| 1445 |
|
RealType Mc = 0.0; |
| 1446 |
|
Mat3x3d Ic(0.0); |
| 1447 |
|
RealType Kc = 0.0; |
| 1448 |
+ |
|
| 1449 |
+ |
// Constraints can be on only the linear or angular momentum, but |
| 1450 |
+ |
// not both. Usually, the user will specify which they want, but |
| 1451 |
+ |
// in case they don't, the use of periodic boundaries should make |
| 1452 |
+ |
// the choice for us. |
| 1453 |
+ |
bool doLinearPart = false; |
| 1454 |
+ |
bool doAngularPart = false; |
| 1455 |
+ |
|
| 1456 |
+ |
switch (rnemdFluxType_) { |
| 1457 |
+ |
case rnemdPx: |
| 1458 |
+ |
case rnemdPy: |
| 1459 |
+ |
case rnemdPz: |
| 1460 |
+ |
case rnemdPvector: |
| 1461 |
+ |
case rnemdKePx: |
| 1462 |
+ |
case rnemdKePy: |
| 1463 |
+ |
case rnemdKePvector: |
| 1464 |
+ |
doLinearPart = true; |
| 1465 |
+ |
break; |
| 1466 |
+ |
case rnemdLx: |
| 1467 |
+ |
case rnemdLy: |
| 1468 |
+ |
case rnemdLz: |
| 1469 |
+ |
case rnemdLvector: |
| 1470 |
+ |
case rnemdKeLx: |
| 1471 |
+ |
case rnemdKeLy: |
| 1472 |
+ |
case rnemdKeLz: |
| 1473 |
+ |
case rnemdKeLvector: |
| 1474 |
+ |
doAngularPart = true; |
| 1475 |
+ |
break; |
| 1476 |
+ |
case rnemdKE: |
| 1477 |
+ |
case rnemdRotKE: |
| 1478 |
+ |
case rnemdFullKE: |
| 1479 |
+ |
default: |
| 1480 |
+ |
if (usePeriodicBoundaryConditions_) |
| 1481 |
+ |
doLinearPart = true; |
| 1482 |
+ |
else |
| 1483 |
+ |
doAngularPart = true; |
| 1484 |
+ |
break; |
| 1485 |
+ |
} |
| 1486 |
|
|
| 1487 |
|
for (sd = smanA.beginSelected(selei); sd != NULL; |
| 1488 |
|
sd = smanA.nextSelected(selei)) { |
| 1591 |
|
MPI::REALTYPE, MPI::SUM); |
| 1592 |
|
#endif |
| 1593 |
|
|
| 1594 |
+ |
|
| 1595 |
+ |
Vector3d ac, acrec, bc, bcrec; |
| 1596 |
+ |
Vector3d ah, ahrec, bh, bhrec; |
| 1597 |
+ |
RealType cNumerator, cDenominator; |
| 1598 |
+ |
RealType hNumerator, hDenominator; |
| 1599 |
+ |
|
| 1600 |
+ |
|
| 1601 |
|
bool successfulExchange = false; |
| 1602 |
|
if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty |
| 1603 |
|
Vector3d vc = Pc / Mc; |
| 1604 |
< |
Vector3d ac = -momentumTarget_ / Mc + vc; |
| 1605 |
< |
Vector3d acrec = -momentumTarget_ / Mc; |
| 1604 |
> |
ac = -momentumTarget_ / Mc + vc; |
| 1605 |
> |
acrec = -momentumTarget_ / Mc; |
| 1606 |
|
|
| 1607 |
|
// We now need the inverse of the inertia tensor to calculate the |
| 1608 |
|
// angular velocity of the cold slab; |
| 1609 |
|
Mat3x3d Ici = Ic.inverse(); |
| 1610 |
|
Vector3d omegac = Ici * Lc; |
| 1611 |
< |
Vector3d bc = -(Ici * angularMomentumTarget_) + omegac; |
| 1612 |
< |
Vector3d bcrec = bc - omegac; |
| 1611 |
> |
bc = -(Ici * angularMomentumTarget_) + omegac; |
| 1612 |
> |
bcrec = bc - omegac; |
| 1613 |
|
|
| 1614 |
< |
RealType cNumerator = Kc - kineticTarget_ |
| 1615 |
< |
- 0.5 * Mc * ac.lengthSquare() - 0.5 * ( dot(bc, Ic * bc)); |
| 1614 |
> |
cNumerator = Kc - kineticTarget_; |
| 1615 |
> |
if (doLinearPart) |
| 1616 |
> |
cNumerator -= 0.5 * Mc * ac.lengthSquare(); |
| 1617 |
> |
|
| 1618 |
> |
if (doAngularPart) |
| 1619 |
> |
cNumerator -= 0.5 * ( dot(bc, Ic * bc)); |
| 1620 |
> |
|
| 1621 |
|
if (cNumerator > 0.0) { |
| 1622 |
|
|
| 1623 |
< |
RealType cDenominator = Kc - 0.5 * Mc * vc.lengthSquare() |
| 1624 |
< |
- 0.5*(dot(omegac, Ic * omegac)); |
| 1623 |
> |
cDenominator = Kc; |
| 1624 |
> |
|
| 1625 |
> |
if (doLinearPart) |
| 1626 |
> |
cDenominator -= 0.5 * Mc * vc.lengthSquare(); |
| 1627 |
> |
|
| 1628 |
> |
if (doAngularPart) |
| 1629 |
> |
cDenominator -= 0.5*(dot(omegac, Ic * omegac)); |
| 1630 |
|
|
| 1631 |
|
if (cDenominator > 0.0) { |
| 1632 |
|
RealType c = sqrt(cNumerator / cDenominator); |
| 1633 |
|
if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients |
| 1634 |
|
|
| 1635 |
|
Vector3d vh = Ph / Mh; |
| 1636 |
< |
Vector3d ah = momentumTarget_ / Mh + vh; |
| 1637 |
< |
Vector3d ahrec = momentumTarget_ / Mh; |
| 1636 |
> |
ah = momentumTarget_ / Mh + vh; |
| 1637 |
> |
ahrec = momentumTarget_ / Mh; |
| 1638 |
|
|
| 1639 |
|
// We now need the inverse of the inertia tensor to |
| 1640 |
|
// calculate the angular velocity of the hot slab; |
| 1641 |
|
Mat3x3d Ihi = Ih.inverse(); |
| 1642 |
|
Vector3d omegah = Ihi * Lh; |
| 1643 |
< |
Vector3d bh = (Ihi * angularMomentumTarget_) + omegah; |
| 1644 |
< |
Vector3d bhrec = bh - omegah; |
| 1643 |
> |
bh = (Ihi * angularMomentumTarget_) + omegah; |
| 1644 |
> |
bhrec = bh - omegah; |
| 1645 |
|
|
| 1646 |
< |
RealType hNumerator = Kh + kineticTarget_ |
| 1647 |
< |
- 0.5 * Mh * ah.lengthSquare() - 0.5 * ( dot(bh, Ih * bh));; |
| 1646 |
> |
hNumerator = Kh + kineticTarget_; |
| 1647 |
> |
if (doLinearPart) |
| 1648 |
> |
hNumerator -= 0.5 * Mh * ah.lengthSquare(); |
| 1649 |
> |
|
| 1650 |
> |
if (doAngularPart) |
| 1651 |
> |
hNumerator -= 0.5 * ( dot(bh, Ih * bh)); |
| 1652 |
> |
|
| 1653 |
|
if (hNumerator > 0.0) { |
| 1654 |
|
|
| 1655 |
< |
RealType hDenominator = Kh - 0.5 * Mh * vh.lengthSquare() |
| 1656 |
< |
- 0.5*(dot(omegah, Ih * omegah)); |
| 1655 |
> |
hDenominator = Kh; |
| 1656 |
> |
if (doLinearPart) |
| 1657 |
> |
hDenominator -= 0.5 * Mh * vh.lengthSquare(); |
| 1658 |
> |
if (doAngularPart) |
| 1659 |
> |
hDenominator -= 0.5*(dot(omegah, Ih * omegah)); |
| 1660 |
|
|
| 1661 |
|
if (hDenominator > 0.0) { |
| 1662 |
|
RealType h = sqrt(hNumerator / hDenominator); |
| 1669 |
|
for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) { |
| 1670 |
|
//vel = (*sdi)->getVel(); |
| 1671 |
|
rPos = (*sdi)->getPos() - coordinateOrigin_; |
| 1672 |
< |
vel = ((*sdi)->getVel() - vc - cross(omegac, rPos)) * c |
| 1673 |
< |
+ ac + cross(bc, rPos); |
| 1672 |
> |
if (doLinearPart) |
| 1673 |
> |
vel = ((*sdi)->getVel() - vc) * c + ac; |
| 1674 |
> |
if (doAngularPart) |
| 1675 |
> |
vel = ((*sdi)->getVel() - cross(omegac, rPos)) * c + cross(bc, rPos); |
| 1676 |
> |
|
| 1677 |
|
(*sdi)->setVel(vel); |
| 1678 |
|
if (rnemdFluxType_ == rnemdFullKE) { |
| 1679 |
|
if ((*sdi)->isDirectional()) { |
| 1685 |
|
for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) { |
| 1686 |
|
//vel = (*sdi)->getVel(); |
| 1687 |
|
rPos = (*sdi)->getPos() - coordinateOrigin_; |
| 1688 |
< |
vel = ((*sdi)->getVel() - vh - cross(omegah, rPos)) * h |
| 1689 |
< |
+ ah + cross(bh, rPos); |
| 1688 |
> |
if (doLinearPart) |
| 1689 |
> |
vel = ((*sdi)->getVel() - vh) * h + ah; |
| 1690 |
> |
if (doAngularPart) |
| 1691 |
> |
vel = ((*sdi)->getVel() - cross(omegah, rPos)) * h + cross(bh, rPos); |
| 1692 |
> |
|
| 1693 |
|
(*sdi)->setVel(vel); |
| 1694 |
|
if (rnemdFluxType_ == rnemdFullKE) { |
| 1695 |
|
if ((*sdi)->isDirectional()) { |
| 1969 |
|
vel.x() = binPx[i] / binMass[i]; |
| 1970 |
|
vel.y() = binPy[i] / binMass[i]; |
| 1971 |
|
vel.z() = binPz[i] / binMass[i]; |
| 1972 |
< |
aVel.x() = binOmegax[i]; |
| 1973 |
< |
aVel.y() = binOmegay[i]; |
| 1974 |
< |
aVel.z() = binOmegaz[i]; |
| 1972 |
> |
aVel.x() = binOmegax[i] / binCount[i]; |
| 1973 |
> |
aVel.y() = binOmegay[i] / binCount[i]; |
| 1974 |
> |
aVel.z() = binOmegaz[i] / binCount[i]; |
| 1975 |
|
|
| 1976 |
|
if (binCount[i] > 0) { |
| 1977 |
|
// only add values if there are things to add |