites); | 
| 1774 | 
+ | 
      areaB = surfaceMeshB->getArea(); | 
| 1775 | 
+ | 
      delete surfaceMeshB; | 
| 1776 | 
+ | 
 | 
| 1777 | 
+ | 
    } else { | 
| 1778 | 
+ | 
      if (usePeriodicBoundaryConditions_) { | 
| 1779 | 
+ | 
        // in periodic boundaries, the surface area is twice the x-y | 
| 1780 | 
+ | 
        // area of the current box: | 
| 1781 | 
+ | 
        areaB = 2.0 * snap->getXYarea(); | 
| 1782 | 
+ | 
      } else { | 
| 1783 | 
+ | 
        // in non-periodic simulations, without explicitly setting | 
| 1784 | 
+ | 
        // selections, but if a sphereBradius has been set, just use that: | 
| 1785 | 
+ | 
        areaB = 4.0 * M_PI * pow(sphereBRadius_, 2); | 
| 1786 | 
+ | 
      } | 
| 1787 | 
+ | 
    } | 
| 1788 | 
+ | 
     | 
| 1789 | 
+ | 
    dividingArea_ = min(areaA, areaB); | 
| 1790 | 
+ | 
    hasDividingArea_ = true; | 
| 1791 | 
+ | 
    return dividingArea_; | 
| 1792 | 
+ | 
  } | 
| 1793 | 
+ | 
   | 
| 1794 | 
  | 
  void RNEMD::doRNEMD() { | 
| 1795 | 
  | 
    if (!doRNEMD_) return; | 
| 1796 | 
  | 
    trialCount_++; | 
| 1797 | 
+ | 
 | 
| 1798 | 
+ | 
    // object evaluator: | 
| 1799 | 
+ | 
    evaluator_.loadScriptString(rnemdObjectSelection_); | 
| 1800 | 
+ | 
    seleMan_.setSelectionSet(evaluator_.evaluate()); | 
| 1801 | 
+ | 
 | 
| 1802 | 
+ | 
    evaluatorA_.loadScriptString(selectionA_); | 
| 1803 | 
+ | 
    evaluatorB_.loadScriptString(selectionB_); | 
| 1804 | 
+ | 
 | 
| 1805 | 
+ | 
    seleManA_.setSelectionSet(evaluatorA_.evaluate()); | 
| 1806 | 
+ | 
    seleManB_.setSelectionSet(evaluatorB_.evaluate()); | 
| 1807 | 
+ | 
 | 
| 1808 | 
+ | 
    commonA_ = seleManA_ & seleMan_; | 
| 1809 | 
+ | 
    commonB_ = seleManB_ & seleMan_; | 
| 1810 | 
+ | 
 | 
| 1811 | 
+ | 
    // Target exchange quantities (in each exchange) = dividingArea * dt * flux | 
| 1812 | 
+ | 
    // dt = exchange time interval | 
| 1813 | 
+ | 
    // flux = target flux | 
| 1814 | 
+ | 
    // dividingArea = smallest dividing surface between the two regions | 
| 1815 | 
+ | 
 | 
| 1816 | 
+ | 
    hasDividingArea_ = false; | 
| 1817 | 
+ | 
    RealType area = getDividingArea(); | 
| 1818 | 
+ | 
 | 
| 1819 | 
+ | 
    kineticTarget_ = kineticFlux_ * exchangeTime_ * area; | 
| 1820 | 
+ | 
    momentumTarget_ = momentumFluxVector_ * exchangeTime_ * area; | 
| 1821 | 
+ | 
    angularMomentumTarget_ = angularMomentumFluxVector_ * exchangeTime_ * area;  | 
| 1822 | 
+ | 
 | 
| 1823 | 
  | 
    switch(rnemdMethod_) { | 
| 1824 | 
  | 
    case rnemdSwap:  | 
| 1825 | 
< | 
      doSwap(); | 
| 1825 | 
> | 
      doSwap(commonA_, commonB_); | 
| 1826 | 
  | 
      break; | 
| 1827 | 
  | 
    case rnemdNIVS: | 
| 1828 | 
< | 
      doNIVS(); | 
| 1828 | 
> | 
      doNIVS(commonA_, commonB_); | 
| 1829 | 
  | 
      break; | 
| 1830 | 
  | 
    case rnemdVSS: | 
| 1831 | 
< | 
      doVSS(); | 
| 1831 | 
> | 
      doVSS(commonA_, commonB_); | 
| 1832 | 
  | 
      break; | 
| 1833 | 
  | 
    case rnemdUnkownMethod: | 
| 1834 | 
  | 
    default : | 
| 1839 | 
  | 
  void RNEMD::collectData() { | 
| 1840 | 
  | 
    if (!doRNEMD_) return; | 
| 1841 | 
  | 
    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 1842 | 
+ | 
     | 
| 1843 | 
+ | 
    // collectData can be called more frequently than the doRNEMD, so use the  | 
| 1844 | 
+ | 
    // computed area from the last exchange time: | 
| 1845 | 
+ | 
    RealType area = getDividingArea(); | 
| 1846 | 
+ | 
    areaAccumulator_->add(area); | 
| 1847 | 
  | 
    Mat3x3d hmat = currentSnap_->getHmat(); | 
| 1412 | 
– | 
 | 
| 1413 | 
– | 
    areaAccumulator_->add(currentSnap_->getXYarea()); | 
| 1414 | 
– | 
 | 
| 1848 | 
  | 
    seleMan_.setSelectionSet(evaluator_.evaluate()); | 
| 1849 | 
  | 
 | 
| 1850 | 
  | 
    int selei(0); | 
| 1851 | 
  | 
    StuntDouble* sd; | 
| 1852 | 
< | 
    int idx; | 
| 1852 | 
> | 
    int binNo; | 
| 1853 | 
  | 
 | 
| 1854 | 
  | 
    vector<RealType> binMass(nBins_, 0.0); | 
| 1855 | 
  | 
    vector<RealType> binPx(nBins_, 0.0); | 
| 1856 | 
  | 
    vector<RealType> binPy(nBins_, 0.0); | 
| 1857 | 
  | 
    vector<RealType> binPz(nBins_, 0.0); | 
| 1858 | 
+ | 
    vector<RealType> binOmegax(nBins_, 0.0); | 
| 1859 | 
+ | 
    vector<RealType> binOmegay(nBins_, 0.0); | 
| 1860 | 
+ | 
    vector<RealType> binOmegaz(nBins_, 0.0); | 
| 1861 | 
  | 
    vector<RealType> binKE(nBins_, 0.0); | 
| 1862 | 
  | 
    vector<int> binDOF(nBins_, 0); | 
| 1863 | 
  | 
    vector<int> binCount(nBins_, 0); | 
| 1865 | 
  | 
    // alternative approach, track all molecules instead of only those | 
| 1866 | 
  | 
    // selected for scaling/swapping: | 
| 1867 | 
  | 
    /* | 
| 1868 | 
< | 
    SimInfo::MoleculeIterator miter; | 
| 1869 | 
< | 
    vector<StuntDouble*>::iterator iiter; | 
| 1870 | 
< | 
    Molecule* mol; | 
| 1871 | 
< | 
    StuntDouble* sd; | 
| 1872 | 
< | 
    for (mol = info_->beginMolecule(miter); mol != NULL; | 
| 1868 | 
> | 
      SimInfo::MoleculeIterator miter; | 
| 1869 | 
> | 
      vector<StuntDouble*>::iterator iiter; | 
| 1870 | 
> | 
      Molecule* mol; | 
| 1871 | 
> | 
      StuntDouble* sd; | 
| 1872 | 
> | 
      for (mol = info_->beginMolecule(miter); mol != NULL; | 
| 1873 | 
  | 
      mol = info_->nextMolecule(miter)) | 
| 1874 | 
  | 
      sd is essentially sd | 
| 1875 | 
< | 
        for (sd = mol->beginIntegrableObject(iiter); | 
| 1876 | 
< | 
             sd != NULL; | 
| 1877 | 
< | 
             sd = mol->nextIntegrableObject(iiter)) | 
| 1875 | 
> | 
      for (sd = mol->beginIntegrableObject(iiter); | 
| 1876 | 
> | 
      sd != NULL; | 
| 1877 | 
> | 
      sd = mol->nextIntegrableObject(iiter)) | 
| 1878 | 
  | 
    */ | 
| 1879 | 
  | 
 | 
| 1880 | 
  | 
    for (sd = seleMan_.beginSelected(selei); sd != NULL;  | 
| 1881 | 
< | 
         sd = seleMan_.nextSelected(selei)) { | 
| 1881 | 
> | 
         sd = seleMan_.nextSelected(selei)) {      | 
| 1882 | 
  | 
     | 
| 1447 | 
– | 
      idx = sd->getLocalIndex(); | 
| 1448 | 
– | 
       | 
| 1883 | 
  | 
      Vector3d pos = sd->getPos(); | 
| 1884 | 
  | 
 | 
| 1885 | 
  | 
      // wrap the stuntdouble's position back into the box: | 
| 1886 | 
  | 
       | 
| 1887 | 
< | 
      if (usePeriodicBoundaryConditions_) | 
| 1887 | 
> | 
      if (usePeriodicBoundaryConditions_) { | 
| 1888 | 
  | 
        currentSnap_->wrapVector(pos); | 
| 1889 | 
+ | 
        // which bin is this stuntdouble in? | 
| 1890 | 
+ | 
        // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)] | 
| 1891 | 
+ | 
        // Shift molecules by half a box to have bins start at 0 | 
| 1892 | 
+ | 
        // The modulo operator is used to wrap the case when we are  | 
| 1893 | 
+ | 
        // beyond the end of the bins back to the beginning. | 
| 1894 | 
+ | 
        binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_; | 
| 1895 | 
+ | 
      } else { | 
| 1896 | 
+ | 
        Vector3d rPos = pos - coordinateOrigin_; | 
| 1897 | 
+ | 
        binNo = int(rPos.length() / binWidth_); | 
| 1898 | 
+ | 
      } | 
| 1899 | 
  | 
 | 
| 1456 | 
– | 
 | 
| 1457 | 
– | 
      // which bin is this stuntdouble in? | 
| 1458 | 
– | 
      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)] | 
| 1459 | 
– | 
      // Shift molecules by half a box to have bins start at 0 | 
| 1460 | 
– | 
      // The modulo operator is used to wrap the case when we are  | 
| 1461 | 
– | 
      // beyond the end of the bins back to the beginning. | 
| 1462 | 
– | 
      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_; | 
| 1463 | 
– | 
 | 
| 1900 | 
  | 
      RealType mass = sd->getMass(); | 
| 1901 | 
  | 
      Vector3d vel = sd->getVel(); | 
| 1902 | 
< | 
 | 
| 1903 | 
< | 
      binCount[binNo]++; | 
| 1904 | 
< | 
      binMass[binNo] += mass; | 
| 1905 | 
< | 
      binPx[binNo] += mass*vel.x(); | 
| 1906 | 
< | 
      binPy[binNo] += mass*vel.y(); | 
| 1907 | 
< | 
      binPz[binNo] += mass*vel.z(); | 
| 1908 | 
< | 
      binKE[binNo] += 0.5 * (mass * vel.lengthSquare()); | 
| 1909 | 
< | 
      binDOF[binNo] += 3; | 
| 1910 | 
< | 
 | 
| 1911 | 
< | 
      if (sd->isDirectional()) { | 
| 1912 | 
< | 
        Vector3d angMom = sd->getJ(); | 
| 1913 | 
< | 
        Mat3x3d I = sd->getI(); | 
| 1914 | 
< | 
        if (sd->isLinear()) { | 
| 1915 | 
< | 
          int i = sd->linearAxis(); | 
| 1916 | 
< | 
          int j = (i + 1) % 3; | 
| 1917 | 
< | 
          int k = (i + 2) % 3; | 
| 1918 | 
< | 
          binKE[binNo] += 0.5 * (angMom[j] * angMom[j] / I(j, j) +  | 
| 1919 | 
< | 
                                 angMom[k] * angMom[k] / I(k, k)); | 
| 1920 | 
< | 
          binDOF[binNo] += 2; | 
| 1921 | 
< | 
        } else { | 
| 1922 | 
< | 
          binKE[binNo] += 0.5 * (angMom[0] * angMom[0] / I(0, 0) + | 
| 1923 | 
< | 
                                 angMom[1] * angMom[1] / I(1, 1) + | 
| 1924 | 
< | 
                                 angMom[2] * angMom[2] / I(2, 2)); | 
| 1925 | 
< | 
          binDOF[binNo] += 3; | 
| 1902 | 
> | 
      Vector3d rPos = sd->getPos() - coordinateOrigin_; | 
| 1903 | 
> | 
      Vector3d aVel = cross(rPos, vel); | 
| 1904 | 
> | 
       | 
| 1905 | 
> | 
      if (binNo >= 0 && binNo < nBins_)  { | 
| 1906 | 
> | 
        binCount[binNo]++; | 
| 1907 | 
> | 
        binMass[binNo] += mass; | 
| 1908 | 
> | 
        binPx[binNo] += mass*vel.x(); | 
| 1909 | 
> | 
        binPy[binNo] += mass*vel.y(); | 
| 1910 | 
> | 
        binPz[binNo] += mass*vel.z(); | 
| 1911 | 
> | 
        binOmegax[binNo] += aVel.x(); | 
| 1912 | 
> | 
        binOmegay[binNo] += aVel.y(); | 
| 1913 | 
> | 
        binOmegaz[binNo] += aVel.z(); | 
| 1914 | 
> | 
        binKE[binNo] += 0.5 * (mass * vel.lengthSquare()); | 
| 1915 | 
> | 
        binDOF[binNo] += 3; | 
| 1916 | 
> | 
         | 
| 1917 | 
> | 
        if (sd->isDirectional()) { | 
| 1918 | 
> | 
          Vector3d angMom = sd->getJ(); | 
| 1919 | 
> | 
          Mat3x3d I = sd->getI(); | 
| 1920 | 
> | 
          if (sd->isLinear()) { | 
| 1921 | 
> | 
            int i = sd->linearAxis(); | 
| 1922 | 
> | 
            int j = (i + 1) % 3; | 
| 1923 | 
> | 
            int k = (i + 2) % 3; | 
| 1924 | 
> | 
            binKE[binNo] += 0.5 * (angMom[j] * angMom[j] / I(j, j) +  | 
| 1925 | 
> | 
                                   angMom[k] * angMom[k] / I(k, k)); | 
| 1926 | 
> | 
            binDOF[binNo] += 2; | 
| 1927 | 
> | 
          } else { | 
| 1928 | 
> | 
            binKE[binNo] += 0.5 * (angMom[0] * angMom[0] / I(0, 0) + | 
| 1929 | 
> | 
                                   angMom[1] * angMom[1] / I(1, 1) + | 
| 1930 | 
> | 
                                   angMom[2] * angMom[2] / I(2, 2)); | 
| 1931 | 
> | 
            binDOF[binNo] += 3; | 
| 1932 | 
> | 
          } | 
| 1933 | 
  | 
        } | 
| 1934 | 
  | 
      } | 
| 1935 | 
  | 
    } | 
| 1945 | 
  | 
                              nBins_, MPI::REALTYPE, MPI::SUM); | 
| 1946 | 
  | 
    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPz[0], | 
| 1947 | 
  | 
                              nBins_, MPI::REALTYPE, MPI::SUM); | 
| 1948 | 
+ | 
    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binOmegax[0], | 
| 1949 | 
+ | 
                              nBins_, MPI::REALTYPE, MPI::SUM); | 
| 1950 | 
+ | 
    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binOmegay[0], | 
| 1951 | 
+ | 
                              nBins_, MPI::REALTYPE, MPI::SUM); | 
| 1952 | 
+ | 
    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binOmegaz[0], | 
| 1953 | 
+ | 
                              nBins_, MPI::REALTYPE, MPI::SUM); | 
| 1954 | 
  | 
    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binKE[0], | 
| 1955 | 
  | 
                              nBins_, MPI::REALTYPE, MPI::SUM); | 
| 1956 | 
  | 
    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binDOF[0], | 
| 1958 | 
  | 
#endif | 
| 1959 | 
  | 
 | 
| 1960 | 
  | 
    Vector3d vel; | 
| 1961 | 
+ | 
    Vector3d aVel; | 
| 1962 | 
  | 
    RealType den; | 
| 1963 | 
  | 
    RealType temp; | 
| 1964 | 
  | 
    RealType z; | 
| 1965 | 
+ | 
    RealType r; | 
| 1966 | 
  | 
    for (int i = 0; i < nBins_; i++) { | 
| 1967 | 
< | 
      z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat(2,2); | 
| 1967 | 
> | 
      if (usePeriodicBoundaryConditions_) { | 
| 1968 | 
> | 
        z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat(2,2); | 
| 1969 | 
> | 
        den = binMass[i] * nBins_ * PhysicalConstants::densityConvert  | 
| 1970 | 
> | 
          / currentSnap_->getVolume() ; | 
| 1971 | 
> | 
      } else { | 
| 1972 | 
> | 
        r = (((RealType)i + 0.5) * binWidth_); | 
| 1973 | 
> | 
        RealType rinner = (RealType)i * binWidth_; | 
| 1974 | 
> | 
        RealType router = (RealType)(i+1) * binWidth_; | 
| 1975 | 
> | 
        den = binMass[i] * 3.0 * PhysicalConstants::densityConvert | 
| 1976 | 
> | 
          / (4.0 * M_PI * (pow(router,3) - pow(rinner,3))); | 
| 1977 | 
> | 
      } | 
| 1978 | 
  | 
      vel.x() = binPx[i] / binMass[i]; | 
| 1979 | 
  | 
      vel.y() = binPy[i] / binMass[i]; | 
| 1980 | 
  | 
      vel.z() = binPz[i] / binMass[i]; | 
| 1981 | 
+ | 
      aVel.x() = binOmegax[i] / binCount[i]; | 
| 1982 | 
+ | 
      aVel.y() = binOmegay[i] / binCount[i]; | 
| 1983 | 
+ | 
      aVel.z() = binOmegaz[i] / binCount[i]; | 
| 1984 | 
  | 
 | 
| 1521 | 
– | 
      den = binMass[i] * nBins_ * PhysicalConstants::densityConvert  | 
| 1522 | 
– | 
        / currentSnap_->getVolume() ; | 
| 1523 | 
– | 
 | 
| 1985 | 
  | 
      if (binCount[i] > 0) { | 
| 1986 | 
  | 
        // only add values if there are things to add | 
| 1987 | 
  | 
        temp = 2.0 * binKE[i] / (binDOF[i] * PhysicalConstants::kb * | 
| 1993 | 
  | 
            case Z: | 
| 1994 | 
  | 
              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(z); | 
| 1995 | 
  | 
              break; | 
| 1996 | 
+ | 
            case R: | 
| 1997 | 
+ | 
              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(r); | 
| 1998 | 
+ | 
              break; | 
| 1999 | 
  | 
            case TEMPERATURE: | 
| 2000 | 
  | 
              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(temp); | 
| 2001 | 
  | 
              break; | 
| 2002 | 
  | 
            case VELOCITY: | 
| 2003 | 
  | 
              dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(vel); | 
| 2004 | 
  | 
              break; | 
| 2005 | 
+ | 
            case ANGULARVELOCITY:   | 
| 2006 | 
+ | 
              dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(aVel); | 
| 2007 | 
+ | 
              break; | 
| 2008 | 
  | 
            case DENSITY: | 
| 2009 | 
  | 
              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(den); | 
| 2010 | 
  | 
              break; | 
| 2013 | 
  | 
        } | 
| 2014 | 
  | 
      } | 
| 2015 | 
  | 
    } | 
| 2016 | 
+ | 
    hasData_ = true; | 
| 2017 | 
  | 
  } | 
| 2018 | 
  | 
 | 
| 2019 | 
  | 
  void RNEMD::getStarted() { | 
| 2020 | 
  | 
    if (!doRNEMD_) return; | 
| 2021 | 
+ | 
    hasDividingArea_ = false; | 
| 2022 | 
  | 
    collectData(); | 
| 2023 | 
  | 
    writeOutputFile(); | 
| 2024 | 
  | 
  } | 
| 2046 | 
  | 
   | 
| 2047 | 
  | 
  void RNEMD::writeOutputFile() { | 
| 2048 | 
  | 
    if (!doRNEMD_) return; | 
| 2049 | 
+ | 
    if (!hasData_) return; | 
| 2050 | 
  | 
     | 
| 2051 | 
  | 
#ifdef IS_MPI | 
| 2052 | 
  | 
    // If we're the root node, should we print out the results | 
| 2068 | 
  | 
      RealType time = currentSnap_->getTime(); | 
| 2069 | 
  | 
      RealType avgArea; | 
| 2070 | 
  | 
      areaAccumulator_->getAverage(avgArea); | 
| 1601 | 
– | 
      RealType Jz = kineticExchange_ / (2.0 * time * avgArea)  | 
| 1602 | 
– | 
        / PhysicalConstants::energyConvert; | 
| 1603 | 
– | 
      Vector3d JzP = momentumExchange_ / (2.0 * time * avgArea);       | 
| 2071 | 
  | 
 | 
| 2072 | 
+ | 
      RealType Jz(0.0); | 
| 2073 | 
+ | 
      Vector3d JzP(V3Zero); | 
| 2074 | 
+ | 
      Vector3d JzL(V3Zero); | 
| 2075 | 
+ | 
      if (time >= info_->getSimParams()->getDt()) { | 
| 2076 | 
+ | 
        Jz = kineticExchange_ / (time * avgArea) | 
| 2077 | 
+ | 
          / PhysicalConstants::energyConvert; | 
| 2078 | 
+ | 
        JzP = momentumExchange_ / (time * avgArea); | 
| 2079 | 
+ | 
        JzL = angularMomentumExchange_ / (time * avgArea); | 
| 2080 | 
+ | 
      } | 
| 2081 | 
+ | 
 | 
| 2082 | 
  | 
      rnemdFile_ << "#######################################################\n"; | 
| 2083 | 
  | 
      rnemdFile_ << "# RNEMD {\n"; | 
| 2084 | 
  | 
 | 
| 2097 | 
  | 
 | 
| 2098 | 
  | 
      rnemdFile_ << "#    objectSelection = \""  | 
| 2099 | 
  | 
                 << rnemdObjectSelection_ << "\";\n"; | 
| 2100 | 
< | 
      rnemdFile_ << "#    slabWidth = " << slabWidth_ << ";\n"; | 
| 2101 | 
< | 
      rnemdFile_ << "#    slabAcenter = " << slabACenter_ << ";\n"; | 
| 1625 | 
< | 
      rnemdFile_ << "#    slabBcenter = " << slabBCenter_ << ";\n"; | 
| 2100 | 
> | 
      rnemdFile_ << "#    selectionA = \"" << selectionA_ << "\";\n"; | 
| 2101 | 
> | 
      rnemdFile_ << "#    selectionB = \"" << selectionB_ << "\";\n"; | 
| 2102 | 
  | 
      rnemdFile_ << "# }\n"; | 
| 2103 | 
  | 
      rnemdFile_ << "#######################################################\n"; | 
| 2104 | 
  | 
      rnemdFile_ << "# RNEMD report:\n";       | 
| 2105 | 
< | 
      rnemdFile_ << "#     running time = " << time << " fs\n"; | 
| 2106 | 
< | 
      rnemdFile_ << "#     target flux:\n"; | 
| 2107 | 
< | 
      rnemdFile_ << "#         kinetic = "  | 
| 2105 | 
> | 
      rnemdFile_ << "#      running time = " << time << " fs\n"; | 
| 2106 | 
> | 
      rnemdFile_ << "# Target flux:\n"; | 
| 2107 | 
> | 
      rnemdFile_ << "#           kinetic = "  | 
| 2108 | 
  | 
                 << kineticFlux_ / PhysicalConstants::energyConvert  | 
| 2109 | 
  | 
                 << " (kcal/mol/A^2/fs)\n"; | 
| 2110 | 
< | 
      rnemdFile_ << "#         momentum = " << momentumFluxVector_  | 
| 2110 | 
> | 
      rnemdFile_ << "#          momentum = " << momentumFluxVector_  | 
| 2111 | 
  | 
                 << " (amu/A/fs^2)\n"; | 
| 2112 | 
< | 
      rnemdFile_ << "#     target one-time exchanges:\n"; | 
| 2113 | 
< | 
      rnemdFile_ << "#         kinetic = "  | 
| 2112 | 
> | 
      rnemdFile_ << "#  angular momentum = " << angularMomentumFluxVector_  | 
| 2113 | 
> | 
                 << " (amu/A^2/fs^2)\n"; | 
| 2114 | 
> | 
      rnemdFile_ << "# Target one-time exchanges:\n"; | 
| 2115 | 
> | 
      rnemdFile_ << "#          kinetic = "  | 
| 2116 | 
  | 
                 << kineticTarget_ / PhysicalConstants::energyConvert  | 
| 2117 | 
  | 
                 << " (kcal/mol)\n"; | 
| 2118 | 
< | 
      rnemdFile_ << "#         momentum = " << momentumTarget_  | 
| 2118 | 
> | 
      rnemdFile_ << "#          momentum = " << momentumTarget_  | 
| 2119 | 
  | 
                 << " (amu*A/fs)\n"; | 
| 2120 | 
< | 
      rnemdFile_ << "#     actual exchange totals:\n"; | 
| 2121 | 
< | 
      rnemdFile_ << "#         kinetic = "  | 
| 2120 | 
> | 
      rnemdFile_ << "#  angular momentum = " << angularMomentumTarget_  | 
| 2121 | 
> | 
                 << " (amu*A^2/fs)\n"; | 
| 2122 | 
> | 
      rnemdFile_ << "# Actual exchange totals:\n"; | 
| 2123 | 
> | 
      rnemdFile_ << "#          kinetic = "  | 
| 2124 | 
  | 
                 << kineticExchange_ / PhysicalConstants::energyConvert  | 
| 2125 | 
  | 
                 << " (kcal/mol)\n"; | 
| 2126 | 
< | 
      rnemdFile_ << "#         momentum = " << momentumExchange_  | 
| 2126 | 
> | 
      rnemdFile_ << "#          momentum = " << momentumExchange_  | 
| 2127 | 
  | 
                 << " (amu*A/fs)\n";       | 
| 2128 | 
< | 
      rnemdFile_ << "#     actual flux:\n"; | 
| 2129 | 
< | 
      rnemdFile_ << "#         kinetic = " << Jz | 
| 2128 | 
> | 
      rnemdFile_ << "#  angular momentum = " << angularMomentumExchange_  | 
| 2129 | 
> | 
                 << " (amu*A^2/fs)\n";       | 
| 2130 | 
> | 
      rnemdFile_ << "# Actual flux:\n"; | 
| 2131 | 
> | 
      rnemdFile_ << "#          kinetic = " << Jz | 
| 2132 | 
  | 
                 << " (kcal/mol/A^2/fs)\n"; | 
| 2133 | 
< | 
      rnemdFile_ << "#         momentum = " << JzP  | 
| 2133 | 
> | 
      rnemdFile_ << "#          momentum = " << JzP  | 
| 2134 | 
  | 
                 << " (amu/A/fs^2)\n"; | 
| 2135 | 
< | 
      rnemdFile_ << "#     exchange statistics:\n"; | 
| 2136 | 
< | 
      rnemdFile_ << "#         attempted = " << trialCount_ << "\n"; | 
| 2137 | 
< | 
      rnemdFile_ << "#         failed = " << failTrialCount_ << "\n";      | 
| 2135 | 
> | 
      rnemdFile_ << "#  angular momentum = " << JzL | 
| 2136 | 
> | 
                 << " (amu/A^2/fs^2)\n"; | 
| 2137 | 
> | 
      rnemdFile_ << "# Exchange statistics:\n"; | 
| 2138 | 
> | 
      rnemdFile_ << "#               attempted = " << trialCount_ << "\n"; | 
| 2139 | 
> | 
      rnemdFile_ << "#                  failed = " << failTrialCount_ << "\n"; | 
| 2140 | 
  | 
      if (rnemdMethod_ == rnemdNIVS) { | 
| 2141 | 
< | 
        rnemdFile_ << "#         NIVS root-check errors = " | 
| 2141 | 
> | 
        rnemdFile_ << "#  NIVS root-check errors = " | 
| 2142 | 
  | 
                   << failRootCount_ << "\n"; | 
| 2143 | 
  | 
      } | 
| 2144 | 
  | 
      rnemdFile_ << "#######################################################\n"; | 
| 2159 | 
  | 
       | 
| 2160 | 
  | 
      rnemdFile_.precision(8); | 
| 2161 | 
  | 
       | 
| 2162 | 
< | 
      for (unsigned int j = 0; j < nBins_; j++) {         | 
| 2162 | 
> | 
      for (int j = 0; j < nBins_; j++) {         | 
| 2163 | 
  | 
         | 
| 2164 | 
  | 
        for (unsigned int i = 0; i < outputMask_.size(); ++i) { | 
| 2165 | 
  | 
          if (outputMask_[i]) { | 
| 2166 | 
  | 
            if (data_[i].dataType == "RealType") | 
| 2167 | 
  | 
              writeReal(i,j); | 
| 2168 | 
< | 
            else if (data_[i].dataType == "Vector3d") | 
| 2168 | 
> | 
            else if (data_[i].dataType == "Vector3d")  | 
| 2169 | 
  | 
              writeVector(i,j); | 
| 2170 | 
  | 
            else { | 
| 2171 | 
  | 
              sprintf( painCave.errMsg, | 
| 2185 | 
  | 
      rnemdFile_ << "#######################################################\n"; | 
| 2186 | 
  | 
 | 
| 2187 | 
  | 
 | 
| 2188 | 
< | 
      for (unsigned int j = 0; j < nBins_; j++) {         | 
| 2188 | 
> | 
      for (int j = 0; j < nBins_; j++) {         | 
| 2189 | 
  | 
        rnemdFile_ << "#"; | 
| 2190 | 
  | 
        for (unsigned int i = 0; i < outputMask_.size(); ++i) { | 
| 2191 | 
  | 
          if (outputMask_[i]) { | 
| 2218 | 
  | 
  void RNEMD::writeReal(int index, unsigned int bin) { | 
| 2219 | 
  | 
    if (!doRNEMD_) return; | 
| 2220 | 
  | 
    assert(index >=0 && index < ENDINDEX); | 
| 2221 | 
< | 
    assert(bin < nBins_); | 
| 2221 | 
> | 
    assert(int(bin) < nBins_); | 
| 2222 | 
  | 
    RealType s; | 
| 2223 | 
+ | 
    int count; | 
| 2224 | 
  | 
     | 
| 2225 | 
< | 
    data_[index].accumulator[bin]->getAverage(s); | 
| 2225 | 
> | 
    count = data_[index].accumulator[bin]->count(); | 
| 2226 | 
> | 
    if (count == 0) return; | 
| 2227 | 
  | 
     | 
| 2228 | 
+ | 
    dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getAverage(s); | 
| 2229 | 
+ | 
     | 
| 2230 | 
  | 
    if (! isinf(s) && ! isnan(s)) { | 
| 2231 | 
  | 
      rnemdFile_ << "\t" << s; | 
| 2232 | 
  | 
    } else{ | 
| 2233 | 
  | 
      sprintf( painCave.errMsg, | 
| 2234 | 
< | 
               "RNEMD detected a numerical error writing: %s for bin %d", | 
| 2234 | 
> | 
               "RNEMD detected a numerical error writing: %s for bin %u", | 
| 2235 | 
  | 
               data_[index].title.c_str(), bin); | 
| 2236 | 
  | 
      painCave.isFatal = 1; | 
| 2237 | 
  | 
      simError(); | 
| 2241 | 
  | 
  void RNEMD::writeVector(int index, unsigned int bin) { | 
| 2242 | 
  | 
    if (!doRNEMD_) return; | 
| 2243 | 
  | 
    assert(index >=0 && index < ENDINDEX); | 
| 2244 | 
< | 
    assert(bin < nBins_); | 
| 2244 | 
> | 
    assert(int(bin) < nBins_); | 
| 2245 | 
  | 
    Vector3d s; | 
| 2246 | 
+ | 
    int count; | 
| 2247 | 
+ | 
     | 
| 2248 | 
+ | 
    count = data_[index].accumulator[bin]->count(); | 
| 2249 | 
+ | 
 | 
| 2250 | 
+ | 
    if (count == 0) return; | 
| 2251 | 
+ | 
 | 
| 2252 | 
  | 
    dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getAverage(s); | 
| 2253 | 
  | 
    if (isinf(s[0]) || isnan(s[0]) ||  | 
| 2254 | 
  | 
        isinf(s[1]) || isnan(s[1]) ||  | 
| 2255 | 
  | 
        isinf(s[2]) || isnan(s[2]) ) {       | 
| 2256 | 
  | 
      sprintf( painCave.errMsg, | 
| 2257 | 
< | 
               "RNEMD detected a numerical error writing: %s for bin %d", | 
| 2257 | 
> | 
               "RNEMD detected a numerical error writing: %s for bin %u", | 
| 2258 | 
  | 
               data_[index].title.c_str(), bin); | 
| 2259 | 
  | 
      painCave.isFatal = 1; | 
| 2260 | 
  | 
      simError(); | 
| 2266 | 
  | 
  void RNEMD::writeRealStdDev(int index, unsigned int bin) { | 
| 2267 | 
  | 
    if (!doRNEMD_) return; | 
| 2268 | 
  | 
    assert(index >=0 && index < ENDINDEX); | 
| 2269 | 
< | 
    assert(bin < nBins_); | 
| 2269 | 
> | 
    assert(int(bin) < nBins_); | 
| 2270 | 
  | 
    RealType s; | 
| 2271 | 
+ | 
    int count; | 
| 2272 | 
  | 
     | 
| 2273 | 
< | 
    data_[index].accumulator[bin]->getStdDev(s); | 
| 2273 | 
> | 
    count = data_[index].accumulator[bin]->count(); | 
| 2274 | 
> | 
    if (count == 0) return; | 
| 2275 | 
  | 
     | 
| 2276 | 
+ | 
    dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getStdDev(s); | 
| 2277 | 
+ | 
     | 
| 2278 | 
  | 
    if (! isinf(s) && ! isnan(s)) { | 
| 2279 | 
  | 
      rnemdFile_ << "\t" << s; | 
| 2280 | 
  | 
    } else{ | 
| 2281 | 
  | 
      sprintf( painCave.errMsg, | 
| 2282 | 
< | 
               "RNEMD detected a numerical error writing: %s std. dev. for bin %d", | 
| 2282 | 
> | 
               "RNEMD detected a numerical error writing: %s std. dev. for bin %u", | 
| 2283 | 
  | 
               data_[index].title.c_str(), bin); | 
| 2284 | 
  | 
      painCave.isFatal = 1; | 
| 2285 | 
  | 
      simError(); | 
| 2289 | 
  | 
  void RNEMD::writeVectorStdDev(int index, unsigned int bin) { | 
| 2290 | 
  | 
    if (!doRNEMD_) return; | 
| 2291 | 
  | 
    assert(index >=0 && index < ENDINDEX); | 
| 2292 | 
< | 
    assert(bin < nBins_); | 
| 2292 | 
> | 
    assert(int(bin) < nBins_); | 
| 2293 | 
  | 
    Vector3d s; | 
| 2294 | 
+ | 
    int count; | 
| 2295 | 
+ | 
     | 
| 2296 | 
+ | 
    count = data_[index].accumulator[bin]->count(); | 
| 2297 | 
+ | 
    if (count == 0) return; | 
| 2298 | 
+ | 
 | 
| 2299 | 
  | 
    dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getStdDev(s); | 
| 2300 | 
  | 
    if (isinf(s[0]) || isnan(s[0]) ||  | 
| 2301 | 
  | 
        isinf(s[1]) || isnan(s[1]) ||  | 
| 2302 | 
  | 
        isinf(s[2]) || isnan(s[2]) ) {       | 
| 2303 | 
  | 
      sprintf( painCave.errMsg, | 
| 2304 | 
< | 
               "RNEMD detected a numerical error writing: %s std. dev. for bin %d", | 
| 2304 | 
> | 
               "RNEMD detected a numerical error writing: %s std. dev. for bin %u", | 
| 2305 | 
  | 
               data_[index].title.c_str(), bin); | 
| 2306 | 
  | 
      painCave.isFatal = 1; | 
| 2307 | 
  | 
      simError(); |