ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/visitors/AtomVisitor.cpp
(Generate patch)

Comparing:
trunk/src/visitors/AtomVisitor.cpp (file contents), Revision 1008 by chrisfen, Wed Jul 19 12:35:31 2006 UTC vs.
branches/development/src/visitors/AtomVisitor.cpp (file contents), Revision 1871 by gezelter, Fri May 10 14:59:13 2013 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   #include <cstring>
44   #include "visitors/AtomVisitor.hpp"
45   #include "primitives/DirectionalAtom.hpp"
46   #include "primitives/RigidBody.hpp"
47 + #include "types/FixedChargeAdapter.hpp"
48 + #include "types/FluctuatingChargeAdapter.hpp"
49 + #include "types/MultipoleAdapter.hpp"
50 + #include "types/GayBerneAdapter.hpp"
51  
52 < namespace oopse {
52 > namespace OpenMD {
53    void BaseAtomVisitor::visit(RigidBody *rb) {
54      //vector<Atom*> myAtoms;
55      //vector<Atom*>::iterator atomIter;
# Line 73 | Line 78 | namespace oopse {
78      return data == NULL ? false : true;
79    }
80  
81 <  bool SSDAtomVisitor::isSSDAtom(const std::string&atomType) {
82 <    std::set<std::string>::iterator strIter;
78 <    strIter = ssdAtomType.find(atomType);
79 <    return strIter != ssdAtomType.end() ? true : false;
80 <  }
81 <
82 <  void SSDAtomVisitor::visit(DirectionalAtom *datom) {
83 <    std::vector<AtomInfo*>atoms;
84 <
85 <    //we need to convert SSD into 4 different atoms
86 <    //one oxygen atom, two hydrogen atoms and one pseudo atom which is the center of
87 <    //the mass of the water with a dipole moment
88 <    Vector3d h1(0.0, -0.75695, 0.5206);
89 <    Vector3d h2(0.0, 0.75695, 0.5206);
90 <    Vector3d ox(0.0, 0.0, -0.0654);
91 <    Vector3d u(0, 0, 1);
92 <    RotMat3x3d   rotMatrix;
93 <    RotMat3x3d   rotTrans;
94 <    AtomInfo *   atomInfo;
95 <    Vector3d     pos;
96 <    Vector3d     newVec;
97 <    Quat4d       q;
98 <    AtomData *   atomData;
99 <    GenericData *data;
100 <    bool         haveAtomData;
101 <
102 <    //if atom is not SSD atom, just skip it
103 <    if (!isSSDAtom(datom->getType()))
104 <      return;
105 <
106 <    data = datom->getPropertyByName("ATOMDATA");
107 <
108 <    if (data != NULL) {
109 <      atomData = dynamic_cast<AtomData *>(data);
110 <
111 <      if (atomData == NULL) {
112 <        std::cerr << "can not get Atom Data from " << datom->getType() << std::endl;
113 <        atomData = new AtomData;
114 <        haveAtomData = false;
115 <      } else
116 <        haveAtomData = true;
117 <    } else {
118 <      atomData = new AtomData;
119 <      haveAtomData = false;
120 <    }
121 <
122 <    pos = datom->getPos();
123 <    q = datom->getQ();
124 <    rotMatrix = datom->getA();
125 <
126 <    // We need A^T to convert from body-fixed to space-fixed:
127 <    //transposeMat3(rotMatrix, rotTrans);
128 <    rotTrans = rotMatrix.transpose();
129 <
130 <    //center of mass of the water molecule
131 <    //matVecMul3(rotTrans, u, newVec);
132 <    newVec = rotTrans * u;
133 <
134 <    atomInfo = new AtomInfo;
135 <    atomInfo->atomTypeName = "X";
136 <    atomInfo->pos[0] = pos[0];
137 <    atomInfo->pos[1] = pos[1];
138 <    atomInfo->pos[2] = pos[2];
139 <    atomInfo->dipole[0] = newVec[0];
140 <    atomInfo->dipole[1] = newVec[1];
141 <    atomInfo->dipole[2] = newVec[2];
142 <
143 <    atomData->addAtomInfo(atomInfo);
144 <
145 <    //oxygen
146 <    //matVecMul3(rotTrans, ox, newVec);
147 <    newVec = rotTrans * ox;
148 <
149 <    atomInfo = new AtomInfo;
150 <    atomInfo->atomTypeName = "O";
151 <    atomInfo->pos[0] = pos[0] + newVec[0];
152 <    atomInfo->pos[1] = pos[1] + newVec[1];
153 <    atomInfo->pos[2] = pos[2] + newVec[2];
154 <    atomInfo->dipole[0] = 0.0;
155 <    atomInfo->dipole[1] = 0.0;
156 <    atomInfo->dipole[2] = 0.0;
157 <    atomData->addAtomInfo(atomInfo);
158 <
159 <    //hydrogen1
160 <    //matVecMul3(rotTrans, h1, newVec);
161 <    newVec = rotTrans * h1;
162 <    atomInfo = new AtomInfo;
163 <    atomInfo->atomTypeName = "H";
164 <    atomInfo->pos[0] = pos[0] + newVec[0];
165 <    atomInfo->pos[1] = pos[1] + newVec[1];
166 <    atomInfo->pos[2] = pos[2] + newVec[2];
167 <    atomInfo->dipole[0] = 0.0;
168 <    atomInfo->dipole[1] = 0.0;
169 <    atomInfo->dipole[2] = 0.0;
170 <    atomData->addAtomInfo(atomInfo);
171 <
172 <    //hydrogen2
173 <    //matVecMul3(rotTrans, h2, newVec);
174 <    newVec = rotTrans * h2;
175 <    atomInfo = new AtomInfo;
176 <    atomInfo->atomTypeName = "H";
177 <    atomInfo->pos[0] = pos[0] + newVec[0];
178 <    atomInfo->pos[1] = pos[1] + newVec[1];
179 <    atomInfo->pos[2] = pos[2] + newVec[2];
180 <    atomInfo->dipole[0] = 0.0;
181 <    atomInfo->dipole[1] = 0.0;
182 <    atomInfo->dipole[2] = 0.0;
183 <    atomData->addAtomInfo(atomInfo);
184 <
185 <    //add atom data into atom's property
186 <
187 <    if (!haveAtomData) {
188 <      atomData->setID("ATOMDATA");
189 <      datom->addProperty(atomData);
190 <    }
191 <
192 <    setVisited(datom);
193 <  }
194 <
195 <  const std::string SSDAtomVisitor::toString() {
196 <    char   buffer[65535];
197 <    std::string result;
198 <
199 <    sprintf(buffer,
200 <            "------------------------------------------------------------------\n");
201 <    result += buffer;
202 <
203 <    sprintf(buffer, "Visitor name: %s\n", visitorName.c_str());
204 <    result += buffer;
205 <
206 <    sprintf(buffer,
207 <            "Visitor Description: Convert SSD into 4 different atoms\n");
208 <    result += buffer;
209 <
210 <    sprintf(buffer,
211 <            "------------------------------------------------------------------\n");
212 <    result += buffer;
213 <
214 <    return result;
215 <  }
216 <
217 <
218 <  bool TREDAtomVisitor::isTREDAtom(const std::string&atomType) {
219 <    std::set<std::string>::iterator strIter;
220 <    strIter = tredAtomType.find(atomType);
221 <    return strIter != tredAtomType.end() ? true : false;
222 <  }
223 <
224 <  void TREDAtomVisitor::visit(DirectionalAtom *datom) {
225 <    std::vector<AtomInfo*>atoms;
226 <
227 <    // we need to convert a TRED into 4 different atoms:
228 <    // one oxygen atom, two hydrogen atoms, and one atom which is the center of
229 <    // the mass of the water with a dipole moment
230 <    Vector3d h1(0.0, -0.75695, 0.5206);
231 <    Vector3d h2(0.0, 0.75695, 0.5206);
232 <    Vector3d ox(0.0, 0.0, -0.0654);
233 <    Vector3d u(0, 0, 1);
234 <    RotMat3x3d   rotMatrix;
235 <    RotMat3x3d   rotTrans;
236 <    AtomInfo *   atomInfo;
237 <    Vector3d     pos;
238 <    Vector3d     newVec;
239 <    Quat4d       q;
240 <    AtomData *   atomData;
241 <    GenericData *data;
242 <    bool         haveAtomData;
243 <
244 <    // if the atom is not a TRED atom, skip it
245 <    if (!isTREDAtom(datom->getType()))
246 <      return;
247 <
248 <    data = datom->getPropertyByName("ATOMDATA");
249 <
250 <    if (data != NULL) {
251 <      atomData = dynamic_cast<AtomData *>(data);
252 <
253 <      if (atomData == NULL) {
254 <        std::cerr << "can not get Atom Data from " << datom->getType() << std::endl;
255 <        atomData = new AtomData;
256 <        haveAtomData = false;
257 <      } else
258 <        haveAtomData = true;
259 <    } else {
260 <      atomData = new AtomData;
261 <      haveAtomData = false;
262 <    }
263 <
264 <    pos = datom->getPos();
265 <    q = datom->getQ();
266 <    rotMatrix = datom->getA();
267 <
268 <    // We need A^T to convert from body-fixed to space-fixed:
269 <    // transposeMat3(rotMatrix, rotTrans);
270 <    rotTrans = rotMatrix.transpose();
271 <
272 <    // center of mass of the water molecule
273 <    // matVecMul3(rotTrans, u, newVec);
274 <    newVec = rotTrans * u;
275 <
276 <    atomInfo = new AtomInfo;
277 <    atomInfo->atomTypeName = "TRED";
278 <    atomInfo->pos[0] = pos[0];
279 <    atomInfo->pos[1] = pos[1];
280 <    atomInfo->pos[2] = pos[2];
281 <    atomInfo->dipole[0] = newVec[0];
282 <    atomInfo->dipole[1] = newVec[1];
283 <    atomInfo->dipole[2] = newVec[2];
284 <
285 <    atomData->addAtomInfo(atomInfo);
286 <
287 <    // oxygen
288 <    // matVecMul3(rotTrans, ox, newVec);
289 <    newVec = rotTrans * ox;
290 <
291 <    atomInfo = new AtomInfo;
292 <    atomInfo->atomTypeName = "O";
293 <    atomInfo->pos[0] = pos[0] + newVec[0];
294 <    atomInfo->pos[1] = pos[1] + newVec[1];
295 <    atomInfo->pos[2] = pos[2] + newVec[2];
296 <    atomInfo->dipole[0] = 0.0;
297 <    atomInfo->dipole[1] = 0.0;
298 <    atomInfo->dipole[2] = 0.0;
299 <    atomData->addAtomInfo(atomInfo);
300 <
301 <    // hydrogen1
302 <    // matVecMul3(rotTrans, h1, newVec);
303 <    newVec = rotTrans * h1;
304 <    atomInfo = new AtomInfo;
305 <    atomInfo->atomTypeName = "H";
306 <    atomInfo->pos[0] = pos[0] + newVec[0];
307 <    atomInfo->pos[1] = pos[1] + newVec[1];
308 <    atomInfo->pos[2] = pos[2] + newVec[2];
309 <    atomInfo->dipole[0] = 0.0;
310 <    atomInfo->dipole[1] = 0.0;
311 <    atomInfo->dipole[2] = 0.0;
312 <    atomData->addAtomInfo(atomInfo);
313 <
314 <    // hydrogen2
315 <    // matVecMul3(rotTrans, h2, newVec);
316 <    newVec = rotTrans * h2;
317 <    atomInfo = new AtomInfo;
318 <    atomInfo->atomTypeName = "H";
319 <    atomInfo->pos[0] = pos[0] + newVec[0];
320 <    atomInfo->pos[1] = pos[1] + newVec[1];
321 <    atomInfo->pos[2] = pos[2] + newVec[2];
322 <    atomInfo->dipole[0] = 0.0;
323 <    atomInfo->dipole[1] = 0.0;
324 <    atomInfo->dipole[2] = 0.0;
325 <    atomData->addAtomInfo(atomInfo);
326 <
327 <    // add atom data into atom's property
328 <
329 <    if (!haveAtomData) {
330 <      atomData->setID("ATOMDATA");
331 <      datom->addProperty(atomData);
332 <    }
333 <
334 <    setVisited(datom);
335 <  }
336 <
337 <  const std::string TREDAtomVisitor::toString() {
338 <    char   buffer[65535];
339 <    std::string result;
340 <
341 <    sprintf(buffer,
342 <            "------------------------------------------------------------------\n");
343 <    result += buffer;
344 <
345 <    sprintf(buffer, "Visitor name: %s\n", visitorName.c_str());
346 <    result += buffer;
347 <
348 <    sprintf(buffer,
349 <            "Visitor Description: Convert the TRED atom into 4 different atoms\n");
350 <    result += buffer;
351 <
352 <    sprintf(buffer,
353 <            "------------------------------------------------------------------\n");
354 <    result += buffer;
355 <
356 <    return result;
357 <  }
358 <
359 <
360 <  bool LinearAtomVisitor::isLinearAtom(const std::string& atomType){
361 <    std::set<std::string>::iterator strIter;
362 <    strIter = linearAtomType.find(atomType);
363 <
364 <    return strIter != linearAtomType.end() ? true : false;
365 <  }
366 <
367 <  void LinearAtomVisitor::addGayBerneAtomType(const std::string& atomType){
368 <   linearAtomType.insert(atomType);
369 <  }
370 <
371 <  void LinearAtomVisitor::visit(DirectionalAtom* datom){
372 <    std::vector<AtomInfo*> atoms;
373 <    //we need to convert linear into 4 different atoms
374 <    Vector3d c1(0.0, 0.0, -1.8);
375 <    Vector3d c2(0.0, 0.0, -0.6);
376 <    Vector3d c3(0.0, 0.0,  0.6);
377 <    Vector3d c4(0.0, 0.0,  1.8);
378 <    RotMat3x3d rotMatrix;
379 <    RotMat3x3d rotTrans;
380 <    AtomInfo* atomInfo;
381 <    Vector3d pos;
382 <    Vector3d newVec;
383 <    Quat4d q;
384 <    AtomData* atomData;
385 <    GenericData* data;
386 <    bool haveAtomData;
387 <    AtomType* atomType;
388 <    //if atom is not linear atom, just skip it
389 <    if(!isLinearAtom(datom->getType()) || !datom->getAtomType()->isGayBerne())
390 <      return;
391 <
392 <    //setup GayBerne type in fortran side
393 <    data = datom->getAtomType()->getPropertyByName("GayBerne");
394 <    if (data != NULL) {
395 <       GayBerneParamGenericData* gayBerneData = dynamic_cast<GayBerneParamGenericData*>(data);
396 <
397 <       if (gayBerneData != NULL) {
398 <           GayBerneParam gayBerneParam = gayBerneData->getData();
399 <
400 <                          // double halfLen = gayBerneParam.GB_sigma * gayBerneParam.GB_l2b_ratio/2.0;
401 <                          double halfLen = gayBerneParam.GB_l/2.0;
402 <                          c1[2] = -halfLen;
403 <              c2[2] = -halfLen /2;
404 <              c3[2] = halfLen/2;
405 <              c4[2] = halfLen;
406 <                
407 <            }
408 <            
409 <              else {
410 <                    sprintf( painCave.errMsg,
411 <                           "Can not cast GenericData to GayBerneParam\n");
412 <                    painCave.severity = OOPSE_ERROR;
413 <                    painCave.isFatal = 1;
414 <                    simError();          
415 <        }            
416 <    }
417 <
418 <
419 <    data = datom->getPropertyByName("ATOMDATA");
420 <    if(data != NULL){
421 <      atomData = dynamic_cast<AtomData*>(data);  
422 <      if(atomData == NULL){
423 <        std::cerr << "can not get Atom Data from " << datom->getType() << std::endl;
424 <        atomData = new AtomData;
425 <        haveAtomData = false;      
426 <      } else {
427 <        haveAtomData = true;
428 <      }
429 <    } else {
430 <      atomData = new AtomData;
431 <      haveAtomData = false;
432 <    }
433 <  
434 <  
435 <    pos = datom->getPos();
436 <    q = datom->getQ();
437 <    rotMatrix = datom->getA();
438 <
439 <    // We need A^T to convert from body-fixed to space-fixed:  
440 <    rotTrans = rotMatrix.transpose();
441 <
442 <    newVec = rotTrans * c1;
443 <    atomInfo = new AtomInfo;
444 <    atomInfo->atomTypeName = "C";
445 <    atomInfo->pos[0] = pos[0] + newVec[0];
446 <    atomInfo->pos[1] = pos[1] + newVec[1];
447 <    atomInfo->pos[2] = pos[2] + newVec[2];
448 <    atomInfo->dipole[0] = 0.0;
449 <    atomInfo->dipole[1] = 0.0;
450 <    atomInfo->dipole[2] = 0.0;
451 <    atomData->addAtomInfo(atomInfo);
452 <
453 <    newVec = rotTrans * c2;
454 <    atomInfo = new AtomInfo;
455 <    atomInfo->atomTypeName = "C";
456 <    atomInfo->pos[0] = pos[0] + newVec[0];
457 <    atomInfo->pos[1] = pos[1] + newVec[1];
458 <    atomInfo->pos[2] = pos[2] + newVec[2];
459 <    atomInfo->dipole[0] = 0.0;
460 <    atomInfo->dipole[1] = 0.0;
461 <    atomInfo->dipole[2] = 0.0;
462 <    atomData->addAtomInfo(atomInfo);
463 <
464 <    newVec = rotTrans * c3;
465 <    atomInfo = new AtomInfo;
466 <    atomInfo->atomTypeName = "C";
467 <    atomInfo->pos[0] = pos[0] + newVec[0];
468 <    atomInfo->pos[1] = pos[1] + newVec[1];
469 <    atomInfo->pos[2] = pos[2] + newVec[2];
470 <    atomInfo->dipole[0] = 0.0;
471 <    atomInfo->dipole[1] = 0.0;
472 <    atomInfo->dipole[2] = 0.0;
473 <    atomData->addAtomInfo(atomInfo);
474 <
475 <    newVec = rotTrans * c4;
476 <    atomInfo = new AtomInfo;
477 <    atomInfo->atomTypeName = "C";
478 <    atomInfo->pos[0] = pos[0] + newVec[0];
479 <    atomInfo->pos[1] = pos[1] + newVec[1];
480 <    atomInfo->pos[2] = pos[2] + newVec[2];
481 <    atomInfo->dipole[0] = 0.0;
482 <    atomInfo->dipole[1] = 0.0;
483 <    atomInfo->dipole[2] = 0.0;
484 <    atomData->addAtomInfo(atomInfo);
485 <
486 <    //add atom data into atom's property
487 <
488 <    if(!haveAtomData){
489 <      atomData->setID("ATOMDATA");
490 <      datom->addProperty(atomData);
491 <    }
492 <
493 <    setVisited(datom);
494 <
495 <  }
496 <
497 <  const std::string LinearAtomVisitor::toString(){
498 <    char buffer[65535];
499 <    std::string result;
500 <  
501 <    sprintf(buffer ,"------------------------------------------------------------------\n");
502 <    result += buffer;
503 <
504 <    sprintf(buffer ,"Visitor name: %s\n", visitorName.c_str());
505 <    result += buffer;
506 <
507 <    sprintf(buffer , "Visitor Description: Convert linear into 4 different atoms\n");
508 <    result += buffer;
509 <
510 <    sprintf(buffer ,"------------------------------------------------------------------\n");
511 <    result += buffer;
512 <
513 <    return result;
514 <  }
515 <
516 <  bool GBLipidAtomVisitor::isGBLipidAtom(const std::string& atomType){
517 <    std::set<std::string>::iterator strIter;
518 <    strIter = GBLipidAtomType.find(atomType);
519 <
520 <    return strIter != GBLipidAtomType.end() ? true : false;
521 <  }
522 <
523 <  void GBLipidAtomVisitor::visit(DirectionalAtom* datom){
524 <    std::vector<AtomInfo*> atoms;
525 <    //we need to convert linear into 4 different atoms
526 <    Vector3d c1(0.0, 0.0, -6.25);
527 <    Vector3d c2(0.0, 0.0, -2.1);
528 <    Vector3d c3(0.0, 0.0,  2.1);
529 <    Vector3d c4(0.0, 0.0,  6.25);
530 <    RotMat3x3d rotMatrix;
531 <    RotMat3x3d rotTrans;
532 <    AtomInfo* atomInfo;
533 <    Vector3d pos;
534 <    Vector3d newVec;
535 <    Quat4d q;
536 <    AtomData* atomData;
537 <    GenericData* data;
538 <    bool haveAtomData;
539 <
540 <    //if atom is not GBlipid atom, just skip it
541 <    if(!isGBLipidAtom(datom->getType()))
542 <      return;
543 <
544 <    data = datom->getPropertyByName("ATOMDATA");
545 <    if(data != NULL){
546 <      atomData = dynamic_cast<AtomData*>(data);  
547 <      if(atomData == NULL){
548 <        std::cerr << "can not get Atom Data from " << datom->getType() << std::endl;
549 <        atomData = new AtomData;
550 <        haveAtomData = false;      
551 <      } else {
552 <        haveAtomData = true;
553 <      }
554 <    } else {
555 <      atomData = new AtomData;
556 <      haveAtomData = false;
557 <    }
558 <  
559 <  
560 <    pos = datom->getPos();
561 <    q = datom->getQ();
562 <    rotMatrix = datom->getA();
563 <
564 <    // We need A^T to convert from body-fixed to space-fixed:  
565 <    rotTrans = rotMatrix.transpose();
566 <
567 <    newVec = rotTrans * c1;
568 <    atomInfo = new AtomInfo;
569 <    atomInfo->atomTypeName = "K";
570 <    atomInfo->pos[0] = pos[0] + newVec[0];
571 <    atomInfo->pos[1] = pos[1] + newVec[1];
572 <    atomInfo->pos[2] = pos[2] + newVec[2];
573 <    atomInfo->dipole[0] = 0.0;
574 <    atomInfo->dipole[1] = 0.0;
575 <    atomInfo->dipole[2] = 0.0;
576 <    atomData->addAtomInfo(atomInfo);
577 <
578 <    newVec = rotTrans * c2;
579 <    atomInfo = new AtomInfo;
580 <    atomInfo->atomTypeName = "K";
581 <    atomInfo->pos[0] = pos[0] + newVec[0];
582 <    atomInfo->pos[1] = pos[1] + newVec[1];
583 <    atomInfo->pos[2] = pos[2] + newVec[2];
584 <    atomInfo->dipole[0] = 0.0;
585 <    atomInfo->dipole[1] = 0.0;
586 <    atomInfo->dipole[2] = 0.0;
587 <    atomData->addAtomInfo(atomInfo);
588 <
589 <    newVec = rotTrans * c3;
590 <    atomInfo = new AtomInfo;
591 <    atomInfo->atomTypeName = "K";
592 <    atomInfo->pos[0] = pos[0] + newVec[0];
593 <    atomInfo->pos[1] = pos[1] + newVec[1];
594 <    atomInfo->pos[2] = pos[2] + newVec[2];
595 <    atomInfo->dipole[0] = 0.0;
596 <    atomInfo->dipole[1] = 0.0;
597 <    atomInfo->dipole[2] = 0.0;
598 <    atomData->addAtomInfo(atomInfo);
599 <
600 <    newVec = rotTrans * c4;
601 <    atomInfo = new AtomInfo;
602 <    atomInfo->atomTypeName = "K";
603 <    atomInfo->pos[0] = pos[0] + newVec[0];
604 <    atomInfo->pos[1] = pos[1] + newVec[1];
605 <    atomInfo->pos[2] = pos[2] + newVec[2];
606 <    atomInfo->dipole[0] = 0.0;
607 <    atomInfo->dipole[1] = 0.0;
608 <    atomInfo->dipole[2] = 0.0;
609 <    atomData->addAtomInfo(atomInfo);
610 <
611 <    //add atom data into atom's property
612 <
613 <    if(!haveAtomData){
614 <      atomData->setID("ATOMDATA");
615 <      datom->addProperty(atomData);
616 <    }
617 <
618 <    setVisited(datom);
619 <
620 <  }
621 <
622 <  const std::string GBLipidAtomVisitor::toString(){
623 <    char buffer[65535];
624 <    std::string result;
625 <  
626 <    sprintf(buffer ,"------------------------------------------------------------------\n");
627 <    result += buffer;
628 <
629 <    sprintf(buffer ,"Visitor name: %s\n", visitorName.c_str());
630 <    result += buffer;
631 <
632 <    sprintf(buffer , "Visitor Description: Convert GBlipid into 4 different K atoms\n");
633 <    result += buffer;
634 <
635 <    sprintf(buffer ,"------------------------------------------------------------------\n");
636 <    result += buffer;
637 <
638 <    return result;
639 <  }
640 <
641 <  //----------------------------------------------------------------------------//
642 <
81 >  //------------------------------------------------------------------------//
82 >        
83    void DefaultAtomVisitor::visit(Atom *atom) {
84      AtomData *atomData;
85      AtomInfo *atomInfo;
86 <    Vector3d  pos;
87 <
86 >    AtomType* atype = atom->getAtomType();
87 >              
88      if (isVisited(atom))
89        return;
90 <
90 >    
91      atomInfo = new AtomInfo;
652
653    atomData = new AtomData;
654    atomData->setID("ATOMDATA");
655
656    pos = atom->getPos();
92      atomInfo->atomTypeName = atom->getType();
93 <    atomInfo->pos[0] = pos[0];
94 <    atomInfo->pos[1] = pos[1];
95 <    atomInfo->pos[2] = pos[2];
96 <    atomInfo->dipole[0] = 0.0;
97 <    atomInfo->dipole[1] = 0.0;
98 <    atomInfo->dipole[2] = 0.0;
93 >    atomInfo->pos = atom->getPos();
94 >    atomInfo->vel = atom->getVel();
95 >    atomInfo->frc = atom->getFrc();
96 >    atomInfo->vec = V3Zero;
97 >    atomInfo->hasVelocity = true;
98 >    atomInfo->hasForce = true;
99 >        
100 >    FixedChargeAdapter fca = FixedChargeAdapter(atype);
101 >    if ( fca.isFixedCharge() ) {
102 >      atomInfo->hasCharge = true;
103 >      atomInfo->charge = fca.getCharge();
104 >    }
105 >          
106 >    FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atype);
107 >    if ( fqa.isFluctuatingCharge() ) {
108 >      atomInfo->hasCharge = true;
109 >      atomInfo->charge += atom->getFlucQPos();
110 >    }
111  
112 <    atomData->addAtomInfo(atomInfo);
112 >    if (atype->isElectrostatic()) {
113 >      atomInfo->hasElectricField = true;
114 >      atomInfo->eField = atom->getElectricField();
115 >    }
116  
117 +    atomData = new AtomData;
118 +    atomData->setID("ATOMDATA");  
119 +    atomData->addAtomInfo(atomInfo);
120 +    
121      atom->addProperty(atomData);
122 <
122 >    
123      setVisited(atom);
124    }
125 <
125 >  
126    void DefaultAtomVisitor::visit(DirectionalAtom *datom) {
127      AtomData *atomData;
128      AtomInfo *atomInfo;
129 <    Vector3d  pos;
676 <    Vector3d  u;
129 >    AtomType* atype = datom->getAtomType();
130  
131      if (isVisited(datom))
132        return;
133 +    
134 +    atomInfo = new AtomInfo;
135 +    atomInfo->atomTypeName = datom->getType();
136 +    atomInfo->pos = datom->getPos();
137 +    atomInfo->vel = datom->getVel();
138 +    atomInfo->frc = datom->getFrc();
139 +    atomInfo->hasVelocity = true;
140 +    atomInfo->hasForce = true;
141  
142 <    pos = datom->getPos();
143 <    if (datom->getAtomType()->isGayBerne()) {
144 <        u = datom->getA().transpose()*V3Z;        
145 <    } else if (datom->getAtomType()->isMultipole()) {
685 <        u = datom->getElectroFrame().getColumn(2);
142 >    FixedChargeAdapter fca = FixedChargeAdapter(atype);
143 >    if ( fca.isFixedCharge() ) {
144 >      atomInfo->hasCharge = true;
145 >      atomInfo->charge = fca.getCharge();
146      }
147 <    atomData = new AtomData;
148 <    atomData->setID("ATOMDATA");
149 <    atomInfo = new AtomInfo;
147 >          
148 >    FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atype);
149 >    if ( fqa.isFluctuatingCharge() ) {
150 >      atomInfo->hasCharge = true;
151 >      atomInfo->charge += datom->getFlucQPos();
152 >    }
153  
154 <    atomInfo->atomTypeName = datom->getType();
155 <    atomInfo->pos[0] = pos[0];
156 <    atomInfo->pos[1] = pos[1];
157 <    atomInfo->pos[2] = pos[2];
695 <    atomInfo->dipole[0] = u[0];
696 <    atomInfo->dipole[1] = u[1];
697 <    atomInfo->dipole[2] = u[2];
154 >    if (atype->isElectrostatic()) {
155 >      atomInfo->hasElectricField = true;
156 >      atomInfo->eField = datom->getElectricField();
157 >    }
158  
159 <    atomData->addAtomInfo(atomInfo);
159 >    GayBerneAdapter gba = GayBerneAdapter(atype);
160 >    MultipoleAdapter ma = MultipoleAdapter(atype);
161 >    
162 >    if (gba.isGayBerne()) {
163 >      atomInfo->hasVector = true;
164 >      atomInfo->vec = datom->getA().transpose()*V3Z;
165 >    } else if (ma.isDipole()) {
166 >      atomInfo->hasVector = true;
167 >      atomInfo->vec = datom->getDipole();
168 >    } else if (ma.isQuadrupole()) {
169 >      atomInfo->hasVector = true;
170 >      atomInfo->vec = datom->getA().transpose()*V3Z;
171 >    }
172  
173 +    atomData->addAtomInfo(atomInfo);
174      datom->addProperty(atomData);
175  
176      setVisited(datom);
# Line 708 | Line 181 | namespace oopse {
181      std::string result;
182  
183      sprintf(buffer,
184 <            "------------------------------------------------------------------\n");
184 >            "--------------------------------------------------------------\n");
185      result += buffer;
186  
187      sprintf(buffer, "Visitor name: %s\n", visitorName.c_str());
# Line 719 | Line 192 | namespace oopse {
192      result += buffer;
193  
194      sprintf(buffer,
195 <            "------------------------------------------------------------------\n");
195 >            "--------------------------------------------------------------\n");
196      result += buffer;
197  
198      return result;
199    }
200 < } //namespace oopse
200 > } //namespace OpenMD

Comparing:
trunk/src/visitors/AtomVisitor.cpp (property svn:keywords), Revision 1008 by chrisfen, Wed Jul 19 12:35:31 2006 UTC vs.
branches/development/src/visitors/AtomVisitor.cpp (property svn:keywords), Revision 1871 by gezelter, Fri May 10 14:59:13 2013 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines