| 1 |
/*<html><pre> -<a href="qh-geom.htm" |
| 2 |
>-------------------------------</a><a name="TOP">-</a> |
| 3 |
|
| 4 |
|
| 5 |
geom2.c |
| 6 |
infrequently used geometric routines of qhull |
| 7 |
|
| 8 |
see qh-geom.htm and geom.h |
| 9 |
|
| 10 |
copyright (c) 1993-2003 The Geometry Center |
| 11 |
|
| 12 |
frequently used code goes into geom.c |
| 13 |
*/ |
| 14 |
|
| 15 |
#include "QuickHull/qhull_a.h" |
| 16 |
|
| 17 |
/*================== functions in alphabetic order ============*/ |
| 18 |
|
| 19 |
/*-<a href="qh-geom.htm#TOC" |
| 20 |
>-------------------------------</a><a name="copypoints">-</a> |
| 21 |
|
| 22 |
qh_copypoints( points, numpoints, dimension) |
| 23 |
return malloc'd copy of points |
| 24 |
*/ |
| 25 |
coordT *qh_copypoints (coordT *points, int numpoints, int dimension) { |
| 26 |
int size; |
| 27 |
coordT *newpoints; |
| 28 |
|
| 29 |
size= numpoints * dimension * sizeof(coordT); |
| 30 |
if (!(newpoints=(coordT*)malloc(size))) { |
| 31 |
fprintf(qh ferr, "qhull error: insufficient memory to copy %d points\n", |
| 32 |
numpoints); |
| 33 |
qh_errexit(qh_ERRmem, NULL, NULL); |
| 34 |
} |
| 35 |
memcpy ((char *)newpoints, (char *)points, size); |
| 36 |
return newpoints; |
| 37 |
} /* copypoints */ |
| 38 |
|
| 39 |
/*-<a href="qh-geom.htm#TOC" |
| 40 |
>-------------------------------</a><a name="crossproduct">-</a> |
| 41 |
|
| 42 |
qh_crossproduct( dim, vecA, vecB, vecC ) |
| 43 |
crossproduct of 2 dim vectors |
| 44 |
C= A x B |
| 45 |
|
| 46 |
notes: |
| 47 |
from Glasner, Graphics Gems I, p. 639 |
| 48 |
only defined for dim==3 |
| 49 |
*/ |
| 50 |
void qh_crossproduct (int dim, realT vecA[3], realT vecB[3], realT vecC[3]){ |
| 51 |
|
| 52 |
if (dim == 3) { |
| 53 |
vecC[0]= det2_(vecA[1], vecA[2], vecB[1], vecB[2]); |
| 54 |
vecC[1]= - det2_(vecA[0], vecA[2], vecB[0], vecB[2]); |
| 55 |
vecC[2]= det2_(vecA[0], vecA[1], vecB[0], vecB[1]); |
| 56 |
} |
| 57 |
} /* vcross */ |
| 58 |
|
| 59 |
/*-<a href="qh-geom.htm#TOC" |
| 60 |
>-------------------------------</a><a name="determinant">-</a> |
| 61 |
|
| 62 |
qh_determinant( rows, dim, nearzero ) |
| 63 |
compute signed determinant of a square matrix |
| 64 |
uses qh.NEARzero to test for degenerate matrices |
| 65 |
|
| 66 |
returns: |
| 67 |
determinant |
| 68 |
overwrites rows and the matrix |
| 69 |
if dim == 2 or 3 |
| 70 |
nearzero iff determinant < qh NEARzero[dim-1] |
| 71 |
(not quite correct, not critical) |
| 72 |
if dim >= 4 |
| 73 |
nearzero iff diagonal[k] < qh NEARzero[k] |
| 74 |
*/ |
| 75 |
realT qh_determinant (realT **rows, int dim, boolT *nearzero) { |
| 76 |
realT det=0; |
| 77 |
int i; |
| 78 |
boolT sign= False; |
| 79 |
|
| 80 |
*nearzero= False; |
| 81 |
if (dim < 2) { |
| 82 |
fprintf (qh ferr, "qhull internal error (qh_determinate): only implemented for dimension >= 2\n"); |
| 83 |
qh_errexit (qh_ERRqhull, NULL, NULL); |
| 84 |
}else if (dim == 2) { |
| 85 |
det= det2_(rows[0][0], rows[0][1], rows[1][0], rows[1][1]); |
| 86 |
if (fabs_(det) < qh NEARzero[1]) /* not really correct, what should this be? */ |
| 87 |
*nearzero= True; |
| 88 |
}else if (dim == 3) { |
| 89 |
det= det3_(rows[0][0], rows[0][1], rows[0][2], rows[1][0], rows[1][1], rows[1][2], rows[2][0], rows[2][1], rows[2][2]); |
| 90 |
if (fabs_(det) < qh NEARzero[2]) /* not really correct, what should this be? */ |
| 91 |
*nearzero= True; |
| 92 |
}else { |
| 93 |
qh_gausselim(rows, dim, dim, &sign, nearzero); /* if nearzero, diagonal still ok*/ |
| 94 |
det= 1.0; |
| 95 |
for (i= dim; i--; ) |
| 96 |
det *= (rows[i])[i]; |
| 97 |
if (sign) |
| 98 |
det= -det; |
| 99 |
} |
| 100 |
return det; |
| 101 |
} /* determinant */ |
| 102 |
|
| 103 |
/*-<a href="qh-geom.htm#TOC" |
| 104 |
>-------------------------------</a><a name="detjoggle">-</a> |
| 105 |
|
| 106 |
qh_detjoggle( points, numpoints, dimension ) |
| 107 |
determine default max joggle for point array |
| 108 |
as qh_distround * qh_JOGGLEdefault |
| 109 |
|
| 110 |
returns: |
| 111 |
initial value for JOGGLEmax from points and REALepsilon |
| 112 |
|
| 113 |
notes: |
| 114 |
computes DISTround since qh_maxmin not called yet |
| 115 |
if qh SCALElast, last dimension will be scaled later to MAXwidth |
| 116 |
|
| 117 |
loop duplicated from qh_maxmin |
| 118 |
*/ |
| 119 |
realT qh_detjoggle (pointT *points, int numpoints, int dimension) { |
| 120 |
realT abscoord, distround, joggle, maxcoord, mincoord; |
| 121 |
pointT *point, *pointtemp; |
| 122 |
realT maxabs= -REALmax; |
| 123 |
realT sumabs= 0; |
| 124 |
realT maxwidth= 0; |
| 125 |
int k; |
| 126 |
|
| 127 |
for (k= 0; k < dimension; k++) { |
| 128 |
if (qh SCALElast && k == dimension-1) |
| 129 |
abscoord= maxwidth; |
| 130 |
else if (qh DELAUNAY && k == dimension-1) /* will qh_setdelaunay() */ |
| 131 |
abscoord= 2 * maxabs * maxabs; /* may be low by qh hull_dim/2 */ |
| 132 |
else { |
| 133 |
maxcoord= -REALmax; |
| 134 |
mincoord= REALmax; |
| 135 |
FORALLpoint_(points, numpoints) { |
| 136 |
maximize_(maxcoord, point[k]); |
| 137 |
minimize_(mincoord, point[k]); |
| 138 |
} |
| 139 |
maximize_(maxwidth, maxcoord-mincoord); |
| 140 |
abscoord= fmax_(maxcoord, -mincoord); |
| 141 |
} |
| 142 |
sumabs += abscoord; |
| 143 |
maximize_(maxabs, abscoord); |
| 144 |
} /* for k */ |
| 145 |
distround= qh_distround (qh hull_dim, maxabs, sumabs); |
| 146 |
joggle= distround * qh_JOGGLEdefault; |
| 147 |
maximize_(joggle, REALepsilon * qh_JOGGLEdefault); |
| 148 |
trace2((qh ferr, "qh_detjoggle: joggle=%2.2g maxwidth=%2.2g\n", joggle, maxwidth)); |
| 149 |
return joggle; |
| 150 |
} /* detjoggle */ |
| 151 |
|
| 152 |
/*-<a href="qh-geom.htm#TOC" |
| 153 |
>-------------------------------</a><a name="detroundoff">-</a> |
| 154 |
|
| 155 |
qh_detroundoff() |
| 156 |
determine maximum roundoff errors from |
| 157 |
REALepsilon, REALmax, REALmin, qh.hull_dim, qh.MAXabs_coord, |
| 158 |
qh.MAXsumcoord, qh.MAXwidth, qh.MINdenom_1 |
| 159 |
|
| 160 |
accounts for qh.SETroundoff, qh.RANDOMdist, qh MERGEexact |
| 161 |
qh.premerge_cos, qh.postmerge_cos, qh.premerge_centrum, |
| 162 |
qh.postmerge_centrum, qh.MINoutside, |
| 163 |
qh_RATIOnearinside, qh_COPLANARratio, qh_WIDEcoplanar |
| 164 |
|
| 165 |
returns: |
| 166 |
sets qh.DISTround, etc. (see below) |
| 167 |
appends precision constants to qh.qhull_options |
| 168 |
|
| 169 |
see: |
| 170 |
qh_maxmin() for qh.NEARzero |
| 171 |
|
| 172 |
design: |
| 173 |
determine qh.DISTround for distance computations |
| 174 |
determine minimum denominators for qh_divzero |
| 175 |
determine qh.ANGLEround for angle computations |
| 176 |
adjust qh.premerge_cos,... for roundoff error |
| 177 |
determine qh.ONEmerge for maximum error due to a single merge |
| 178 |
determine qh.NEARinside, qh.MAXcoplanar, qh.MINvisible, |
| 179 |
qh.MINoutside, qh.WIDEfacet |
| 180 |
initialize qh.max_vertex and qh.minvertex |
| 181 |
*/ |
| 182 |
void qh_detroundoff (void) { |
| 183 |
|
| 184 |
qh_option ("_max-width", NULL, &qh MAXwidth); |
| 185 |
if (!qh SETroundoff) { |
| 186 |
qh DISTround= qh_distround (qh hull_dim, qh MAXabs_coord, qh MAXsumcoord); |
| 187 |
if (qh RANDOMdist) |
| 188 |
qh DISTround += qh RANDOMfactor * qh MAXabs_coord; |
| 189 |
qh_option ("Error-roundoff", NULL, &qh DISTround); |
| 190 |
} |
| 191 |
qh MINdenom= qh MINdenom_1 * qh MAXabs_coord; |
| 192 |
qh MINdenom_1_2= sqrt (qh MINdenom_1 * qh hull_dim) ; /* if will be normalized */ |
| 193 |
qh MINdenom_2= qh MINdenom_1_2 * qh MAXabs_coord; |
| 194 |
/* for inner product */ |
| 195 |
qh ANGLEround= 1.01 * qh hull_dim * REALepsilon; |
| 196 |
if (qh RANDOMdist) |
| 197 |
qh ANGLEround += qh RANDOMfactor; |
| 198 |
if (qh premerge_cos < REALmax/2) { |
| 199 |
qh premerge_cos -= qh ANGLEround; |
| 200 |
if (qh RANDOMdist) |
| 201 |
qh_option ("Angle-premerge-with-random", NULL, &qh premerge_cos); |
| 202 |
} |
| 203 |
if (qh postmerge_cos < REALmax/2) { |
| 204 |
qh postmerge_cos -= qh ANGLEround; |
| 205 |
if (qh RANDOMdist) |
| 206 |
qh_option ("Angle-postmerge-with-random", NULL, &qh postmerge_cos); |
| 207 |
} |
| 208 |
qh premerge_centrum += 2 * qh DISTround; /*2 for centrum and distplane()*/ |
| 209 |
qh postmerge_centrum += 2 * qh DISTround; |
| 210 |
if (qh RANDOMdist && (qh MERGEexact || qh PREmerge)) |
| 211 |
qh_option ("Centrum-premerge-with-random", NULL, &qh premerge_centrum); |
| 212 |
if (qh RANDOMdist && qh POSTmerge) |
| 213 |
qh_option ("Centrum-postmerge-with-random", NULL, &qh postmerge_centrum); |
| 214 |
{ /* compute ONEmerge, max vertex offset for merging simplicial facets */ |
| 215 |
realT maxangle= 1.0, maxrho; |
| 216 |
|
| 217 |
minimize_(maxangle, qh premerge_cos); |
| 218 |
minimize_(maxangle, qh postmerge_cos); |
| 219 |
/* max diameter * sin theta + DISTround for vertex to its hyperplane */ |
| 220 |
qh ONEmerge= sqrt (qh hull_dim) * qh MAXwidth * |
| 221 |
sqrt (1.0 - maxangle * maxangle) + qh DISTround; |
| 222 |
maxrho= qh hull_dim * qh premerge_centrum + qh DISTround; |
| 223 |
maximize_(qh ONEmerge, maxrho); |
| 224 |
maxrho= qh hull_dim * qh postmerge_centrum + qh DISTround; |
| 225 |
maximize_(qh ONEmerge, maxrho); |
| 226 |
if (qh MERGING) |
| 227 |
qh_option ("_one-merge", NULL, &qh ONEmerge); |
| 228 |
} |
| 229 |
qh NEARinside= qh ONEmerge * qh_RATIOnearinside; /* only used if qh KEEPnearinside */ |
| 230 |
if (qh JOGGLEmax < REALmax/2 && (qh KEEPcoplanar || qh KEEPinside)) { |
| 231 |
realT maxdist; /* adjust qh.NEARinside for joggle */ |
| 232 |
qh KEEPnearinside= True; |
| 233 |
maxdist= sqrt (qh hull_dim) * qh JOGGLEmax + qh DISTround; |
| 234 |
maxdist= 2*maxdist; /* vertex and coplanar point can joggle in opposite directions */ |
| 235 |
maximize_(qh NEARinside, maxdist); /* must agree with qh_nearcoplanar() */ |
| 236 |
} |
| 237 |
if (qh KEEPnearinside) |
| 238 |
qh_option ("_near-inside", NULL, &qh NEARinside); |
| 239 |
if (qh JOGGLEmax < qh DISTround) { |
| 240 |
fprintf (qh ferr, "qhull error: the joggle for 'QJn', %.2g, is below roundoff for distance computations, %.2g\n", |
| 241 |
qh JOGGLEmax, qh DISTround); |
| 242 |
qh_errexit (qh_ERRinput, NULL, NULL); |
| 243 |
} |
| 244 |
if (qh MINvisible > REALmax/2) { |
| 245 |
if (!qh MERGING) |
| 246 |
qh MINvisible= qh DISTround; |
| 247 |
else if (qh hull_dim <= 3) |
| 248 |
qh MINvisible= qh premerge_centrum; |
| 249 |
else |
| 250 |
qh MINvisible= qh_COPLANARratio * qh premerge_centrum; |
| 251 |
if (qh APPROXhull && qh MINvisible > qh MINoutside) |
| 252 |
qh MINvisible= qh MINoutside; |
| 253 |
qh_option ("Visible-distance", NULL, &qh MINvisible); |
| 254 |
} |
| 255 |
if (qh MAXcoplanar > REALmax/2) { |
| 256 |
qh MAXcoplanar= qh MINvisible; |
| 257 |
qh_option ("U-coplanar-distance", NULL, &qh MAXcoplanar); |
| 258 |
} |
| 259 |
if (!qh APPROXhull) { /* user may specify qh MINoutside */ |
| 260 |
qh MINoutside= 2 * qh MINvisible; |
| 261 |
if (qh premerge_cos < REALmax/2) |
| 262 |
maximize_(qh MINoutside, (1- qh premerge_cos) * qh MAXabs_coord); |
| 263 |
qh_option ("Width-outside", NULL, &qh MINoutside); |
| 264 |
} |
| 265 |
qh WIDEfacet= qh MINoutside; |
| 266 |
maximize_(qh WIDEfacet, qh_WIDEcoplanar * qh MAXcoplanar); |
| 267 |
maximize_(qh WIDEfacet, qh_WIDEcoplanar * qh MINvisible); |
| 268 |
qh_option ("_wide-facet", NULL, &qh WIDEfacet); |
| 269 |
if (qh MINvisible > qh MINoutside + 3 * REALepsilon |
| 270 |
&& !qh BESToutside && !qh FORCEoutput) |
| 271 |
fprintf (qh ferr, "qhull input warning: minimum visibility V%.2g is greater than \nminimum outside W%.2g. Flipped facets are likely.\n", |
| 272 |
qh MINvisible, qh MINoutside); |
| 273 |
qh max_vertex= qh DISTround; |
| 274 |
qh min_vertex= -qh DISTround; |
| 275 |
/* numeric constants reported in printsummary */ |
| 276 |
} /* detroundoff */ |
| 277 |
|
| 278 |
/*-<a href="qh-geom.htm#TOC" |
| 279 |
>-------------------------------</a><a name="detsimplex">-</a> |
| 280 |
|
| 281 |
qh_detsimplex( apex, points, dim, nearzero ) |
| 282 |
compute determinant of a simplex with point apex and base points |
| 283 |
|
| 284 |
returns: |
| 285 |
signed determinant and nearzero from qh_determinant |
| 286 |
|
| 287 |
notes: |
| 288 |
uses qh.gm_matrix/qh.gm_row (assumes they're big enough) |
| 289 |
|
| 290 |
design: |
| 291 |
construct qm_matrix by subtracting apex from points |
| 292 |
compute determinate |
| 293 |
*/ |
| 294 |
realT qh_detsimplex(pointT *apex, setT *points, int dim, boolT *nearzero) { |
| 295 |
pointT *coorda, *coordp, *gmcoord, *point, **pointp; |
| 296 |
coordT **rows; |
| 297 |
int k, i=0; |
| 298 |
realT det; |
| 299 |
|
| 300 |
zinc_(Zdetsimplex); |
| 301 |
gmcoord= qh gm_matrix; |
| 302 |
rows= qh gm_row; |
| 303 |
FOREACHpoint_(points) { |
| 304 |
if (i == dim) |
| 305 |
break; |
| 306 |
rows[i++]= gmcoord; |
| 307 |
coordp= point; |
| 308 |
coorda= apex; |
| 309 |
for (k= dim; k--; ) |
| 310 |
*(gmcoord++)= *coordp++ - *coorda++; |
| 311 |
} |
| 312 |
if (i < dim) { |
| 313 |
fprintf (qh ferr, "qhull internal error (qh_detsimplex): #points %d < dimension %d\n", |
| 314 |
i, dim); |
| 315 |
qh_errexit (qh_ERRqhull, NULL, NULL); |
| 316 |
} |
| 317 |
det= qh_determinant (rows, dim, nearzero); |
| 318 |
trace2((qh ferr, "qh_detsimplex: det=%2.2g for point p%d, dim %d, nearzero? %d\n", det, qh_pointid(apex), dim, *nearzero)); |
| 319 |
return det; |
| 320 |
} /* detsimplex */ |
| 321 |
|
| 322 |
/*-<a href="qh-geom.htm#TOC" |
| 323 |
>-------------------------------</a><a name="distnorm">-</a> |
| 324 |
|
| 325 |
qh_distnorm( dim, point, normal, offset ) |
| 326 |
return distance from point to hyperplane at normal/offset |
| 327 |
|
| 328 |
returns: |
| 329 |
dist |
| 330 |
|
| 331 |
notes: |
| 332 |
dist > 0 if point is outside of hyperplane |
| 333 |
|
| 334 |
see: |
| 335 |
qh_distplane in geom.c |
| 336 |
*/ |
| 337 |
realT qh_distnorm (int dim, pointT *point, pointT *normal, realT *offsetp) { |
| 338 |
coordT *normalp= normal, *coordp= point; |
| 339 |
realT dist; |
| 340 |
int k; |
| 341 |
|
| 342 |
dist= *offsetp; |
| 343 |
for (k= dim; k--; ) |
| 344 |
dist += *(coordp++) * *(normalp++); |
| 345 |
return dist; |
| 346 |
} /* distnorm */ |
| 347 |
|
| 348 |
/*-<a href="qh-geom.htm#TOC" |
| 349 |
>-------------------------------</a><a name="distround">-</a> |
| 350 |
|
| 351 |
qh_distround ( dimension, maxabs, maxsumabs ) |
| 352 |
compute maximum round-off error for a distance computation |
| 353 |
to a normalized hyperplane |
| 354 |
maxabs is the maximum absolute value of a coordinate |
| 355 |
maxsumabs is the maximum possible sum of absolute coordinate values |
| 356 |
|
| 357 |
returns: |
| 358 |
max dist round for REALepsilon |
| 359 |
|
| 360 |
notes: |
| 361 |
calculate roundoff error according to |
| 362 |
Lemma 3.2-1 of Golub and van Loan "Matrix Computation" |
| 363 |
please use sqrt(dim) since one vector is normalized |
| 364 |
or use maxsumabs since one vector is < 1 |
| 365 |
*/ |
| 366 |
realT qh_distround (int dimension, realT maxabs, realT maxsumabs) { |
| 367 |
realT maxdistsum, maxround; |
| 368 |
|
| 369 |
maxdistsum= sqrt (dimension) * maxabs; |
| 370 |
minimize_( maxdistsum, maxsumabs); |
| 371 |
maxround= REALepsilon * (dimension * maxdistsum * 1.01 + maxabs); |
| 372 |
/* adds maxabs for offset */ |
| 373 |
trace4((qh ferr, "qh_distround: %2.2g maxabs %2.2g maxsumabs %2.2g maxdistsum %2.2g\n", maxround, maxabs, maxsumabs, maxdistsum)); |
| 374 |
return maxround; |
| 375 |
} /* distround */ |
| 376 |
|
| 377 |
/*-<a href="qh-geom.htm#TOC" |
| 378 |
>-------------------------------</a><a name="divzero">-</a> |
| 379 |
|
| 380 |
qh_divzero( numer, denom, mindenom1, zerodiv ) |
| 381 |
divide by a number that's nearly zero |
| 382 |
mindenom1= minimum denominator for dividing into 1.0 |
| 383 |
|
| 384 |
returns: |
| 385 |
quotient |
| 386 |
sets zerodiv and returns 0.0 if it would overflow |
| 387 |
|
| 388 |
design: |
| 389 |
if numer is nearly zero and abs(numer) < abs(denom) |
| 390 |
return numer/denom |
| 391 |
else if numer is nearly zero |
| 392 |
return 0 and zerodiv |
| 393 |
else if denom/numer non-zero |
| 394 |
return numer/denom |
| 395 |
else |
| 396 |
return 0 and zerodiv |
| 397 |
*/ |
| 398 |
realT qh_divzero (realT numer, realT denom, realT mindenom1, boolT *zerodiv) { |
| 399 |
realT temp, numerx, denomx; |
| 400 |
|
| 401 |
|
| 402 |
if (numer < mindenom1 && numer > -mindenom1) { |
| 403 |
numerx= fabs_(numer); |
| 404 |
denomx= fabs_(denom); |
| 405 |
if (numerx < denomx) { |
| 406 |
*zerodiv= False; |
| 407 |
return numer/denom; |
| 408 |
}else { |
| 409 |
*zerodiv= True; |
| 410 |
return 0.0; |
| 411 |
} |
| 412 |
} |
| 413 |
temp= denom/numer; |
| 414 |
if (temp > mindenom1 || temp < -mindenom1) { |
| 415 |
*zerodiv= False; |
| 416 |
return numer/denom; |
| 417 |
}else { |
| 418 |
*zerodiv= True; |
| 419 |
return 0.0; |
| 420 |
} |
| 421 |
} /* divzero */ |
| 422 |
|
| 423 |
|
| 424 |
/*-<a href="qh-geom.htm#TOC" |
| 425 |
>-------------------------------</a><a name="facetarea">-</a> |
| 426 |
|
| 427 |
qh_facetarea( facet ) |
| 428 |
return area for a facet |
| 429 |
|
| 430 |
notes: |
| 431 |
if non-simplicial, |
| 432 |
uses centrum to triangulate facet and sums the projected areas. |
| 433 |
if (qh DELAUNAY), |
| 434 |
computes projected area instead for last coordinate |
| 435 |
assumes facet->normal exists |
| 436 |
projecting tricoplanar facets to the hyperplane does not appear to make a difference |
| 437 |
|
| 438 |
design: |
| 439 |
if simplicial |
| 440 |
compute area |
| 441 |
else |
| 442 |
for each ridge |
| 443 |
compute area from centrum to ridge |
| 444 |
negate area if upper Delaunay facet |
| 445 |
*/ |
| 446 |
realT qh_facetarea (facetT *facet) { |
| 447 |
vertexT *apex; |
| 448 |
pointT *centrum; |
| 449 |
realT area= 0.0; |
| 450 |
ridgeT *ridge, **ridgep; |
| 451 |
|
| 452 |
if (facet->simplicial) { |
| 453 |
apex= SETfirstt_(facet->vertices, vertexT); |
| 454 |
area= qh_facetarea_simplex (qh hull_dim, apex->point, facet->vertices, |
| 455 |
apex, facet->toporient, facet->normal, &facet->offset); |
| 456 |
}else { |
| 457 |
if (qh CENTERtype == qh_AScentrum) |
| 458 |
centrum= facet->center; |
| 459 |
else |
| 460 |
centrum= qh_getcentrum (facet); |
| 461 |
FOREACHridge_(facet->ridges) |
| 462 |
area += qh_facetarea_simplex (qh hull_dim, centrum, ridge->vertices, |
| 463 |
NULL, (ridge->top == facet), facet->normal, &facet->offset); |
| 464 |
if (qh CENTERtype != qh_AScentrum) |
| 465 |
qh_memfree (centrum, qh normal_size); |
| 466 |
} |
| 467 |
if (facet->upperdelaunay && qh DELAUNAY) |
| 468 |
area= -area; /* the normal should be [0,...,1] */ |
| 469 |
trace4((qh ferr, "qh_facetarea: f%d area %2.2g\n", facet->id, area)); |
| 470 |
return area; |
| 471 |
} /* facetarea */ |
| 472 |
|
| 473 |
/*-<a href="qh-geom.htm#TOC" |
| 474 |
>-------------------------------</a><a name="facetarea_simplex">-</a> |
| 475 |
|
| 476 |
qh_facetarea_simplex( dim, apex, vertices, notvertex, toporient, normal, offset ) |
| 477 |
return area for a simplex defined by |
| 478 |
an apex, a base of vertices, an orientation, and a unit normal |
| 479 |
if simplicial or tricoplanar facet, |
| 480 |
notvertex is defined and it is skipped in vertices |
| 481 |
|
| 482 |
returns: |
| 483 |
computes area of simplex projected to plane [normal,offset] |
| 484 |
returns 0 if vertex too far below plane (qh WIDEfacet) |
| 485 |
vertex can't be apex of tricoplanar facet |
| 486 |
|
| 487 |
notes: |
| 488 |
if (qh DELAUNAY), |
| 489 |
computes projected area instead for last coordinate |
| 490 |
uses qh gm_matrix/gm_row and qh hull_dim |
| 491 |
helper function for qh_facetarea |
| 492 |
|
| 493 |
design: |
| 494 |
if Notvertex |
| 495 |
translate simplex to apex |
| 496 |
else |
| 497 |
project simplex to normal/offset |
| 498 |
translate simplex to apex |
| 499 |
if Delaunay |
| 500 |
set last row/column to 0 with -1 on diagonal |
| 501 |
else |
| 502 |
set last row to Normal |
| 503 |
compute determinate |
| 504 |
scale and flip sign for area |
| 505 |
*/ |
| 506 |
realT qh_facetarea_simplex (int dim, coordT *apex, setT *vertices, |
| 507 |
vertexT *notvertex, boolT toporient, coordT *normal, realT *offset) { |
| 508 |
pointT *coorda, *coordp, *gmcoord; |
| 509 |
coordT **rows, *normalp; |
| 510 |
int k, i=0; |
| 511 |
realT area, dist; |
| 512 |
vertexT *vertex, **vertexp; |
| 513 |
boolT nearzero; |
| 514 |
|
| 515 |
gmcoord= qh gm_matrix; |
| 516 |
rows= qh gm_row; |
| 517 |
FOREACHvertex_(vertices) { |
| 518 |
if (vertex == notvertex) |
| 519 |
continue; |
| 520 |
rows[i++]= gmcoord; |
| 521 |
coorda= apex; |
| 522 |
coordp= vertex->point; |
| 523 |
normalp= normal; |
| 524 |
if (notvertex) { |
| 525 |
for (k= dim; k--; ) |
| 526 |
*(gmcoord++)= *coordp++ - *coorda++; |
| 527 |
}else { |
| 528 |
dist= *offset; |
| 529 |
for (k= dim; k--; ) |
| 530 |
dist += *coordp++ * *normalp++; |
| 531 |
if (dist < -qh WIDEfacet) { |
| 532 |
zinc_(Znoarea); |
| 533 |
return 0.0; |
| 534 |
} |
| 535 |
coordp= vertex->point; |
| 536 |
normalp= normal; |
| 537 |
for (k= dim; k--; ) |
| 538 |
*(gmcoord++)= (*coordp++ - dist * *normalp++) - *coorda++; |
| 539 |
} |
| 540 |
} |
| 541 |
if (i != dim-1) { |
| 542 |
fprintf (qh ferr, "qhull internal error (qh_facetarea_simplex): #points %d != dim %d -1\n", |
| 543 |
i, dim); |
| 544 |
qh_errexit (qh_ERRqhull, NULL, NULL); |
| 545 |
} |
| 546 |
rows[i]= gmcoord; |
| 547 |
if (qh DELAUNAY) { |
| 548 |
for (i= 0; i < dim-1; i++) |
| 549 |
rows[i][dim-1]= 0.0; |
| 550 |
for (k= dim; k--; ) |
| 551 |
*(gmcoord++)= 0.0; |
| 552 |
rows[dim-1][dim-1]= -1.0; |
| 553 |
}else { |
| 554 |
normalp= normal; |
| 555 |
for (k= dim; k--; ) |
| 556 |
*(gmcoord++)= *normalp++; |
| 557 |
} |
| 558 |
zinc_(Zdetsimplex); |
| 559 |
area= qh_determinant (rows, dim, &nearzero); |
| 560 |
if (toporient) |
| 561 |
area= -area; |
| 562 |
area *= qh AREAfactor; |
| 563 |
trace4((qh ferr, "qh_facetarea_simplex: area=%2.2g for point p%d, toporient %d, nearzero? %d\n", area, qh_pointid(apex), toporient, nearzero)); |
| 564 |
return area; |
| 565 |
} /* facetarea_simplex */ |
| 566 |
|
| 567 |
/*-<a href="qh-geom.htm#TOC" |
| 568 |
>-------------------------------</a><a name="facetcenter">-</a> |
| 569 |
|
| 570 |
qh_facetcenter( vertices ) |
| 571 |
return Voronoi center (Voronoi vertex) for a facet's vertices |
| 572 |
|
| 573 |
returns: |
| 574 |
return temporary point equal to the center |
| 575 |
|
| 576 |
see: |
| 577 |
qh_voronoi_center() |
| 578 |
*/ |
| 579 |
pointT *qh_facetcenter (setT *vertices) { |
| 580 |
setT *points= qh_settemp (qh_setsize (vertices)); |
| 581 |
vertexT *vertex, **vertexp; |
| 582 |
pointT *center; |
| 583 |
|
| 584 |
FOREACHvertex_(vertices) |
| 585 |
qh_setappend (&points, vertex->point); |
| 586 |
center= qh_voronoi_center (qh hull_dim-1, points); |
| 587 |
qh_settempfree (&points); |
| 588 |
return center; |
| 589 |
} /* facetcenter */ |
| 590 |
|
| 591 |
/*-<a href="qh-geom.htm#TOC" |
| 592 |
>-------------------------------</a><a name="findgooddist">-</a> |
| 593 |
|
| 594 |
qh_findgooddist( point, facetA, dist, facetlist ) |
| 595 |
find best good facet visible for point from facetA |
| 596 |
assumes facetA is visible from point |
| 597 |
|
| 598 |
returns: |
| 599 |
best facet, i.e., good facet that is furthest from point |
| 600 |
distance to best facet |
| 601 |
NULL if none |
| 602 |
|
| 603 |
moves good, visible facets (and some other visible facets) |
| 604 |
to end of qh facet_list |
| 605 |
|
| 606 |
notes: |
| 607 |
uses qh visit_id |
| 608 |
|
| 609 |
design: |
| 610 |
initialize bestfacet if facetA is good |
| 611 |
move facetA to end of facetlist |
| 612 |
for each facet on facetlist |
| 613 |
for each unvisited neighbor of facet |
| 614 |
move visible neighbors to end of facetlist |
| 615 |
update best good neighbor |
| 616 |
if no good neighbors, update best facet |
| 617 |
*/ |
| 618 |
facetT *qh_findgooddist (pointT *point, facetT *facetA, realT *distp, |
| 619 |
facetT **facetlist) { |
| 620 |
realT bestdist= -REALmax, dist; |
| 621 |
facetT *neighbor, **neighborp, *bestfacet=NULL, *facet; |
| 622 |
boolT goodseen= False; |
| 623 |
|
| 624 |
if (facetA->good) { |
| 625 |
zinc_(Zcheckpart); /* calls from check_bestdist occur after print stats */ |
| 626 |
qh_distplane (point, facetA, &bestdist); |
| 627 |
bestfacet= facetA; |
| 628 |
goodseen= True; |
| 629 |
} |
| 630 |
qh_removefacet (facetA); |
| 631 |
qh_appendfacet (facetA); |
| 632 |
*facetlist= facetA; |
| 633 |
facetA->visitid= ++qh visit_id; |
| 634 |
FORALLfacet_(*facetlist) { |
| 635 |
FOREACHneighbor_(facet) { |
| 636 |
if (neighbor->visitid == qh visit_id) |
| 637 |
continue; |
| 638 |
neighbor->visitid= qh visit_id; |
| 639 |
if (goodseen && !neighbor->good) |
| 640 |
continue; |
| 641 |
zinc_(Zcheckpart); |
| 642 |
qh_distplane (point, neighbor, &dist); |
| 643 |
if (dist > 0) { |
| 644 |
qh_removefacet (neighbor); |
| 645 |
qh_appendfacet (neighbor); |
| 646 |
if (neighbor->good) { |
| 647 |
goodseen= True; |
| 648 |
if (dist > bestdist) { |
| 649 |
bestdist= dist; |
| 650 |
bestfacet= neighbor; |
| 651 |
} |
| 652 |
} |
| 653 |
} |
| 654 |
} |
| 655 |
} |
| 656 |
if (bestfacet) { |
| 657 |
*distp= bestdist; |
| 658 |
trace2((qh ferr, "qh_findgooddist: p%d is %2.2g above good facet f%d\n", qh_pointid(point), bestdist, bestfacet->id)); |
| 659 |
return bestfacet; |
| 660 |
} |
| 661 |
trace4((qh ferr, "qh_findgooddist: no good facet for p%d above f%d\n", qh_pointid(point), facetA->id)); |
| 662 |
return NULL; |
| 663 |
} /* findgooddist */ |
| 664 |
|
| 665 |
/*-<a href="qh-geom.htm#TOC" |
| 666 |
>-------------------------------</a><a name="getarea">-</a> |
| 667 |
|
| 668 |
qh_getarea( facetlist ) |
| 669 |
set area of all facets in facetlist |
| 670 |
collect statistics |
| 671 |
|
| 672 |
returns: |
| 673 |
sets qh totarea/totvol to total area and volume of convex hull |
| 674 |
for Delaunay triangulation, computes projected area of the lower or upper hull |
| 675 |
ignores upper hull if qh ATinfinity |
| 676 |
|
| 677 |
notes: |
| 678 |
could compute outer volume by expanding facet area by rays from interior |
| 679 |
the following attempt at perpendicular projection underestimated badly: |
| 680 |
qh.totoutvol += (-dist + facet->maxoutside + qh DISTround) |
| 681 |
* area/ qh hull_dim; |
| 682 |
design: |
| 683 |
for each facet on facetlist |
| 684 |
compute facet->area |
| 685 |
update qh.totarea and qh.totvol |
| 686 |
*/ |
| 687 |
void qh_getarea (facetT *facetlist) { |
| 688 |
realT area; |
| 689 |
realT dist; |
| 690 |
facetT *facet; |
| 691 |
|
| 692 |
if (qh REPORTfreq) |
| 693 |
fprintf (qh ferr, "computing area of each facet and volume of the convex hull\n"); |
| 694 |
else |
| 695 |
trace1((qh ferr, "qh_getarea: computing volume and area for each facet\n")); |
| 696 |
qh totarea= qh totvol= 0.0; |
| 697 |
FORALLfacet_(facetlist) { |
| 698 |
if (!facet->normal) |
| 699 |
continue; |
| 700 |
if (facet->upperdelaunay && qh ATinfinity) |
| 701 |
continue; |
| 702 |
facet->f.area= area= qh_facetarea (facet); |
| 703 |
facet->isarea= True; |
| 704 |
if (qh DELAUNAY) { |
| 705 |
if (facet->upperdelaunay == qh UPPERdelaunay) |
| 706 |
qh totarea += area; |
| 707 |
}else { |
| 708 |
qh totarea += area; |
| 709 |
qh_distplane (qh interior_point, facet, &dist); |
| 710 |
qh totvol += -dist * area/ qh hull_dim; |
| 711 |
} |
| 712 |
if (qh PRINTstatistics) { |
| 713 |
wadd_(Wareatot, area); |
| 714 |
wmax_(Wareamax, area); |
| 715 |
wmin_(Wareamin, area); |
| 716 |
} |
| 717 |
} |
| 718 |
} /* getarea */ |
| 719 |
|
| 720 |
/*-<a href="qh-geom.htm#TOC" |
| 721 |
>-------------------------------</a><a name="gram_schmidt">-</a> |
| 722 |
|
| 723 |
qh_gram_schmidt( dim, row ) |
| 724 |
implements Gram-Schmidt orthogonalization by rows |
| 725 |
|
| 726 |
returns: |
| 727 |
false if zero norm |
| 728 |
overwrites rows[dim][dim] |
| 729 |
|
| 730 |
notes: |
| 731 |
see Golub & van Loan Algorithm 6.2-2 |
| 732 |
overflow due to small divisors not handled |
| 733 |
|
| 734 |
design: |
| 735 |
for each row |
| 736 |
compute norm for row |
| 737 |
if non-zero, normalize row |
| 738 |
for each remaining rowA |
| 739 |
compute inner product of row and rowA |
| 740 |
reduce rowA by row * inner product |
| 741 |
*/ |
| 742 |
boolT qh_gram_schmidt(int dim, realT **row) { |
| 743 |
realT *rowi, *rowj, norm; |
| 744 |
int i, j, k; |
| 745 |
|
| 746 |
for(i=0; i < dim; i++) { |
| 747 |
rowi= row[i]; |
| 748 |
for (norm= 0.0, k= dim; k--; rowi++) |
| 749 |
norm += *rowi * *rowi; |
| 750 |
norm= sqrt(norm); |
| 751 |
wmin_(Wmindenom, norm); |
| 752 |
if (norm == 0.0) /* either 0 or overflow due to sqrt */ |
| 753 |
return False; |
| 754 |
for(k= dim; k--; ) |
| 755 |
*(--rowi) /= norm; |
| 756 |
for(j= i+1; j < dim; j++) { |
| 757 |
rowj= row[j]; |
| 758 |
for(norm= 0.0, k=dim; k--; ) |
| 759 |
norm += *rowi++ * *rowj++; |
| 760 |
for(k=dim; k--; ) |
| 761 |
*(--rowj) -= *(--rowi) * norm; |
| 762 |
} |
| 763 |
} |
| 764 |
return True; |
| 765 |
} /* gram_schmidt */ |
| 766 |
|
| 767 |
|
| 768 |
/*-<a href="qh-geom.htm#TOC" |
| 769 |
>-------------------------------</a><a name="inthresholds">-</a> |
| 770 |
|
| 771 |
qh_inthresholds( normal, angle ) |
| 772 |
return True if normal within qh.lower_/upper_threshold |
| 773 |
|
| 774 |
returns: |
| 775 |
estimate of angle by summing of threshold diffs |
| 776 |
angle may be NULL |
| 777 |
smaller "angle" is better |
| 778 |
|
| 779 |
notes: |
| 780 |
invalid if qh.SPLITthresholds |
| 781 |
|
| 782 |
see: |
| 783 |
qh.lower_threshold in qh_initbuild() |
| 784 |
qh_initthresholds() |
| 785 |
|
| 786 |
design: |
| 787 |
for each dimension |
| 788 |
test threshold |
| 789 |
*/ |
| 790 |
boolT qh_inthresholds (coordT *normal, realT *angle) { |
| 791 |
boolT within= True; |
| 792 |
int k; |
| 793 |
realT threshold; |
| 794 |
|
| 795 |
if (angle) |
| 796 |
*angle= 0.0; |
| 797 |
for(k= 0; k < qh hull_dim; k++) { |
| 798 |
threshold= qh lower_threshold[k]; |
| 799 |
if (threshold > -REALmax/2) { |
| 800 |
if (normal[k] < threshold) |
| 801 |
within= False; |
| 802 |
if (angle) { |
| 803 |
threshold -= normal[k]; |
| 804 |
*angle += fabs_(threshold); |
| 805 |
} |
| 806 |
} |
| 807 |
if (qh upper_threshold[k] < REALmax/2) { |
| 808 |
threshold= qh upper_threshold[k]; |
| 809 |
if (normal[k] > threshold) |
| 810 |
within= False; |
| 811 |
if (angle) { |
| 812 |
threshold -= normal[k]; |
| 813 |
*angle += fabs_(threshold); |
| 814 |
} |
| 815 |
} |
| 816 |
} |
| 817 |
return within; |
| 818 |
} /* inthresholds */ |
| 819 |
|
| 820 |
|
| 821 |
/*-<a href="qh-geom.htm#TOC" |
| 822 |
>-------------------------------</a><a name="joggleinput">-</a> |
| 823 |
|
| 824 |
qh_joggleinput() |
| 825 |
randomly joggle input to Qhull by qh.JOGGLEmax |
| 826 |
initial input is qh.first_point/qh.num_points of qh.hull_dim |
| 827 |
repeated calls use qh.input_points/qh.num_points |
| 828 |
|
| 829 |
returns: |
| 830 |
joggles points at qh.first_point/qh.num_points |
| 831 |
copies data to qh.input_points/qh.input_malloc if first time |
| 832 |
determines qh.JOGGLEmax if it was zero |
| 833 |
if qh.DELAUNAY |
| 834 |
computes the Delaunay projection of the joggled points |
| 835 |
|
| 836 |
notes: |
| 837 |
if qh.DELAUNAY, unnecessarily joggles the last coordinate |
| 838 |
the initial 'QJn' may be set larger than qh_JOGGLEmaxincrease |
| 839 |
|
| 840 |
design: |
| 841 |
if qh.DELAUNAY |
| 842 |
set qh.SCALElast for reduced precision errors |
| 843 |
if first call |
| 844 |
initialize qh.input_points to the original input points |
| 845 |
if qh.JOGGLEmax == 0 |
| 846 |
determine default qh.JOGGLEmax |
| 847 |
else |
| 848 |
increase qh.JOGGLEmax according to qh.build_cnt |
| 849 |
joggle the input by adding a random number in [-qh.JOGGLEmax,qh.JOGGLEmax] |
| 850 |
if qh.DELAUNAY |
| 851 |
sets the Delaunay projection |
| 852 |
*/ |
| 853 |
void qh_joggleinput (void) { |
| 854 |
int size, i, seed; |
| 855 |
coordT *coordp, *inputp; |
| 856 |
realT randr, randa, randb; |
| 857 |
|
| 858 |
if (!qh input_points) { /* first call */ |
| 859 |
qh input_points= qh first_point; |
| 860 |
qh input_malloc= qh POINTSmalloc; |
| 861 |
size= qh num_points * qh hull_dim * sizeof(coordT); |
| 862 |
if (!(qh first_point=(coordT*)malloc(size))) { |
| 863 |
fprintf(qh ferr, "qhull error: insufficient memory to joggle %d points\n", |
| 864 |
qh num_points); |
| 865 |
qh_errexit(qh_ERRmem, NULL, NULL); |
| 866 |
} |
| 867 |
qh POINTSmalloc= True; |
| 868 |
if (qh JOGGLEmax == 0.0) { |
| 869 |
qh JOGGLEmax= qh_detjoggle (qh input_points, qh num_points, qh hull_dim); |
| 870 |
qh_option ("QJoggle", NULL, &qh JOGGLEmax); |
| 871 |
} |
| 872 |
}else { /* repeated call */ |
| 873 |
if (!qh RERUN && qh build_cnt > qh_JOGGLEretry) { |
| 874 |
if (((qh build_cnt-qh_JOGGLEretry-1) % qh_JOGGLEagain) == 0) { |
| 875 |
realT maxjoggle= qh MAXwidth * qh_JOGGLEmaxincrease; |
| 876 |
if (qh JOGGLEmax < maxjoggle) { |
| 877 |
qh JOGGLEmax *= qh_JOGGLEincrease; |
| 878 |
minimize_(qh JOGGLEmax, maxjoggle); |
| 879 |
} |
| 880 |
} |
| 881 |
} |
| 882 |
qh_option ("QJoggle", NULL, &qh JOGGLEmax); |
| 883 |
} |
| 884 |
if (qh build_cnt > 1 && qh JOGGLEmax > fmax_(qh MAXwidth/4, 0.1)) { |
| 885 |
fprintf (qh ferr, "qhull error: the current joggle for 'QJn', %.2g, is too large for the width\nof the input. If possible, recompile Qhull with higher-precision reals.\n", |
| 886 |
qh JOGGLEmax); |
| 887 |
qh_errexit (qh_ERRqhull, NULL, NULL); |
| 888 |
} |
| 889 |
/* for some reason, using qh ROTATErandom and qh_RANDOMseed does not repeat the run. Use 'TRn' instead */ |
| 890 |
seed= qh_RANDOMint; |
| 891 |
qh_option ("_joggle-seed", &seed, NULL); |
| 892 |
trace0((qh ferr, "qh_joggleinput: joggle input by %2.2g with seed %d\n", qh JOGGLEmax, seed)); |
| 893 |
inputp= qh input_points; |
| 894 |
coordp= qh first_point; |
| 895 |
randa= 2.0 * qh JOGGLEmax/qh_RANDOMmax; |
| 896 |
randb= -qh JOGGLEmax; |
| 897 |
size= qh num_points * qh hull_dim; |
| 898 |
for (i= size; i--; ) { |
| 899 |
randr= qh_RANDOMint; |
| 900 |
*(coordp++)= *(inputp++) + (randr * randa + randb); |
| 901 |
} |
| 902 |
if (qh DELAUNAY) { |
| 903 |
qh last_low= qh last_high= qh last_newhigh= REALmax; |
| 904 |
qh_setdelaunay (qh hull_dim, qh num_points, qh first_point); |
| 905 |
} |
| 906 |
} /* joggleinput */ |
| 907 |
|
| 908 |
/*-<a href="qh-geom.htm#TOC" |
| 909 |
>-------------------------------</a><a name="maxabsval">-</a> |
| 910 |
|
| 911 |
qh_maxabsval( normal, dim ) |
| 912 |
return pointer to maximum absolute value of a dim vector |
| 913 |
returns NULL if dim=0 |
| 914 |
*/ |
| 915 |
realT *qh_maxabsval (realT *normal, int dim) { |
| 916 |
realT maxval= -REALmax; |
| 917 |
realT *maxp= NULL, *colp, absval; |
| 918 |
int k; |
| 919 |
|
| 920 |
for (k= dim, colp= normal; k--; colp++) { |
| 921 |
absval= fabs_(*colp); |
| 922 |
if (absval > maxval) { |
| 923 |
maxval= absval; |
| 924 |
maxp= colp; |
| 925 |
} |
| 926 |
} |
| 927 |
return maxp; |
| 928 |
} /* maxabsval */ |
| 929 |
|
| 930 |
|
| 931 |
/*-<a href="qh-geom.htm#TOC" |
| 932 |
>-------------------------------</a><a name="maxmin">-</a> |
| 933 |
|
| 934 |
qh_maxmin( points, numpoints, dimension ) |
| 935 |
return max/min points for each dimension |
| 936 |
determine max and min coordinates |
| 937 |
|
| 938 |
returns: |
| 939 |
returns a temporary set of max and min points |
| 940 |
may include duplicate points. Does not include qh.GOODpoint |
| 941 |
sets qh.NEARzero, qh.MAXabs_coord, qh.MAXsumcoord, qh.MAXwidth |
| 942 |
qh.MAXlastcoord, qh.MINlastcoord |
| 943 |
initializes qh.max_outside, qh.min_vertex, qh.WAScoplanar, qh.ZEROall_ok |
| 944 |
|
| 945 |
notes: |
| 946 |
loop duplicated in qh_detjoggle() |
| 947 |
|
| 948 |
design: |
| 949 |
initialize global precision variables |
| 950 |
checks definition of REAL... |
| 951 |
for each dimension |
| 952 |
for each point |
| 953 |
collect maximum and minimum point |
| 954 |
collect maximum of maximums and minimum of minimums |
| 955 |
determine qh.NEARzero for Gaussian Elimination |
| 956 |
*/ |
| 957 |
setT *qh_maxmin(pointT *points, int numpoints, int dimension) { |
| 958 |
int k; |
| 959 |
realT maxcoord, temp; |
| 960 |
pointT *minimum, *maximum, *point, *pointtemp; |
| 961 |
setT *set; |
| 962 |
|
| 963 |
qh max_outside= 0.0; |
| 964 |
qh MAXabs_coord= 0.0; |
| 965 |
qh MAXwidth= -REALmax; |
| 966 |
qh MAXsumcoord= 0.0; |
| 967 |
qh min_vertex= 0.0; |
| 968 |
qh WAScoplanar= False; |
| 969 |
if (qh ZEROcentrum) |
| 970 |
qh ZEROall_ok= True; |
| 971 |
if (REALmin < REALepsilon && REALmin < REALmax && REALmin > -REALmax |
| 972 |
&& REALmax > 0.0 && -REALmax < 0.0) |
| 973 |
; /* all ok */ |
| 974 |
else { |
| 975 |
fprintf (qh ferr, "qhull error: floating point constants in user.h are wrong\n\ |
| 976 |
REALepsilon %g REALmin %g REALmax %g -REALmax %g\n", |
| 977 |
REALepsilon, REALmin, REALmax, -REALmax); |
| 978 |
qh_errexit (qh_ERRinput, NULL, NULL); |
| 979 |
} |
| 980 |
set= qh_settemp(2*dimension); |
| 981 |
for(k= 0; k < dimension; k++) { |
| 982 |
if (points == qh GOODpointp) |
| 983 |
minimum= maximum= points + dimension; |
| 984 |
else |
| 985 |
minimum= maximum= points; |
| 986 |
FORALLpoint_(points, numpoints) { |
| 987 |
if (point == qh GOODpointp) |
| 988 |
continue; |
| 989 |
if (maximum[k] < point[k]) |
| 990 |
maximum= point; |
| 991 |
else if (minimum[k] > point[k]) |
| 992 |
minimum= point; |
| 993 |
} |
| 994 |
if (k == dimension-1) { |
| 995 |
qh MINlastcoord= minimum[k]; |
| 996 |
qh MAXlastcoord= maximum[k]; |
| 997 |
} |
| 998 |
if (qh SCALElast && k == dimension-1) |
| 999 |
maxcoord= qh MAXwidth; |
| 1000 |
else { |
| 1001 |
maxcoord= fmax_(maximum[k], -minimum[k]); |
| 1002 |
if (qh GOODpointp) { |
| 1003 |
temp= fmax_(qh GOODpointp[k], -qh GOODpointp[k]); |
| 1004 |
maximize_(maxcoord, temp); |
| 1005 |
} |
| 1006 |
temp= maximum[k] - minimum[k]; |
| 1007 |
maximize_(qh MAXwidth, temp); |
| 1008 |
} |
| 1009 |
maximize_(qh MAXabs_coord, maxcoord); |
| 1010 |
qh MAXsumcoord += maxcoord; |
| 1011 |
qh_setappend (&set, maximum); |
| 1012 |
qh_setappend (&set, minimum); |
| 1013 |
/* calculation of qh NEARzero is based on error formula 4.4-13 of |
| 1014 |
Golub & van Loan, authors say n^3 can be ignored and 10 be used in |
| 1015 |
place of rho */ |
| 1016 |
qh NEARzero[k]= 80 * qh MAXsumcoord * REALepsilon; |
| 1017 |
} |
| 1018 |
if (qh IStracing >=1) |
| 1019 |
qh_printpoints (qh ferr, "qh_maxmin: found the max and min points (by dim):", set); |
| 1020 |
return(set); |
| 1021 |
} /* maxmin */ |
| 1022 |
|
| 1023 |
/*-<a href="qh-geom.htm#TOC" |
| 1024 |
>-------------------------------</a><a name="maxouter">-</a> |
| 1025 |
|
| 1026 |
qh_maxouter() |
| 1027 |
return maximum distance from facet to outer plane |
| 1028 |
normally this is qh.max_outside+qh.DISTround |
| 1029 |
does not include qh.JOGGLEmax |
| 1030 |
|
| 1031 |
see: |
| 1032 |
qh_outerinner() |
| 1033 |
|
| 1034 |
notes: |
| 1035 |
need to add another qh.DISTround if testing actual point with computation |
| 1036 |
|
| 1037 |
for joggle: |
| 1038 |
qh_setfacetplane() updated qh.max_outer for Wnewvertexmax (max distance to vertex) |
| 1039 |
need to use Wnewvertexmax since could have a coplanar point for a high |
| 1040 |
facet that is replaced by a low facet |
| 1041 |
need to add qh.JOGGLEmax if testing input points |
| 1042 |
*/ |
| 1043 |
realT qh_maxouter (void) { |
| 1044 |
realT dist; |
| 1045 |
|
| 1046 |
dist= fmax_(qh max_outside, qh DISTround); |
| 1047 |
dist += qh DISTround; |
| 1048 |
trace4((qh ferr, "qh_maxouter: max distance from facet to outer plane is %2.2g max_outside is %2.2g\n", dist, qh max_outside)); |
| 1049 |
return dist; |
| 1050 |
} /* maxouter */ |
| 1051 |
|
| 1052 |
/*-<a href="qh-geom.htm#TOC" |
| 1053 |
>-------------------------------</a><a name="maxsimplex">-</a> |
| 1054 |
|
| 1055 |
qh_maxsimplex( dim, maxpoints, points, numpoints, simplex ) |
| 1056 |
determines maximum simplex for a set of points |
| 1057 |
starts from points already in simplex |
| 1058 |
skips qh.GOODpointp (assumes that it isn't in maxpoints) |
| 1059 |
|
| 1060 |
returns: |
| 1061 |
simplex with dim+1 points |
| 1062 |
|
| 1063 |
notes: |
| 1064 |
assumes at least pointsneeded points in points |
| 1065 |
maximizes determinate for x,y,z,w, etc. |
| 1066 |
uses maxpoints as long as determinate is clearly non-zero |
| 1067 |
|
| 1068 |
design: |
| 1069 |
initialize simplex with at least two points |
| 1070 |
(find points with max or min x coordinate) |
| 1071 |
for each remaining dimension |
| 1072 |
add point that maximizes the determinate |
| 1073 |
(use points from maxpoints first) |
| 1074 |
*/ |
| 1075 |
void qh_maxsimplex (int dim, setT *maxpoints, pointT *points, int numpoints, setT **simplex) { |
| 1076 |
pointT *point, **pointp, *pointtemp, *maxpoint, *minx=NULL, *maxx=NULL; |
| 1077 |
boolT nearzero, maxnearzero= False; |
| 1078 |
int k, sizinit; |
| 1079 |
realT maxdet= -REALmax, det, mincoord= REALmax, maxcoord= -REALmax; |
| 1080 |
|
| 1081 |
sizinit= qh_setsize (*simplex); |
| 1082 |
if (sizinit < 2) { |
| 1083 |
if (qh_setsize (maxpoints) >= 2) { |
| 1084 |
FOREACHpoint_(maxpoints) { |
| 1085 |
if (maxcoord < point[0]) { |
| 1086 |
maxcoord= point[0]; |
| 1087 |
maxx= point; |
| 1088 |
} |
| 1089 |
if (mincoord > point[0]) { |
| 1090 |
mincoord= point[0]; |
| 1091 |
minx= point; |
| 1092 |
} |
| 1093 |
} |
| 1094 |
}else { |
| 1095 |
FORALLpoint_(points, numpoints) { |
| 1096 |
if (point == qh GOODpointp) |
| 1097 |
continue; |
| 1098 |
if (maxcoord < point[0]) { |
| 1099 |
maxcoord= point[0]; |
| 1100 |
maxx= point; |
| 1101 |
} |
| 1102 |
if (mincoord > point[0]) { |
| 1103 |
mincoord= point[0]; |
| 1104 |
minx= point; |
| 1105 |
} |
| 1106 |
} |
| 1107 |
} |
| 1108 |
qh_setunique (simplex, minx); |
| 1109 |
if (qh_setsize (*simplex) < 2) |
| 1110 |
qh_setunique (simplex, maxx); |
| 1111 |
sizinit= qh_setsize (*simplex); |
| 1112 |
if (sizinit < 2) { |
| 1113 |
qh_precision ("input has same x coordinate"); |
| 1114 |
if (zzval_(Zsetplane) > qh hull_dim+1) { |
| 1115 |
fprintf (qh ferr, "qhull precision error (qh_maxsimplex for voronoi_center):\n%d points with the same x coordinate.\n", |
| 1116 |
qh_setsize(maxpoints)+numpoints); |
| 1117 |
qh_errexit (qh_ERRprec, NULL, NULL); |
| 1118 |
}else { |
| 1119 |
fprintf (qh ferr, "qhull input error: input is less than %d-dimensional since it has the same x coordinate\n", qh hull_dim); |
| 1120 |
qh_errexit (qh_ERRinput, NULL, NULL); |
| 1121 |
} |
| 1122 |
} |
| 1123 |
} |
| 1124 |
for(k= sizinit; k < dim+1; k++) { |
| 1125 |
maxpoint= NULL; |
| 1126 |
maxdet= -REALmax; |
| 1127 |
FOREACHpoint_(maxpoints) { |
| 1128 |
if (!qh_setin (*simplex, point)) { |
| 1129 |
det= qh_detsimplex(point, *simplex, k, &nearzero); |
| 1130 |
if ((det= fabs_(det)) > maxdet) { |
| 1131 |
maxdet= det; |
| 1132 |
maxpoint= point; |
| 1133 |
maxnearzero= nearzero; |
| 1134 |
} |
| 1135 |
} |
| 1136 |
} |
| 1137 |
if (!maxpoint || maxnearzero) { |
| 1138 |
zinc_(Zsearchpoints); |
| 1139 |
if (!maxpoint) { |
| 1140 |
trace0((qh ferr, "qh_maxsimplex: searching all points for %d-th initial vertex.\n", k+1)); |
| 1141 |
}else { |
| 1142 |
trace0((qh ferr, "qh_maxsimplex: searching all points for %d-th initial vertex, better than p%d det %2.2g\n", k+1, qh_pointid(maxpoint), maxdet)); |
| 1143 |
} |
| 1144 |
FORALLpoint_(points, numpoints) { |
| 1145 |
if (point == qh GOODpointp) |
| 1146 |
continue; |
| 1147 |
if (!qh_setin (*simplex, point)) { |
| 1148 |
det= qh_detsimplex(point, *simplex, k, &nearzero); |
| 1149 |
if ((det= fabs_(det)) > maxdet) { |
| 1150 |
maxdet= det; |
| 1151 |
maxpoint= point; |
| 1152 |
maxnearzero= nearzero; |
| 1153 |
} |
| 1154 |
} |
| 1155 |
} |
| 1156 |
} /* !maxpoint */ |
| 1157 |
if (!maxpoint) { |
| 1158 |
fprintf (qh ferr, "qhull internal error (qh_maxsimplex): not enough points available\n"); |
| 1159 |
qh_errexit (qh_ERRqhull, NULL, NULL); |
| 1160 |
} |
| 1161 |
qh_setappend(simplex, maxpoint); |
| 1162 |
trace1((qh ferr, "qh_maxsimplex: selected point p%d for %d`th initial vertex, det=%2.2g\n", qh_pointid(maxpoint), k+1, maxdet)); |
| 1163 |
} /* k */ |
| 1164 |
} /* maxsimplex */ |
| 1165 |
|
| 1166 |
/*-<a href="qh-geom.htm#TOC" |
| 1167 |
>-------------------------------</a><a name="minabsval">-</a> |
| 1168 |
|
| 1169 |
qh_minabsval( normal, dim ) |
| 1170 |
return minimum absolute value of a dim vector |
| 1171 |
*/ |
| 1172 |
realT qh_minabsval (realT *normal, int dim) { |
| 1173 |
realT minval= 0; |
| 1174 |
realT maxval= 0; |
| 1175 |
realT *colp; |
| 1176 |
int k; |
| 1177 |
|
| 1178 |
for (k= dim, colp= normal; k--; colp++) { |
| 1179 |
maximize_(maxval, *colp); |
| 1180 |
minimize_(minval, *colp); |
| 1181 |
} |
| 1182 |
return fmax_(maxval, -minval); |
| 1183 |
} /* minabsval */ |
| 1184 |
|
| 1185 |
|
| 1186 |
/*-<a href="qh-geom.htm#TOC" |
| 1187 |
>-------------------------------</a><a name="mindiff">-</a> |
| 1188 |
|
| 1189 |
qh_mindif( vecA, vecB, dim ) |
| 1190 |
return index of min abs. difference of two vectors |
| 1191 |
*/ |
| 1192 |
int qh_mindiff (realT *vecA, realT *vecB, int dim) { |
| 1193 |
realT mindiff= REALmax, diff; |
| 1194 |
realT *vecAp= vecA, *vecBp= vecB; |
| 1195 |
int k, mink= 0; |
| 1196 |
|
| 1197 |
for (k= 0; k < dim; k++) { |
| 1198 |
diff= *vecAp++ - *vecBp++; |
| 1199 |
diff= fabs_(diff); |
| 1200 |
if (diff < mindiff) { |
| 1201 |
mindiff= diff; |
| 1202 |
mink= k; |
| 1203 |
} |
| 1204 |
} |
| 1205 |
return mink; |
| 1206 |
} /* mindiff */ |
| 1207 |
|
| 1208 |
|
| 1209 |
|
| 1210 |
/*-<a href="qh-geom.htm#TOC" |
| 1211 |
>-------------------------------</a><a name="orientoutside">-</a> |
| 1212 |
|
| 1213 |
qh_orientoutside( facet ) |
| 1214 |
make facet outside oriented via qh.interior_point |
| 1215 |
|
| 1216 |
returns: |
| 1217 |
True if facet reversed orientation. |
| 1218 |
*/ |
| 1219 |
boolT qh_orientoutside (facetT *facet) { |
| 1220 |
int k; |
| 1221 |
realT dist; |
| 1222 |
|
| 1223 |
qh_distplane (qh interior_point, facet, &dist); |
| 1224 |
if (dist > 0) { |
| 1225 |
for (k= qh hull_dim; k--; ) |
| 1226 |
facet->normal[k]= -facet->normal[k]; |
| 1227 |
facet->offset= -facet->offset; |
| 1228 |
return True; |
| 1229 |
} |
| 1230 |
return False; |
| 1231 |
} /* orientoutside */ |
| 1232 |
|
| 1233 |
/*-<a href="qh-geom.htm#TOC" |
| 1234 |
>-------------------------------</a><a name="outerinner">-</a> |
| 1235 |
|
| 1236 |
qh_outerinner( facet, outerplane, innerplane ) |
| 1237 |
if facet and qh.maxoutdone (i.e., qh_check_maxout) |
| 1238 |
returns outer and inner plane for facet |
| 1239 |
else |
| 1240 |
returns maximum outer and inner plane |
| 1241 |
accounts for qh.JOGGLEmax |
| 1242 |
|
| 1243 |
see: |
| 1244 |
qh_maxouter(), qh_check_bestdist(), qh_check_points() |
| 1245 |
|
| 1246 |
notes: |
| 1247 |
outerplaner or innerplane may be NULL |
| 1248 |
|
| 1249 |
includes qh.DISTround for actual points |
| 1250 |
adds another qh.DISTround if testing with floating point arithmetic |
| 1251 |
*/ |
| 1252 |
void qh_outerinner (facetT *facet, realT *outerplane, realT *innerplane) { |
| 1253 |
realT dist, mindist; |
| 1254 |
vertexT *vertex, **vertexp; |
| 1255 |
|
| 1256 |
if (outerplane) { |
| 1257 |
if (!qh_MAXoutside || !facet || !qh maxoutdone) { |
| 1258 |
*outerplane= qh_maxouter(); /* includes qh.DISTround */ |
| 1259 |
}else { /* qh_MAXoutside ... */ |
| 1260 |
#if qh_MAXoutside |
| 1261 |
*outerplane= facet->maxoutside + qh DISTround; |
| 1262 |
#endif |
| 1263 |
|
| 1264 |
} |
| 1265 |
if (qh JOGGLEmax < REALmax/2) |
| 1266 |
*outerplane += qh JOGGLEmax * sqrt (qh hull_dim); |
| 1267 |
} |
| 1268 |
if (innerplane) { |
| 1269 |
if (facet) { |
| 1270 |
mindist= REALmax; |
| 1271 |
FOREACHvertex_(facet->vertices) { |
| 1272 |
zinc_(Zdistio); |
| 1273 |
qh_distplane (vertex->point, facet, &dist); |
| 1274 |
minimize_(mindist, dist); |
| 1275 |
} |
| 1276 |
*innerplane= mindist - qh DISTround; |
| 1277 |
}else |
| 1278 |
*innerplane= qh min_vertex - qh DISTround; |
| 1279 |
if (qh JOGGLEmax < REALmax/2) |
| 1280 |
*innerplane -= qh JOGGLEmax * sqrt (qh hull_dim); |
| 1281 |
} |
| 1282 |
} /* outerinner */ |
| 1283 |
|
| 1284 |
/*-<a href="qh-geom.htm#TOC" |
| 1285 |
>-------------------------------</a><a name="pointdist">-</a> |
| 1286 |
|
| 1287 |
qh_pointdist( point1, point2, dim ) |
| 1288 |
return distance between two points |
| 1289 |
|
| 1290 |
notes: |
| 1291 |
returns distance squared if 'dim' is negative |
| 1292 |
*/ |
| 1293 |
coordT qh_pointdist(pointT *point1, pointT *point2, int dim) { |
| 1294 |
coordT dist, diff; |
| 1295 |
int k; |
| 1296 |
|
| 1297 |
dist= 0.0; |
| 1298 |
for (k= (dim > 0 ? dim : -dim); k--; ) { |
| 1299 |
diff= *point1++ - *point2++; |
| 1300 |
dist += diff * diff; |
| 1301 |
} |
| 1302 |
if (dim > 0) |
| 1303 |
return(sqrt(dist)); |
| 1304 |
return dist; |
| 1305 |
} /* pointdist */ |
| 1306 |
|
| 1307 |
|
| 1308 |
/*-<a href="qh-geom.htm#TOC" |
| 1309 |
>-------------------------------</a><a name="printmatrix">-</a> |
| 1310 |
|
| 1311 |
qh_printmatrix( fp, string, rows, numrow, numcol ) |
| 1312 |
print matrix to fp given by row vectors |
| 1313 |
print string as header |
| 1314 |
|
| 1315 |
notes: |
| 1316 |
print a vector by qh_printmatrix(fp, "", &vect, 1, len) |
| 1317 |
*/ |
| 1318 |
void qh_printmatrix (FILE *fp, char *string, realT **rows, int numrow, int numcol) { |
| 1319 |
realT *rowp; |
| 1320 |
realT r; /*bug fix*/ |
| 1321 |
int i,k; |
| 1322 |
|
| 1323 |
fprintf (fp, "%s\n", string); |
| 1324 |
for (i= 0; i < numrow; i++) { |
| 1325 |
rowp= rows[i]; |
| 1326 |
for (k= 0; k < numcol; k++) { |
| 1327 |
r= *rowp++; |
| 1328 |
fprintf (fp, "%6.3g ", r); |
| 1329 |
} |
| 1330 |
fprintf (fp, "\n"); |
| 1331 |
} |
| 1332 |
} /* printmatrix */ |
| 1333 |
|
| 1334 |
|
| 1335 |
/*-<a href="qh-geom.htm#TOC" |
| 1336 |
>-------------------------------</a><a name="printpoints">-</a> |
| 1337 |
|
| 1338 |
qh_printpoints( fp, string, points ) |
| 1339 |
print pointids to fp for a set of points |
| 1340 |
if string, prints string and 'p' point ids |
| 1341 |
*/ |
| 1342 |
void qh_printpoints (FILE *fp, char *string, setT *points) { |
| 1343 |
pointT *point, **pointp; |
| 1344 |
|
| 1345 |
if (string) { |
| 1346 |
fprintf (fp, "%s", string); |
| 1347 |
FOREACHpoint_(points) |
| 1348 |
fprintf (fp, " p%d", qh_pointid(point)); |
| 1349 |
fprintf (fp, "\n"); |
| 1350 |
}else { |
| 1351 |
FOREACHpoint_(points) |
| 1352 |
fprintf (fp, " %d", qh_pointid(point)); |
| 1353 |
fprintf (fp, "\n"); |
| 1354 |
} |
| 1355 |
} /* printpoints */ |
| 1356 |
|
| 1357 |
|
| 1358 |
/*-<a href="qh-geom.htm#TOC" |
| 1359 |
>-------------------------------</a><a name="projectinput">-</a> |
| 1360 |
|
| 1361 |
qh_projectinput() |
| 1362 |
project input points using qh.lower_bound/upper_bound and qh DELAUNAY |
| 1363 |
if qh.lower_bound[k]=qh.upper_bound[k]= 0, |
| 1364 |
removes dimension k |
| 1365 |
if halfspace intersection |
| 1366 |
removes dimension k from qh.feasible_point |
| 1367 |
input points in qh first_point, num_points, input_dim |
| 1368 |
|
| 1369 |
returns: |
| 1370 |
new point array in qh first_point of qh hull_dim coordinates |
| 1371 |
sets qh POINTSmalloc |
| 1372 |
if qh DELAUNAY |
| 1373 |
projects points to paraboloid |
| 1374 |
lowbound/highbound is also projected |
| 1375 |
if qh ATinfinity |
| 1376 |
adds point "at-infinity" |
| 1377 |
if qh POINTSmalloc |
| 1378 |
frees old point array |
| 1379 |
|
| 1380 |
notes: |
| 1381 |
checks that qh.hull_dim agrees with qh.input_dim, PROJECTinput, and DELAUNAY |
| 1382 |
|
| 1383 |
|
| 1384 |
design: |
| 1385 |
sets project[k] to -1 (delete), 0 (keep), 1 (add for Delaunay) |
| 1386 |
determines newdim and newnum for qh hull_dim and qh num_points |
| 1387 |
projects points to newpoints |
| 1388 |
projects qh.lower_bound to itself |
| 1389 |
projects qh.upper_bound to itself |
| 1390 |
if qh DELAUNAY |
| 1391 |
if qh ATINFINITY |
| 1392 |
projects points to paraboloid |
| 1393 |
computes "infinity" point as vertex average and 10% above all points |
| 1394 |
else |
| 1395 |
uses qh_setdelaunay to project points to paraboloid |
| 1396 |
*/ |
| 1397 |
void qh_projectinput (void) { |
| 1398 |
int k,i; |
| 1399 |
int newdim= qh input_dim, newnum= qh num_points; |
| 1400 |
signed char *project; |
| 1401 |
int size= (qh input_dim+1)*sizeof(*project); |
| 1402 |
pointT *newpoints, *coord, *infinity; |
| 1403 |
realT paraboloid, maxboloid= 0; |
| 1404 |
|
| 1405 |
project= (signed char*)qh_memalloc (size); |
| 1406 |
memset ((char*)project, 0, size); |
| 1407 |
for (k= 0; k < qh input_dim; k++) { /* skip Delaunay bound */ |
| 1408 |
if (qh lower_bound[k] == 0 && qh upper_bound[k] == 0) { |
| 1409 |
project[k]= -1; |
| 1410 |
newdim--; |
| 1411 |
} |
| 1412 |
} |
| 1413 |
if (qh DELAUNAY) { |
| 1414 |
project[k]= 1; |
| 1415 |
newdim++; |
| 1416 |
if (qh ATinfinity) |
| 1417 |
newnum++; |
| 1418 |
} |
| 1419 |
if (newdim != qh hull_dim) { |
| 1420 |
fprintf(qh ferr, "qhull internal error (qh_projectinput): dimension after projection %d != hull_dim %d\n", newdim, qh hull_dim); |
| 1421 |
qh_errexit(qh_ERRqhull, NULL, NULL); |
| 1422 |
} |
| 1423 |
if (!(newpoints=(coordT*)malloc(newnum*newdim*sizeof(coordT)))){ |
| 1424 |
fprintf(qh ferr, "qhull error: insufficient memory to project %d points\n", |
| 1425 |
qh num_points); |
| 1426 |
qh_errexit(qh_ERRmem, NULL, NULL); |
| 1427 |
} |
| 1428 |
qh_projectpoints (project, qh input_dim+1, qh first_point, |
| 1429 |
qh num_points, qh input_dim, newpoints, newdim); |
| 1430 |
trace1((qh ferr, "qh_projectinput: updating lower and upper_bound\n")); |
| 1431 |
qh_projectpoints (project, qh input_dim+1, qh lower_bound, |
| 1432 |
1, qh input_dim+1, qh lower_bound, newdim+1); |
| 1433 |
qh_projectpoints (project, qh input_dim+1, qh upper_bound, |
| 1434 |
1, qh input_dim+1, qh upper_bound, newdim+1); |
| 1435 |
if (qh HALFspace) { |
| 1436 |
if (!qh feasible_point) { |
| 1437 |
fprintf(qh ferr, "qhull internal error (qh_projectinput): HALFspace defined without qh.feasible_point\n"); |
| 1438 |
qh_errexit(qh_ERRqhull, NULL, NULL); |
| 1439 |
} |
| 1440 |
qh_projectpoints (project, qh input_dim, qh feasible_point, |
| 1441 |
1, qh input_dim, qh feasible_point, newdim); |
| 1442 |
} |
| 1443 |
qh_memfree(project, ((qh input_dim+1)*sizeof(*project))); |
| 1444 |
if (qh POINTSmalloc) |
| 1445 |
free (qh first_point); |
| 1446 |
qh first_point= newpoints; |
| 1447 |
qh POINTSmalloc= True; |
| 1448 |
if (qh DELAUNAY && qh ATinfinity) { |
| 1449 |
coord= qh first_point; |
| 1450 |
infinity= qh first_point + qh hull_dim * qh num_points; |
| 1451 |
for (k=qh hull_dim-1; k--; ) |
| 1452 |
infinity[k]= 0.0; |
| 1453 |
for (i=qh num_points; i--; ) { |
| 1454 |
paraboloid= 0.0; |
| 1455 |
for (k=0; k < qh hull_dim-1; k++) { |
| 1456 |
paraboloid += *coord * *coord; |
| 1457 |
infinity[k] += *coord; |
| 1458 |
coord++; |
| 1459 |
} |
| 1460 |
*(coord++)= paraboloid; |
| 1461 |
maximize_(maxboloid, paraboloid); |
| 1462 |
} |
| 1463 |
/* coord == infinity */ |
| 1464 |
for (k=qh hull_dim-1; k--; ) |
| 1465 |
*(coord++) /= qh num_points; |
| 1466 |
*(coord++)= maxboloid * 1.1; |
| 1467 |
qh num_points++; |
| 1468 |
trace0((qh ferr, "qh_projectinput: projected points to paraboloid for Delaunay\n")); |
| 1469 |
}else if (qh DELAUNAY) /* !qh ATinfinity */ |
| 1470 |
qh_setdelaunay( qh hull_dim, qh num_points, qh first_point); |
| 1471 |
} /* projectinput */ |
| 1472 |
|
| 1473 |
|
| 1474 |
/*-<a href="qh-geom.htm#TOC" |
| 1475 |
>-------------------------------</a><a name="projectpoints">-</a> |
| 1476 |
|
| 1477 |
qh_projectpoints( project, n, points, numpoints, dim, newpoints, newdim ) |
| 1478 |
project points/numpoints/dim to newpoints/newdim |
| 1479 |
if project[k] == -1 |
| 1480 |
delete dimension k |
| 1481 |
if project[k] == 1 |
| 1482 |
add dimension k by duplicating previous column |
| 1483 |
n is size of project |
| 1484 |
|
| 1485 |
notes: |
| 1486 |
newpoints may be points if only adding dimension at end |
| 1487 |
|
| 1488 |
design: |
| 1489 |
check that 'project' and 'newdim' agree |
| 1490 |
for each dimension |
| 1491 |
if project == -1 |
| 1492 |
skip dimension |
| 1493 |
else |
| 1494 |
determine start of column in newpoints |
| 1495 |
determine start of column in points |
| 1496 |
if project == +1, duplicate previous column |
| 1497 |
copy dimension (column) from points to newpoints |
| 1498 |
*/ |
| 1499 |
void qh_projectpoints (signed char *project, int n, realT *points, |
| 1500 |
int numpoints, int dim, realT *newpoints, int newdim) { |
| 1501 |
int testdim= dim, oldk=0, newk=0, i,j=0,k; |
| 1502 |
realT *newp, *oldp; |
| 1503 |
|
| 1504 |
for (k= 0; k < n; k++) |
| 1505 |
testdim += project[k]; |
| 1506 |
if (testdim != newdim) { |
| 1507 |
fprintf (qh ferr, "qhull internal error (qh_projectpoints): newdim %d should be %d after projection\n", |
| 1508 |
newdim, testdim); |
| 1509 |
qh_errexit (qh_ERRqhull, NULL, NULL); |
| 1510 |
} |
| 1511 |
for (j= 0; j<n; j++) { |
| 1512 |
if (project[j] == -1) |
| 1513 |
oldk++; |
| 1514 |
else { |
| 1515 |
newp= newpoints+newk++; |
| 1516 |
if (project[j] == +1) { |
| 1517 |
if (oldk >= dim) |
| 1518 |
continue; |
| 1519 |
oldp= points+oldk; |
| 1520 |
}else |
| 1521 |
oldp= points+oldk++; |
| 1522 |
for (i=numpoints; i--; ) { |
| 1523 |
*newp= *oldp; |
| 1524 |
newp += newdim; |
| 1525 |
oldp += dim; |
| 1526 |
} |
| 1527 |
} |
| 1528 |
if (oldk >= dim) |
| 1529 |
break; |
| 1530 |
} |
| 1531 |
trace1((qh ferr, "qh_projectpoints: projected %d points from dim %d to dim %d\n", numpoints, dim, newdim)); |
| 1532 |
} /* projectpoints */ |
| 1533 |
|
| 1534 |
|
| 1535 |
/*-<a href="qh-geom.htm#TOC" |
| 1536 |
>-------------------------------</a><a name="rand">-</a> |
| 1537 |
|
| 1538 |
qh_rand() |
| 1539 |
qh_srand( seed ) |
| 1540 |
generate pseudo-random number between 1 and 2^31 -2 |
| 1541 |
|
| 1542 |
notes: |
| 1543 |
from Park & Miller's minimimal standard random number generator |
| 1544 |
Communications of the ACM, 31:1192-1201, 1988. |
| 1545 |
does not use 0 or 2^31 -1 |
| 1546 |
this is silently enforced by qh_srand() |
| 1547 |
can make 'Rn' much faster by moving qh_rand to qh_distplane |
| 1548 |
*/ |
| 1549 |
int qh_rand_seed= 1; /* define as global variable instead of using qh */ |
| 1550 |
|
| 1551 |
int qh_rand( void) { |
| 1552 |
#define qh_rand_a 16807 |
| 1553 |
#define qh_rand_m 2147483647 |
| 1554 |
/* m div a */ |
| 1555 |
#define qh_rand_q 127773 |
| 1556 |
/* m mod a */ |
| 1557 |
#define qh_rand_r 2836 |
| 1558 |
int lo, hi, test; |
| 1559 |
int seed = qh_rand_seed; |
| 1560 |
|
| 1561 |
hi = seed / qh_rand_q; /* seed div q */ |
| 1562 |
lo = seed % qh_rand_q; /* seed mod q */ |
| 1563 |
test = qh_rand_a * lo - qh_rand_r * hi; |
| 1564 |
if (test > 0) |
| 1565 |
seed= test; |
| 1566 |
else |
| 1567 |
seed= test + qh_rand_m; |
| 1568 |
qh_rand_seed= seed; |
| 1569 |
/* seed = seed < qh_RANDOMmax/2 ? 0 : qh_RANDOMmax; for testing */ |
| 1570 |
/* seed = qh_RANDOMmax; for testing */ |
| 1571 |
return seed; |
| 1572 |
} /* rand */ |
| 1573 |
|
| 1574 |
void qh_srand( int seed) { |
| 1575 |
if (seed < 1) |
| 1576 |
qh_rand_seed= 1; |
| 1577 |
else if (seed >= qh_rand_m) |
| 1578 |
qh_rand_seed= qh_rand_m - 1; |
| 1579 |
else |
| 1580 |
qh_rand_seed= seed; |
| 1581 |
} /* qh_srand */ |
| 1582 |
|
| 1583 |
/*-<a href="qh-geom.htm#TOC" |
| 1584 |
>-------------------------------</a><a name="randomfactor">-</a> |
| 1585 |
|
| 1586 |
qh_randomfactor() |
| 1587 |
return a random factor within qh.RANDOMmax of 1.0 |
| 1588 |
|
| 1589 |
notes: |
| 1590 |
qh.RANDOMa/b are defined in global.c |
| 1591 |
*/ |
| 1592 |
realT qh_randomfactor (void) { |
| 1593 |
realT randr; |
| 1594 |
|
| 1595 |
randr= qh_RANDOMint; |
| 1596 |
return randr * qh RANDOMa + qh RANDOMb; |
| 1597 |
} /* randomfactor */ |
| 1598 |
|
| 1599 |
/*-<a href="qh-geom.htm#TOC" |
| 1600 |
>-------------------------------</a><a name="randommatrix">-</a> |
| 1601 |
|
| 1602 |
qh_randommatrix( buffer, dim, rows ) |
| 1603 |
generate a random dim X dim matrix in range [-1,1] |
| 1604 |
assumes buffer is [dim+1, dim] |
| 1605 |
|
| 1606 |
returns: |
| 1607 |
sets buffer to random numbers |
| 1608 |
sets rows to rows of buffer |
| 1609 |
sets row[dim] as scratch row |
| 1610 |
*/ |
| 1611 |
void qh_randommatrix (realT *buffer, int dim, realT **rows) { |
| 1612 |
int i, k; |
| 1613 |
realT **rowi, *coord, realr; |
| 1614 |
|
| 1615 |
coord= buffer; |
| 1616 |
rowi= rows; |
| 1617 |
for (i=0; i < dim; i++) { |
| 1618 |
*(rowi++)= coord; |
| 1619 |
for (k=0; k < dim; k++) { |
| 1620 |
realr= qh_RANDOMint; |
| 1621 |
*(coord++)= 2.0 * realr/(qh_RANDOMmax+1) - 1.0; |
| 1622 |
} |
| 1623 |
} |
| 1624 |
*rowi= coord; |
| 1625 |
} /* randommatrix */ |
| 1626 |
|
| 1627 |
|
| 1628 |
/*-<a href="qh-geom.htm#TOC" |
| 1629 |
>-------------------------------</a><a name="rotateinput">-</a> |
| 1630 |
|
| 1631 |
qh_rotateinput( rows ) |
| 1632 |
rotate input using row matrix |
| 1633 |
input points given by qh first_point, num_points, hull_dim |
| 1634 |
assumes rows[dim] is a scratch buffer |
| 1635 |
if qh POINTSmalloc, overwrites input points, else mallocs a new array |
| 1636 |
|
| 1637 |
returns: |
| 1638 |
rotated input |
| 1639 |
sets qh POINTSmalloc |
| 1640 |
|
| 1641 |
design: |
| 1642 |
see qh_rotatepoints |
| 1643 |
*/ |
| 1644 |
void qh_rotateinput (realT **rows) { |
| 1645 |
|
| 1646 |
if (!qh POINTSmalloc) { |
| 1647 |
qh first_point= qh_copypoints (qh first_point, qh num_points, qh hull_dim); |
| 1648 |
qh POINTSmalloc= True; |
| 1649 |
} |
| 1650 |
qh_rotatepoints (qh first_point, qh num_points, qh hull_dim, rows); |
| 1651 |
} /* rotateinput */ |
| 1652 |
|
| 1653 |
/*-<a href="qh-geom.htm#TOC" |
| 1654 |
>-------------------------------</a><a name="rotatepoints">-</a> |
| 1655 |
|
| 1656 |
qh_rotatepoints( points, numpoints, dim, row ) |
| 1657 |
rotate numpoints points by a d-dim row matrix |
| 1658 |
assumes rows[dim] is a scratch buffer |
| 1659 |
|
| 1660 |
returns: |
| 1661 |
rotated points in place |
| 1662 |
|
| 1663 |
design: |
| 1664 |
for each point |
| 1665 |
for each coordinate |
| 1666 |
please use row[dim] to compute partial inner product |
| 1667 |
for each coordinate |
| 1668 |
rotate by partial inner product |
| 1669 |
*/ |
| 1670 |
void qh_rotatepoints (realT *points, int numpoints, int dim, realT **row) { |
| 1671 |
realT *point, *rowi, *coord= NULL, sum, *newval; |
| 1672 |
int i,j,k; |
| 1673 |
|
| 1674 |
if (qh IStracing >= 1) |
| 1675 |
qh_printmatrix (qh ferr, "qh_rotatepoints: rotate points by", row, dim, dim); |
| 1676 |
for (point= points, j= numpoints; j--; point += dim) { |
| 1677 |
newval= row[dim]; |
| 1678 |
for (i= 0; i < dim; i++) { |
| 1679 |
rowi= row[i]; |
| 1680 |
coord= point; |
| 1681 |
for (sum= 0.0, k= dim; k--; ) |
| 1682 |
sum += *rowi++ * *coord++; |
| 1683 |
*(newval++)= sum; |
| 1684 |
} |
| 1685 |
for (k= dim; k--; ) |
| 1686 |
*(--coord)= *(--newval); |
| 1687 |
} |
| 1688 |
} /* rotatepoints */ |
| 1689 |
|
| 1690 |
|
| 1691 |
/*-<a href="qh-geom.htm#TOC" |
| 1692 |
>-------------------------------</a><a name="scaleinput">-</a> |
| 1693 |
|
| 1694 |
qh_scaleinput() |
| 1695 |
scale input points using qh low_bound/high_bound |
| 1696 |
input points given by qh first_point, num_points, hull_dim |
| 1697 |
if qh POINTSmalloc, overwrites input points, else mallocs a new array |
| 1698 |
|
| 1699 |
returns: |
| 1700 |
scales coordinates of points to low_bound[k], high_bound[k] |
| 1701 |
sets qh POINTSmalloc |
| 1702 |
|
| 1703 |
design: |
| 1704 |
see qh_scalepoints |
| 1705 |
*/ |
| 1706 |
void qh_scaleinput (void) { |
| 1707 |
|
| 1708 |
if (!qh POINTSmalloc) { |
| 1709 |
qh first_point= qh_copypoints (qh first_point, qh num_points, qh hull_dim); |
| 1710 |
qh POINTSmalloc= True; |
| 1711 |
} |
| 1712 |
qh_scalepoints (qh first_point, qh num_points, qh hull_dim, |
| 1713 |
qh lower_bound, qh upper_bound); |
| 1714 |
} /* scaleinput */ |
| 1715 |
|
| 1716 |
/*-<a href="qh-geom.htm#TOC" |
| 1717 |
>-------------------------------</a><a name="scalelast">-</a> |
| 1718 |
|
| 1719 |
qh_scalelast( points, numpoints, dim, low, high, newhigh ) |
| 1720 |
scale last coordinate to [0,m] for Delaunay triangulations |
| 1721 |
input points given by points, numpoints, dim |
| 1722 |
|
| 1723 |
returns: |
| 1724 |
changes scale of last coordinate from [low, high] to [0, newhigh] |
| 1725 |
overwrites last coordinate of each point |
| 1726 |
saves low/high/newhigh in qh.last_low, etc. for qh_setdelaunay() |
| 1727 |
|
| 1728 |
notes: |
| 1729 |
when called by qh_setdelaunay, low/high may not match actual data |
| 1730 |
|
| 1731 |
design: |
| 1732 |
compute scale and shift factors |
| 1733 |
apply to last coordinate of each point |
| 1734 |
*/ |
| 1735 |
void qh_scalelast (coordT *points, int numpoints, int dim, coordT low, |
| 1736 |
coordT high, coordT newhigh) { |
| 1737 |
realT scale, shift; |
| 1738 |
coordT *coord; |
| 1739 |
int i; |
| 1740 |
boolT nearzero= False; |
| 1741 |
|
| 1742 |
trace4((qh ferr, "qh_scalelast: scale last coordinate from [%2.2g, %2.2g] to [0,%2.2g]\n", low, high, newhigh)); |
| 1743 |
qh last_low= low; |
| 1744 |
qh last_high= high; |
| 1745 |
qh last_newhigh= newhigh; |
| 1746 |
scale= qh_divzero (newhigh, high - low, |
| 1747 |
qh MINdenom_1, &nearzero); |
| 1748 |
if (nearzero) { |
| 1749 |
if (qh DELAUNAY) |
| 1750 |
fprintf (qh ferr, "qhull input error: can not scale last coordinate. Input is cocircular\n or cospherical. Use option 'Qz' to add a point at infinity.\n"); |
| 1751 |
else |
| 1752 |
fprintf (qh ferr, "qhull input error: can not scale last coordinate. New bounds [0, %2.2g] are too wide for\nexisting bounds [%2.2g, %2.2g] (width %2.2g)\n", |
| 1753 |
newhigh, low, high, high-low); |
| 1754 |
qh_errexit (qh_ERRinput, NULL, NULL); |
| 1755 |
} |
| 1756 |
shift= - low * newhigh / (high-low); |
| 1757 |
coord= points + dim - 1; |
| 1758 |
for (i= numpoints; i--; coord += dim) |
| 1759 |
*coord= *coord * scale + shift; |
| 1760 |
} /* scalelast */ |
| 1761 |
|
| 1762 |
/*-<a href="qh-geom.htm#TOC" |
| 1763 |
>-------------------------------</a><a name="scalepoints">-</a> |
| 1764 |
|
| 1765 |
qh_scalepoints( points, numpoints, dim, newlows, newhighs ) |
| 1766 |
scale points to new lowbound and highbound |
| 1767 |
retains old bound when newlow= -REALmax or newhigh= +REALmax |
| 1768 |
|
| 1769 |
returns: |
| 1770 |
scaled points |
| 1771 |
overwrites old points |
| 1772 |
|
| 1773 |
design: |
| 1774 |
for each coordinate |
| 1775 |
compute current low and high bound |
| 1776 |
compute scale and shift factors |
| 1777 |
scale all points |
| 1778 |
enforce new low and high bound for all points |
| 1779 |
*/ |
| 1780 |
void qh_scalepoints (pointT *points, int numpoints, int dim, |
| 1781 |
realT *newlows, realT *newhighs) { |
| 1782 |
int i,k; |
| 1783 |
realT shift, scale, *coord, low, high, newlow, newhigh, mincoord, maxcoord; |
| 1784 |
boolT nearzero= False; |
| 1785 |
|
| 1786 |
for (k= 0; k < dim; k++) { |
| 1787 |
newhigh= newhighs[k]; |
| 1788 |
newlow= newlows[k]; |
| 1789 |
if (newhigh > REALmax/2 && newlow < -REALmax/2) |
| 1790 |
continue; |
| 1791 |
low= REALmax; |
| 1792 |
high= -REALmax; |
| 1793 |
for (i= numpoints, coord= points+k; i--; coord += dim) { |
| 1794 |
minimize_(low, *coord); |
| 1795 |
maximize_(high, *coord); |
| 1796 |
} |
| 1797 |
if (newhigh > REALmax/2) |
| 1798 |
newhigh= high; |
| 1799 |
if (newlow < -REALmax/2) |
| 1800 |
newlow= low; |
| 1801 |
if (qh DELAUNAY && k == dim-1 && newhigh < newlow) { |
| 1802 |
fprintf (qh ferr, "qhull input error: 'Qb%d' or 'QB%d' inverts paraboloid since high bound %.2g < low bound %.2g\n", |
| 1803 |
k, k, newhigh, newlow); |
| 1804 |
qh_errexit (qh_ERRinput, NULL, NULL); |
| 1805 |
} |
| 1806 |
scale= qh_divzero (newhigh - newlow, high - low, |
| 1807 |
qh MINdenom_1, &nearzero); |
| 1808 |
if (nearzero) { |
| 1809 |
fprintf (qh ferr, "qhull input error: %d'th dimension's new bounds [%2.2g, %2.2g] too wide for\nexisting bounds [%2.2g, %2.2g]\n", |
| 1810 |
k, newlow, newhigh, low, high); |
| 1811 |
qh_errexit (qh_ERRinput, NULL, NULL); |
| 1812 |
} |
| 1813 |
shift= (newlow * high - low * newhigh)/(high-low); |
| 1814 |
coord= points+k; |
| 1815 |
for (i= numpoints; i--; coord += dim) |
| 1816 |
*coord= *coord * scale + shift; |
| 1817 |
coord= points+k; |
| 1818 |
if (newlow < newhigh) { |
| 1819 |
mincoord= newlow; |
| 1820 |
maxcoord= newhigh; |
| 1821 |
}else { |
| 1822 |
mincoord= newhigh; |
| 1823 |
maxcoord= newlow; |
| 1824 |
} |
| 1825 |
for (i= numpoints; i--; coord += dim) { |
| 1826 |
minimize_(*coord, maxcoord); /* because of roundoff error */ |
| 1827 |
maximize_(*coord, mincoord); |
| 1828 |
} |
| 1829 |
trace0((qh ferr, "qh_scalepoints: scaled %d'th coordinate [%2.2g, %2.2g] to [%.2g, %.2g] for %d points by %2.2g and shifted %2.2g\n", k, low, high, newlow, newhigh, numpoints, scale, shift)); |
| 1830 |
} |
| 1831 |
} /* scalepoints */ |
| 1832 |
|
| 1833 |
|
| 1834 |
/*-<a href="qh-geom.htm#TOC" |
| 1835 |
>-------------------------------</a><a name="setdelaunay">-</a> |
| 1836 |
|
| 1837 |
qh_setdelaunay( dim, count, points ) |
| 1838 |
project count points to dim-d paraboloid for Delaunay triangulation |
| 1839 |
|
| 1840 |
dim is one more than the dimension of the input set |
| 1841 |
assumes dim is at least 3 (i.e., at least a 2-d Delaunay triangulation) |
| 1842 |
|
| 1843 |
points is a dim*count realT array. The first dim-1 coordinates |
| 1844 |
are the coordinates of the first input point. array[dim] is |
| 1845 |
the first coordinate of the second input point. array[2*dim] is |
| 1846 |
the first coordinate of the third input point. |
| 1847 |
|
| 1848 |
if qh.last_low defined (i.e., 'Qbb' called qh_scalelast) |
| 1849 |
calls qh_scalelast to scale the last coordinate the same as the other points |
| 1850 |
|
| 1851 |
returns: |
| 1852 |
for each point |
| 1853 |
sets point[dim-1] to sum of squares of coordinates |
| 1854 |
scale points to 'Qbb' if needed |
| 1855 |
|
| 1856 |
notes: |
| 1857 |
to project one point, use |
| 1858 |
qh_setdelaunay (qh hull_dim, 1, point) |
| 1859 |
|
| 1860 |
Do not use options 'Qbk', 'QBk', or 'QbB' since they scale |
| 1861 |
the coordinates after the original projection. |
| 1862 |
|
| 1863 |
*/ |
| 1864 |
void qh_setdelaunay (int dim, int count, pointT *points) { |
| 1865 |
int i, k; |
| 1866 |
coordT *coordp, coord; |
| 1867 |
realT paraboloid; |
| 1868 |
|
| 1869 |
trace0((qh ferr, "qh_setdelaunay: project %d points to paraboloid for Delaunay triangulation\n", count)); |
| 1870 |
coordp= points; |
| 1871 |
for (i= 0; i < count; i++) { |
| 1872 |
coord= *coordp++; |
| 1873 |
paraboloid= coord*coord; |
| 1874 |
for (k= dim-2; k--; ) { |
| 1875 |
coord= *coordp++; |
| 1876 |
paraboloid += coord*coord; |
| 1877 |
} |
| 1878 |
*coordp++ = paraboloid; |
| 1879 |
} |
| 1880 |
if (qh last_low < REALmax/2) |
| 1881 |
qh_scalelast (points, count, dim, qh last_low, qh last_high, qh last_newhigh); |
| 1882 |
} /* setdelaunay */ |
| 1883 |
|
| 1884 |
|
| 1885 |
/*-<a href="qh-geom.htm#TOC" |
| 1886 |
>-------------------------------</a><a name="sethalfspace">-</a> |
| 1887 |
|
| 1888 |
qh_sethalfspace( dim, coords, nextp, normal, offset, feasible ) |
| 1889 |
set point to dual of halfspace relative to feasible point |
| 1890 |
halfspace is normal coefficients and offset. |
| 1891 |
|
| 1892 |
returns: |
| 1893 |
false if feasible point is outside of hull (error message already reported) |
| 1894 |
overwrites coordinates for point at dim coords |
| 1895 |
nextp= next point (coords) |
| 1896 |
|
| 1897 |
design: |
| 1898 |
compute distance from feasible point to halfspace |
| 1899 |
divide each normal coefficient by -dist |
| 1900 |
*/ |
| 1901 |
boolT qh_sethalfspace (int dim, coordT *coords, coordT **nextp, |
| 1902 |
coordT *normal, coordT *offset, coordT *feasible) { |
| 1903 |
coordT *normp= normal, *feasiblep= feasible, *coordp= coords; |
| 1904 |
realT dist; |
| 1905 |
realT r; /*bug fix*/ |
| 1906 |
int k; |
| 1907 |
boolT zerodiv; |
| 1908 |
|
| 1909 |
dist= *offset; |
| 1910 |
for (k= dim; k--; ) |
| 1911 |
dist += *(normp++) * *(feasiblep++); |
| 1912 |
if (dist > 0) |
| 1913 |
goto LABELerroroutside; |
| 1914 |
normp= normal; |
| 1915 |
if (dist < -qh MINdenom) { |
| 1916 |
for (k= dim; k--; ) |
| 1917 |
*(coordp++)= *(normp++) / -dist; |
| 1918 |
}else { |
| 1919 |
for (k= dim; k--; ) { |
| 1920 |
*(coordp++)= qh_divzero (*(normp++), -dist, qh MINdenom_1, &zerodiv); |
| 1921 |
if (zerodiv) |
| 1922 |
goto LABELerroroutside; |
| 1923 |
} |
| 1924 |
} |
| 1925 |
*nextp= coordp; |
| 1926 |
if (qh IStracing >= 4) { |
| 1927 |
fprintf (qh ferr, "qh_sethalfspace: halfspace at offset %6.2g to point: ", *offset); |
| 1928 |
for (k= dim, coordp= coords; k--; ) { |
| 1929 |
r= *coordp++; |
| 1930 |
fprintf (qh ferr, " %6.2g", r); |
| 1931 |
} |
| 1932 |
fprintf (qh ferr, "\n"); |
| 1933 |
} |
| 1934 |
return True; |
| 1935 |
LABELerroroutside: |
| 1936 |
feasiblep= feasible; |
| 1937 |
normp= normal; |
| 1938 |
fprintf(qh ferr, "qhull input error: feasible point is not clearly inside halfspace\nfeasible point: "); |
| 1939 |
for (k= dim; k--; ) |
| 1940 |
fprintf (qh ferr, qh_REAL_1, r=*(feasiblep++)); |
| 1941 |
fprintf (qh ferr, "\n halfspace: "); |
| 1942 |
for (k= dim; k--; ) |
| 1943 |
fprintf (qh ferr, qh_REAL_1, r=*(normp++)); |
| 1944 |
fprintf (qh ferr, "\n at offset: "); |
| 1945 |
fprintf (qh ferr, qh_REAL_1, *offset); |
| 1946 |
fprintf (qh ferr, " and distance: "); |
| 1947 |
fprintf (qh ferr, qh_REAL_1, dist); |
| 1948 |
fprintf (qh ferr, "\n"); |
| 1949 |
return False; |
| 1950 |
} /* sethalfspace */ |
| 1951 |
|
| 1952 |
/*-<a href="qh-geom.htm#TOC" |
| 1953 |
>-------------------------------</a><a name="sethalfspace_all">-</a> |
| 1954 |
|
| 1955 |
qh_sethalfspace_all( dim, count, halfspaces, feasible ) |
| 1956 |
generate dual for halfspace intersection with feasible point |
| 1957 |
array of count halfspaces |
| 1958 |
each halfspace is normal coefficients followed by offset |
| 1959 |
the origin is inside the halfspace if the offset is negative |
| 1960 |
|
| 1961 |
returns: |
| 1962 |
malloc'd array of count X dim-1 points |
| 1963 |
|
| 1964 |
notes: |
| 1965 |
call before qh_init_B or qh_initqhull_globals |
| 1966 |
unused/untested code: please email bradb@shore.net if this works ok for you |
| 1967 |
If using option 'Fp', also set qh feasible_point. It is a malloc'd array |
| 1968 |
that is freed by qh_freebuffers. |
| 1969 |
|
| 1970 |
design: |
| 1971 |
see qh_sethalfspace |
| 1972 |
*/ |
| 1973 |
coordT *qh_sethalfspace_all (int dim, int count, coordT *halfspaces, pointT *feasible) { |
| 1974 |
int i, newdim; |
| 1975 |
pointT *newpoints; |
| 1976 |
coordT *coordp, *normalp, *offsetp; |
| 1977 |
|
| 1978 |
trace0((qh ferr, "qh_sethalfspace_all: compute dual for halfspace intersection\n")); |
| 1979 |
newdim= dim - 1; |
| 1980 |
if (!(newpoints=(coordT*)malloc(count*newdim*sizeof(coordT)))){ |
| 1981 |
fprintf(qh ferr, "qhull error: insufficient memory to compute dual of %d halfspaces\n", |
| 1982 |
count); |
| 1983 |
qh_errexit(qh_ERRmem, NULL, NULL); |
| 1984 |
} |
| 1985 |
coordp= newpoints; |
| 1986 |
normalp= halfspaces; |
| 1987 |
for (i= 0; i < count; i++) { |
| 1988 |
offsetp= normalp + newdim; |
| 1989 |
if (!qh_sethalfspace (newdim, coordp, &coordp, normalp, offsetp, feasible)) { |
| 1990 |
fprintf (qh ferr, "The halfspace was at index %d\n", i); |
| 1991 |
qh_errexit (qh_ERRinput, NULL, NULL); |
| 1992 |
} |
| 1993 |
normalp= offsetp + 1; |
| 1994 |
} |
| 1995 |
return newpoints; |
| 1996 |
} /* sethalfspace_all */ |
| 1997 |
|
| 1998 |
|
| 1999 |
/*-<a href="qh-geom.htm#TOC" |
| 2000 |
>-------------------------------</a><a name="sharpnewfacets">-</a> |
| 2001 |
|
| 2002 |
qh_sharpnewfacets() |
| 2003 |
|
| 2004 |
returns: |
| 2005 |
true if could be an acute angle (facets in different quadrants) |
| 2006 |
|
| 2007 |
notes: |
| 2008 |
for qh_findbest |
| 2009 |
|
| 2010 |
design: |
| 2011 |
for all facets on qh.newfacet_list |
| 2012 |
if two facets are in different quadrants |
| 2013 |
set issharp |
| 2014 |
*/ |
| 2015 |
boolT qh_sharpnewfacets () { |
| 2016 |
facetT *facet; |
| 2017 |
boolT issharp = False; |
| 2018 |
int *quadrant, k; |
| 2019 |
|
| 2020 |
quadrant= (int*)qh_memalloc (qh hull_dim * sizeof(int)); |
| 2021 |
FORALLfacet_(qh newfacet_list) { |
| 2022 |
if (facet == qh newfacet_list) { |
| 2023 |
for (k= qh hull_dim; k--; ) |
| 2024 |
quadrant[ k]= (facet->normal[ k] > 0); |
| 2025 |
}else { |
| 2026 |
for (k= qh hull_dim; k--; ) { |
| 2027 |
if (quadrant[ k] != (facet->normal[ k] > 0)) { |
| 2028 |
issharp= True; |
| 2029 |
break; |
| 2030 |
} |
| 2031 |
} |
| 2032 |
} |
| 2033 |
if (issharp) |
| 2034 |
break; |
| 2035 |
} |
| 2036 |
qh_memfree( quadrant, qh hull_dim * sizeof(int)); |
| 2037 |
trace3((qh ferr, "qh_sharpnewfacets: %d\n", issharp)); |
| 2038 |
return issharp; |
| 2039 |
} /* sharpnewfacets */ |
| 2040 |
|
| 2041 |
/*-<a href="qh-geom.htm#TOC" |
| 2042 |
>-------------------------------</a><a name="voronoi_center">-</a> |
| 2043 |
|
| 2044 |
qh_voronoi_center( dim, points ) |
| 2045 |
return Voronoi center for a set of points |
| 2046 |
dim is the orginal dimension of the points |
| 2047 |
gh.gm_matrix/qh.gm_row are scratch buffers |
| 2048 |
|
| 2049 |
returns: |
| 2050 |
center as a temporary point |
| 2051 |
if non-simplicial, |
| 2052 |
returns center for max simplex of points |
| 2053 |
|
| 2054 |
notes: |
| 2055 |
from Bowyer & Woodwark, A Programmer's Geometry, 1983, p. 65 |
| 2056 |
|
| 2057 |
design: |
| 2058 |
if non-simplicial |
| 2059 |
determine max simplex for points |
| 2060 |
translate point0 of simplex to origin |
| 2061 |
compute sum of squares of diagonal |
| 2062 |
compute determinate |
| 2063 |
compute Voronoi center (see Bowyer & Woodwark) |
| 2064 |
*/ |
| 2065 |
pointT *qh_voronoi_center (int dim, setT *points) { |
| 2066 |
pointT *point, **pointp, *point0; |
| 2067 |
pointT *center= (pointT*)qh_memalloc (qh center_size); |
| 2068 |
setT *simplex; |
| 2069 |
int i, j, k, size= qh_setsize(points); |
| 2070 |
coordT *gmcoord; |
| 2071 |
realT *diffp, sum2, *sum2row, *sum2p, det, factor; |
| 2072 |
boolT nearzero, infinite; |
| 2073 |
|
| 2074 |
if (size == dim+1) |
| 2075 |
simplex= points; |
| 2076 |
else if (size < dim+1) { |
| 2077 |
fprintf (qh ferr, "qhull internal error (qh_voronoi_center):\n need at least %d points to construct a Voronoi center\n", |
| 2078 |
dim+1); |
| 2079 |
qh_errexit (qh_ERRqhull, NULL, NULL); |
| 2080 |
}else { |
| 2081 |
simplex= qh_settemp (dim+1); |
| 2082 |
qh_maxsimplex (dim, points, NULL, 0, &simplex); |
| 2083 |
} |
| 2084 |
point0= SETfirstt_(simplex, pointT); |
| 2085 |
gmcoord= qh gm_matrix; |
| 2086 |
for (k=0; k < dim; k++) { |
| 2087 |
qh gm_row[k]= gmcoord; |
| 2088 |
FOREACHpoint_(simplex) { |
| 2089 |
if (point != point0) |
| 2090 |
*(gmcoord++)= point[k] - point0[k]; |
| 2091 |
} |
| 2092 |
} |
| 2093 |
sum2row= gmcoord; |
| 2094 |
for (i=0; i < dim; i++) { |
| 2095 |
sum2= 0.0; |
| 2096 |
for (k= 0; k < dim; k++) { |
| 2097 |
diffp= qh gm_row[k] + i; |
| 2098 |
sum2 += *diffp * *diffp; |
| 2099 |
} |
| 2100 |
*(gmcoord++)= sum2; |
| 2101 |
} |
| 2102 |
det= qh_determinant (qh gm_row, dim, &nearzero); |
| 2103 |
factor= qh_divzero (0.5, det, qh MINdenom, &infinite); |
| 2104 |
if (infinite) { |
| 2105 |
for (k=dim; k--; ) |
| 2106 |
center[k]= qh_INFINITE; |
| 2107 |
if (qh IStracing) |
| 2108 |
qh_printpoints (qh ferr, "qh_voronoi_center: at infinity for ", simplex); |
| 2109 |
}else { |
| 2110 |
for (i=0; i < dim; i++) { |
| 2111 |
gmcoord= qh gm_matrix; |
| 2112 |
sum2p= sum2row; |
| 2113 |
for (k=0; k < dim; k++) { |
| 2114 |
qh gm_row[k]= gmcoord; |
| 2115 |
if (k == i) { |
| 2116 |
for (j= dim; j--; ) |
| 2117 |
*(gmcoord++)= *sum2p++; |
| 2118 |
}else { |
| 2119 |
FOREACHpoint_(simplex) { |
| 2120 |
if (point != point0) |
| 2121 |
*(gmcoord++)= point[k] - point0[k]; |
| 2122 |
} |
| 2123 |
} |
| 2124 |
} |
| 2125 |
center[i]= qh_determinant (qh gm_row, dim, &nearzero)*factor + point0[i]; |
| 2126 |
} |
| 2127 |
#ifndef qh_NOtrace |
| 2128 |
if (qh IStracing >= 3) { |
| 2129 |
fprintf (qh ferr, "qh_voronoi_center: det %2.2g factor %2.2g ", det, factor); |
| 2130 |
qh_printmatrix (qh ferr, "center:", ¢er, 1, dim); |
| 2131 |
if (qh IStracing >= 5) { |
| 2132 |
qh_printpoints (qh ferr, "points", simplex); |
| 2133 |
FOREACHpoint_(simplex) |
| 2134 |
fprintf (qh ferr, "p%d dist %.2g, ", qh_pointid (point), |
| 2135 |
qh_pointdist (point, center, dim)); |
| 2136 |
fprintf (qh ferr, "\n"); |
| 2137 |
} |
| 2138 |
} |
| 2139 |
#endif |
| 2140 |
} |
| 2141 |
if (simplex != points) |
| 2142 |
qh_settempfree (&simplex); |
| 2143 |
return center; |
| 2144 |
} /* voronoi_center */ |
| 2145 |
|