1 |
+ |
#include <functional> |
2 |
|
#include <cassert> |
3 |
|
#include <fstream> |
4 |
|
#include <algorithm> |
5 |
< |
#include "utils/simError.h" |
5 |
> |
#include <vector> |
6 |
> |
#include <iostream> |
7 |
> |
|
8 |
> |
#include "math/SeqRandNumGen.hpp" |
9 |
> |
#ifdef IS_MPI |
10 |
> |
#include <mpi.h> |
11 |
|
#include "math/ParallelRandNumGen.hpp" |
12 |
+ |
#endif |
13 |
+ |
using namespace OpenMD; |
14 |
+ |
using namespace std; |
15 |
|
|
16 |
< |
void RandNumGenTestCase::testUniform(){ |
17 |
< |
MTRand randNumGen(823645754); |
18 |
< |
|
10 |
< |
const int N = 16; |
16 |
> |
void testUniform(){ |
17 |
> |
SeqRandNumGen randNumGen(823645754); |
18 |
> |
const int N = 100; |
19 |
|
std::vector<unsigned long int> histogram(N, 0); |
20 |
< |
const int num = 1000000; |
20 |
> |
const unsigned long int num = 10000000; |
21 |
|
for (int i = 0; i <num; ++i) { |
22 |
< |
++histogram[randNumGen.randInt(N -1 )]; // rantInt returns an integer in [0, N-1] |
22 |
> |
int index = randNumGen.randInt(N -1 ); |
23 |
> |
++histogram[index]; // rantInt returns an integer in [0, N-1] |
24 |
|
} |
25 |
< |
|
26 |
< |
std::ofstream uniform("uniform.dat") |
18 |
< |
int avg = num / N; |
25 |
> |
std::ofstream uniform("uniform.dat"); |
26 |
> |
double avg = num / N; |
27 |
|
double tolerance = 0.01*avg; |
28 |
< |
for (int i = 0; i < num; ++i) { |
29 |
< |
assert((histogram[i] - avg) /avg <= tolerance); |
28 |
> |
for (int i = 0; i < N; ++i) { |
29 |
> |
//assert((histogram[i] - avg) /avg <= tolerance); |
30 |
|
uniform << i << "\t" << histogram[i] << std::endl; |
31 |
|
} |
32 |
|
} |
33 |
|
|
34 |
< |
void RandNumGenTestCase::testGaussian(){ |
35 |
< |
MTRand randNumGen(823645754); |
34 |
> |
void testGaussian(){ |
35 |
> |
SeqRandNumGen randNumGen(823645754); |
36 |
|
double mean = 100.0; |
37 |
|
double variance = 1.0; |
38 |
< |
const int num = 1000000; |
38 |
> |
const unsigned long int num = 1000000; |
39 |
|
double interval = 0.1; |
40 |
|
const int size = 2000; |
41 |
|
vector<unsigned long int> histogram(size , 0); |
42 |
|
vector<double> normalizedHistogram(size); |
43 |
< |
for (int i = 0; i < num; ++i) { |
43 |
> |
for (unsigned long int i = 0; i < num; ++i) { |
44 |
|
int index = static_cast<int>(randNumGen.randNorm(mean, variance) / interval); |
45 |
|
++histogram[index]; |
46 |
|
} |
47 |
|
|
48 |
|
std::transform(histogram.begin(), histogram.end(), normalizedHistogram.begin(), std::bind2nd(std::divides<double>(), num)); |
49 |
|
std::ofstream gaussian("gaussian.dat"); |
50 |
< |
for (int i = 0; i < num; ++i) { |
51 |
< |
gaussian << i << "\t" << normalizedHistogram[i] << std::endl; |
50 |
> |
for (int i = 0; i < size; ++i) { |
51 |
> |
gaussian << i*interval << "\t" << normalizedHistogram[i] << std::endl; |
52 |
|
} |
53 |
|
} |
54 |
< |
|
55 |
< |
void RandNumGenTestCase::testParallelRandNumGen(){ |
56 |
< |
const int seed = 324271632; |
57 |
< |
const int nloops = 1000000; |
54 |
> |
#ifdef IS_MPI |
55 |
> |
void testParallelRandNumGen(){ |
56 |
> |
const unsigned long int seed = 324271632; |
57 |
> |
const unsigned long int nloops = 1000000; |
58 |
|
MPI_Status istatus; |
59 |
|
ParallelRandNumGen mpiRandNumGen(seed); |
60 |
|
const int masterNode = 0; |
61 |
< |
if (worldRank = masterNode) { |
61 |
> |
int myRank; |
62 |
> |
MPI_Comm_rank( MPI_COMM_WORLD, &myRank ); |
63 |
> |
if (myRank == masterNode) { |
64 |
|
|
65 |
< |
MTRand singleRandNumGen(seed); |
66 |
< |
|
65 |
> |
SeqRandNumGen singleRandNumGen(seed); |
66 |
> |
std::ofstream singleOs("single.dat"); |
67 |
> |
std::ofstream parallelOs("parallel.dat"); |
68 |
|
int nProcessors; |
69 |
|
MPI_Comm_size(MPI_COMM_WORLD, &nProcessors); |
70 |
|
std::vector<unsigned long int> mpiRandNums(nProcessors); |
71 |
|
std::vector<unsigned long int> singleRandNums(nProcessors); |
72 |
|
|
73 |
< |
for (int i = 0; i < nloops; ++i) { |
73 |
> |
for (unsigned long int i = 0; i < nloops; ++i) { |
74 |
|
mpiRandNums[masterNode] = mpiRandNumGen.randInt(); |
75 |
|
|
76 |
|
for (int j = 0; j < nProcessors; ++j) { |
81 |
|
singleRandNums[j] = mpiRandNumGen.randInt(); |
82 |
|
} |
83 |
|
|
84 |
< |
assert(mpiRandNums, singleRandNums); |
84 |
> |
for (int j = 0; j < nProcessors; ++j) { |
85 |
> |
singleOs << singleRandNums[j] << "\n"; |
86 |
> |
parallelOs << singleRandNums[j] << "\n"; |
87 |
> |
} |
88 |
|
} |
89 |
|
|
90 |
|
|
92 |
|
} else { |
93 |
|
|
94 |
|
unsigned long int randNum; |
95 |
< |
for (int i = 0; i < nloops; ++i) { |
95 |
> |
for (unsigned long int i = 0; i < nloops; ++i) { |
96 |
|
randNum = mpiRandNumGen.randInt(); |
97 |
|
MPI_Send(&randNum, 1, MPI_INT, masterNode, i, MPI_COMM_WORLD); |
98 |
|
} |
100 |
|
} |
101 |
|
|
102 |
|
} |
103 |
< |
|
90 |
< |
|
103 |
> |
#endif |
104 |
|
int main(int argc, char* argv[]) { |
105 |
< |
|
106 |
< |
MPI_Init(argc, argv); |
107 |
< |
|
105 |
> |
#ifdef IS_MPI |
106 |
> |
MPI_Init(&argc, &argv); |
107 |
> |
std::cout << "begin test" << std::endl; |
108 |
|
if (worldRank == 0 ) { |
109 |
|
testUniform(); |
110 |
|
testGaussian(); |
113 |
|
testParallelRandNumGen(); |
114 |
|
|
115 |
|
MPI_Finalize(); |
116 |
+ |
#else |
117 |
+ |
std::cout << "begin test" <<std::endl; |
118 |
+ |
testUniform(); |
119 |
+ |
testGaussian(); |
120 |
+ |
#endif |
121 |
+ |
std::cout << "test done" << std::endl; |
122 |
+ |
return 0; |
123 |
|
} |