| 1 |
gezelter |
246 |
!! |
| 2 |
|
|
!! Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
| 3 |
|
|
!! |
| 4 |
|
|
!! The University of Notre Dame grants you ("Licensee") a |
| 5 |
|
|
!! non-exclusive, royalty free, license to use, modify and |
| 6 |
|
|
!! redistribute this software in source and binary code form, provided |
| 7 |
|
|
!! that the following conditions are met: |
| 8 |
|
|
!! |
| 9 |
gezelter |
1390 |
!! 1. Redistributions of source code must retain the above copyright |
| 10 |
gezelter |
246 |
!! notice, this list of conditions and the following disclaimer. |
| 11 |
|
|
!! |
| 12 |
gezelter |
1390 |
!! 2. Redistributions in binary form must reproduce the above copyright |
| 13 |
gezelter |
246 |
!! notice, this list of conditions and the following disclaimer in the |
| 14 |
|
|
!! documentation and/or other materials provided with the |
| 15 |
|
|
!! distribution. |
| 16 |
|
|
!! |
| 17 |
|
|
!! This software is provided "AS IS," without a warranty of any |
| 18 |
|
|
!! kind. All express or implied conditions, representations and |
| 19 |
|
|
!! warranties, including any implied warranty of merchantability, |
| 20 |
|
|
!! fitness for a particular purpose or non-infringement, are hereby |
| 21 |
|
|
!! excluded. The University of Notre Dame and its licensors shall not |
| 22 |
|
|
!! be liable for any damages suffered by licensee as a result of |
| 23 |
|
|
!! using, modifying or distributing the software or its |
| 24 |
|
|
!! derivatives. In no event will the University of Notre Dame or its |
| 25 |
|
|
!! licensors be liable for any lost revenue, profit or data, or for |
| 26 |
|
|
!! direct, indirect, special, consequential, incidental or punitive |
| 27 |
|
|
!! damages, however caused and regardless of the theory of liability, |
| 28 |
|
|
!! arising out of the use of or inability to use software, even if the |
| 29 |
|
|
!! University of Notre Dame has been advised of the possibility of |
| 30 |
|
|
!! such damages. |
| 31 |
|
|
!! |
| 32 |
gezelter |
1390 |
!! SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
| 33 |
|
|
!! research, please cite the appropriate papers when you publish your |
| 34 |
|
|
!! work. Good starting points are: |
| 35 |
|
|
!! |
| 36 |
|
|
!! [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
| 37 |
|
|
!! [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
| 38 |
|
|
!! [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
| 39 |
|
|
!! [4] Vardeman & Gezelter, in progress (2009). |
| 40 |
|
|
!! |
| 41 |
gezelter |
246 |
|
| 42 |
gezelter |
115 |
!! This Module Calculates forces due to SSD potential and VDW interactions |
| 43 |
|
|
!! [Chandra and Ichiye, J. Chem. Phys. 111, 2701 (1999)]. |
| 44 |
|
|
|
| 45 |
|
|
!! This module contains the Public procedures: |
| 46 |
|
|
|
| 47 |
|
|
|
| 48 |
|
|
!! Corresponds to the force field defined in ssd_FF.cpp |
| 49 |
|
|
!! @author Charles F. Vardeman II |
| 50 |
|
|
!! @author Matthew Meineke |
| 51 |
chrisfen |
437 |
!! @author Christopher Fennell |
| 52 |
gezelter |
115 |
!! @author J. Daniel Gezelter |
| 53 |
gezelter |
1442 |
!! @version $Id$, $Date$, $Name: not supported by cvs2svn $, $Revision$ |
| 54 |
gezelter |
115 |
|
| 55 |
gezelter |
246 |
module sticky |
| 56 |
gezelter |
115 |
|
| 57 |
|
|
use force_globals |
| 58 |
|
|
use definitions |
| 59 |
gezelter |
246 |
use atype_module |
| 60 |
|
|
use vector_class |
| 61 |
gezelter |
115 |
use simulation |
| 62 |
gezelter |
246 |
use status |
| 63 |
chrisfen |
940 |
use interpolation |
| 64 |
gezelter |
115 |
implicit none |
| 65 |
|
|
|
| 66 |
|
|
PRIVATE |
| 67 |
chuckv |
656 |
#define __FORTRAN90 |
| 68 |
|
|
#include "UseTheForce/DarkSide/fInteractionMap.h" |
| 69 |
gezelter |
115 |
|
| 70 |
gezelter |
246 |
public :: newStickyType |
| 71 |
gezelter |
115 |
public :: do_sticky_pair |
| 72 |
chuckv |
492 |
public :: destroyStickyTypes |
| 73 |
chrisfen |
523 |
public :: do_sticky_power_pair |
| 74 |
chrisfen |
578 |
public :: getStickyCut |
| 75 |
|
|
public :: getStickyPowerCut |
| 76 |
gezelter |
115 |
|
| 77 |
gezelter |
246 |
type :: StickyList |
| 78 |
|
|
integer :: c_ident |
| 79 |
|
|
real( kind = dp ) :: w0 = 0.0_dp |
| 80 |
|
|
real( kind = dp ) :: v0 = 0.0_dp |
| 81 |
|
|
real( kind = dp ) :: v0p = 0.0_dp |
| 82 |
|
|
real( kind = dp ) :: rl = 0.0_dp |
| 83 |
|
|
real( kind = dp ) :: ru = 0.0_dp |
| 84 |
|
|
real( kind = dp ) :: rlp = 0.0_dp |
| 85 |
|
|
real( kind = dp ) :: rup = 0.0_dp |
| 86 |
|
|
real( kind = dp ) :: rbig = 0.0_dp |
| 87 |
chrisfen |
940 |
type(cubicSpline) :: stickySpline |
| 88 |
|
|
type(cubicSpline) :: stickySplineP |
| 89 |
gezelter |
246 |
end type StickyList |
| 90 |
gezelter |
507 |
|
| 91 |
gezelter |
246 |
type(StickyList), dimension(:),allocatable :: StickyMap |
| 92 |
gezelter |
938 |
logical, save :: hasStickyMap = .false. |
| 93 |
gezelter |
246 |
|
| 94 |
gezelter |
115 |
contains |
| 95 |
|
|
|
| 96 |
gezelter |
246 |
subroutine newStickyType(c_ident, w0, v0, v0p, rl, ru, rlp, rup, isError) |
| 97 |
gezelter |
115 |
|
| 98 |
gezelter |
246 |
integer, intent(in) :: c_ident |
| 99 |
|
|
integer, intent(inout) :: isError |
| 100 |
|
|
real( kind = dp ), intent(in) :: w0, v0, v0p |
| 101 |
|
|
real( kind = dp ), intent(in) :: rl, ru |
| 102 |
|
|
real( kind = dp ), intent(in) :: rlp, rup |
| 103 |
chrisfen |
940 |
real( kind = dp ), dimension(2) :: rCubVals, sCubVals, rpCubVals, spCubVals |
| 104 |
gezelter |
246 |
integer :: nATypes, myATID |
| 105 |
gezelter |
115 |
|
| 106 |
gezelter |
507 |
|
| 107 |
gezelter |
246 |
isError = 0 |
| 108 |
|
|
myATID = getFirstMatchingElement(atypes, "c_ident", c_ident) |
| 109 |
gezelter |
507 |
|
| 110 |
gezelter |
246 |
!! Be simple-minded and assume that we need a StickyMap that |
| 111 |
|
|
!! is the same size as the total number of atom types |
| 112 |
|
|
|
| 113 |
|
|
if (.not.allocated(StickyMap)) then |
| 114 |
|
|
|
| 115 |
|
|
nAtypes = getSize(atypes) |
| 116 |
|
|
|
| 117 |
|
|
if (nAtypes == 0) then |
| 118 |
|
|
isError = -1 |
| 119 |
|
|
return |
| 120 |
|
|
end if |
| 121 |
|
|
|
| 122 |
|
|
if (.not. allocated(StickyMap)) then |
| 123 |
|
|
allocate(StickyMap(nAtypes)) |
| 124 |
|
|
endif |
| 125 |
|
|
|
| 126 |
|
|
end if |
| 127 |
|
|
|
| 128 |
|
|
if (myATID .gt. size(StickyMap)) then |
| 129 |
|
|
isError = -1 |
| 130 |
|
|
return |
| 131 |
|
|
endif |
| 132 |
|
|
|
| 133 |
|
|
! set the values for StickyMap for this atom type: |
| 134 |
|
|
|
| 135 |
|
|
StickyMap(myATID)%c_ident = c_ident |
| 136 |
|
|
|
| 137 |
gezelter |
115 |
! we could pass all 5 parameters if we felt like it... |
| 138 |
gezelter |
507 |
|
| 139 |
gezelter |
246 |
StickyMap(myATID)%w0 = w0 |
| 140 |
|
|
StickyMap(myATID)%v0 = v0 |
| 141 |
|
|
StickyMap(myATID)%v0p = v0p |
| 142 |
|
|
StickyMap(myATID)%rl = rl |
| 143 |
|
|
StickyMap(myATID)%ru = ru |
| 144 |
|
|
StickyMap(myATID)%rlp = rlp |
| 145 |
|
|
StickyMap(myATID)%rup = rup |
| 146 |
gezelter |
115 |
|
| 147 |
gezelter |
246 |
if (StickyMap(myATID)%ru .gt. StickyMap(myATID)%rup) then |
| 148 |
|
|
StickyMap(myATID)%rbig = StickyMap(myATID)%ru |
| 149 |
gezelter |
115 |
else |
| 150 |
gezelter |
246 |
StickyMap(myATID)%rbig = StickyMap(myATID)%rup |
| 151 |
gezelter |
115 |
endif |
| 152 |
gezelter |
507 |
|
| 153 |
chrisfen |
940 |
! build the 2 cubic splines for the sticky switching functions |
| 154 |
|
|
|
| 155 |
|
|
rCubVals(1) = rl |
| 156 |
|
|
rCubVals(2) = ru |
| 157 |
gezelter |
960 |
sCubVals(1) = 1.0_dp |
| 158 |
|
|
sCubVals(2) = 0.0_dp |
| 159 |
chrisfen |
940 |
call newSpline(StickyMap(myATID)%stickySpline, rCubVals, sCubVals, .true.) |
| 160 |
|
|
rpCubVals(1) = rlp |
| 161 |
|
|
rpCubVals(2) = rup |
| 162 |
gezelter |
960 |
spCubVals(1) = 1.0_dp |
| 163 |
|
|
spCubVals(2) = 0.0_dp |
| 164 |
chrisfen |
940 |
call newSpline(StickyMap(myATID)%stickySplineP,rpCubVals,spCubVals,.true.) |
| 165 |
|
|
|
| 166 |
gezelter |
938 |
hasStickyMap = .true. |
| 167 |
|
|
|
| 168 |
gezelter |
115 |
return |
| 169 |
gezelter |
246 |
end subroutine newStickyType |
| 170 |
gezelter |
115 |
|
| 171 |
chrisfen |
578 |
function getStickyCut(atomID) result(cutValue) |
| 172 |
|
|
integer, intent(in) :: atomID |
| 173 |
|
|
real(kind=dp) :: cutValue |
| 174 |
|
|
|
| 175 |
|
|
cutValue = StickyMap(atomID)%rbig |
| 176 |
|
|
end function getStickyCut |
| 177 |
|
|
|
| 178 |
|
|
function getStickyPowerCut(atomID) result(cutValue) |
| 179 |
|
|
integer, intent(in) :: atomID |
| 180 |
|
|
real(kind=dp) :: cutValue |
| 181 |
|
|
|
| 182 |
|
|
cutValue = StickyMap(atomID)%rbig |
| 183 |
|
|
end function getStickyPowerCut |
| 184 |
|
|
|
| 185 |
gezelter |
1464 |
subroutine do_sticky_pair(me1, me2, d, rij, r2, sw, vpair, fpair, & |
| 186 |
|
|
pot, A1, A2, f1, t1, t2) |
| 187 |
gezelter |
507 |
|
| 188 |
gezelter |
115 |
!! This routine does only the sticky portion of the SSD potential |
| 189 |
|
|
!! [Chandra and Ichiye, J. Chem. Phys. 111, 2701 (1999)]. |
| 190 |
|
|
!! The Lennard-Jones and dipolar interaction must be handled separately. |
| 191 |
gezelter |
507 |
|
| 192 |
gezelter |
115 |
!! We assume that the rotation matrices have already been calculated |
| 193 |
|
|
!! and placed in the A array. |
| 194 |
|
|
|
| 195 |
|
|
!! i and j are pointers to the two SSD atoms |
| 196 |
|
|
|
| 197 |
gezelter |
1464 |
integer, intent(in) :: me1, me2 |
| 198 |
gezelter |
115 |
real (kind=dp), intent(inout) :: rij, r2 |
| 199 |
|
|
real (kind=dp), dimension(3), intent(in) :: d |
| 200 |
|
|
real (kind=dp), dimension(3), intent(inout) :: fpair |
| 201 |
|
|
real (kind=dp) :: pot, vpair, sw |
| 202 |
gezelter |
1386 |
real (kind=dp), dimension(9) :: A1, A2 |
| 203 |
|
|
real (kind=dp), dimension(3) :: f1 |
| 204 |
|
|
real (kind=dp), dimension(3) :: t1, t2 |
| 205 |
gezelter |
115 |
|
| 206 |
|
|
real (kind=dp) :: xi, yi, zi, xj, yj, zj, xi2, yi2, zi2, xj2, yj2, zj2 |
| 207 |
|
|
real (kind=dp) :: r3, r5, r6, s, sp, dsdr, dspdr |
| 208 |
|
|
real (kind=dp) :: wi, wj, w, wip, wjp, wp |
| 209 |
|
|
real (kind=dp) :: dwidx, dwidy, dwidz, dwjdx, dwjdy, dwjdz |
| 210 |
|
|
real (kind=dp) :: dwipdx, dwipdy, dwipdz, dwjpdx, dwjpdy, dwjpdz |
| 211 |
|
|
real (kind=dp) :: dwidux, dwiduy, dwiduz, dwjdux, dwjduy, dwjduz |
| 212 |
|
|
real (kind=dp) :: dwipdux, dwipduy, dwipduz, dwjpdux, dwjpduy, dwjpduz |
| 213 |
|
|
real (kind=dp) :: zif, zis, zjf, zjs, uglyi, uglyj |
| 214 |
|
|
real (kind=dp) :: drdx, drdy, drdz |
| 215 |
|
|
real (kind=dp) :: txi, tyi, tzi, txj, tyj, tzj |
| 216 |
|
|
real (kind=dp) :: fxii, fyii, fzii, fxjj, fyjj, fzjj |
| 217 |
|
|
real (kind=dp) :: fxij, fyij, fzij, fxji, fyji, fzji |
| 218 |
|
|
real (kind=dp) :: fxradial, fyradial, fzradial |
| 219 |
|
|
real (kind=dp) :: rijtest, rjitest |
| 220 |
|
|
real (kind=dp) :: radcomxi, radcomyi, radcomzi |
| 221 |
|
|
real (kind=dp) :: radcomxj, radcomyj, radcomzj |
| 222 |
|
|
integer :: id1, id2 |
| 223 |
gezelter |
1386 |
|
| 224 |
chrisfen |
940 |
real (kind=dp) :: w0, v0, v0p, rl, ru, rlp, rup, rbig, dx |
| 225 |
gezelter |
115 |
|
| 226 |
gezelter |
246 |
if (me1.eq.me2) then |
| 227 |
|
|
w0 = StickyMap(me1)%w0 |
| 228 |
|
|
v0 = StickyMap(me1)%v0 |
| 229 |
|
|
v0p = StickyMap(me1)%v0p |
| 230 |
|
|
rl = StickyMap(me1)%rl |
| 231 |
|
|
ru = StickyMap(me1)%ru |
| 232 |
|
|
rlp = StickyMap(me1)%rlp |
| 233 |
|
|
rup = StickyMap(me1)%rup |
| 234 |
|
|
rbig = StickyMap(me1)%rbig |
| 235 |
|
|
else |
| 236 |
|
|
! This is silly, but if you want 2 sticky types in your |
| 237 |
|
|
! simulation, we'll let you do it with the Lorentz- |
| 238 |
|
|
! Berthelot mixing rules. |
| 239 |
|
|
! (Warning: you'll be SLLLLLLLLLLLLLLLOOOOOOOOOOWWWWWWWWWWW) |
| 240 |
|
|
rl = 0.5_dp * ( StickyMap(me1)%rl + StickyMap(me2)%rl ) |
| 241 |
|
|
ru = 0.5_dp * ( StickyMap(me1)%ru + StickyMap(me2)%ru ) |
| 242 |
|
|
rlp = 0.5_dp * ( StickyMap(me1)%rlp + StickyMap(me2)%rlp ) |
| 243 |
|
|
rup = 0.5_dp * ( StickyMap(me1)%rup + StickyMap(me2)%rup ) |
| 244 |
|
|
rbig = max(ru, rup) |
| 245 |
|
|
w0 = sqrt( StickyMap(me1)%w0 * StickyMap(me2)%w0 ) |
| 246 |
|
|
v0 = sqrt( StickyMap(me1)%v0 * StickyMap(me2)%v0 ) |
| 247 |
|
|
v0p = sqrt( StickyMap(me1)%v0p * StickyMap(me2)%v0p ) |
| 248 |
gezelter |
115 |
endif |
| 249 |
|
|
|
| 250 |
gezelter |
246 |
if ( rij .LE. rbig ) then |
| 251 |
gezelter |
115 |
|
| 252 |
|
|
r3 = r2*rij |
| 253 |
|
|
r5 = r3*r2 |
| 254 |
|
|
|
| 255 |
|
|
drdx = d(1) / rij |
| 256 |
|
|
drdy = d(2) / rij |
| 257 |
|
|
drdz = d(3) / rij |
| 258 |
|
|
|
| 259 |
|
|
! rotate the inter-particle separation into the two different |
| 260 |
|
|
! body-fixed coordinate systems: |
| 261 |
|
|
|
| 262 |
gezelter |
1386 |
xi = A1(1)*d(1) + A1(2)*d(2) + A1(3)*d(3) |
| 263 |
|
|
yi = A1(4)*d(1) + A1(5)*d(2) + A1(6)*d(3) |
| 264 |
|
|
zi = A1(7)*d(1) + A1(8)*d(2) + A1(9)*d(3) |
| 265 |
gezelter |
115 |
|
| 266 |
|
|
! negative sign because this is the vector from j to i: |
| 267 |
|
|
|
| 268 |
gezelter |
1386 |
xj = -(A2(1)*d(1) + A2(2)*d(2) + A2(3)*d(3)) |
| 269 |
|
|
yj = -(A2(4)*d(1) + A2(5)*d(2) + A2(6)*d(3)) |
| 270 |
|
|
zj = -(A2(7)*d(1) + A2(8)*d(2) + A2(9)*d(3)) |
| 271 |
gezelter |
115 |
|
| 272 |
|
|
xi2 = xi*xi |
| 273 |
|
|
yi2 = yi*yi |
| 274 |
|
|
zi2 = zi*zi |
| 275 |
|
|
|
| 276 |
|
|
xj2 = xj*xj |
| 277 |
|
|
yj2 = yj*yj |
| 278 |
|
|
zj2 = zj*zj |
| 279 |
|
|
|
| 280 |
chrisfen |
940 |
! calculate the switching info. from the splines |
| 281 |
|
|
if (me1.eq.me2) then |
| 282 |
gezelter |
960 |
s = 0.0_dp |
| 283 |
|
|
dsdr = 0.0_dp |
| 284 |
|
|
sp = 0.0_dp |
| 285 |
|
|
dspdr = 0.0_dp |
| 286 |
chrisfen |
940 |
|
| 287 |
|
|
if (rij.lt.ru) then |
| 288 |
|
|
if (rij.lt.rl) then |
| 289 |
gezelter |
960 |
s = 1.0_dp |
| 290 |
|
|
dsdr = 0.0_dp |
| 291 |
chrisfen |
940 |
else |
| 292 |
|
|
! we are in the switching region |
| 293 |
|
|
dx = rij - rl |
| 294 |
|
|
s = StickyMap(me1)%stickySpline%y(1) + & |
| 295 |
|
|
dx*(dx*(StickyMap(me1)%stickySpline%c(1) + & |
| 296 |
|
|
dx*StickyMap(me1)%stickySpline%d(1))) |
| 297 |
gezelter |
960 |
dsdr = dx*(2.0_dp * StickyMap(me1)%stickySpline%c(1) + & |
| 298 |
|
|
3.0_dp * dx * StickyMap(me1)%stickySpline%d(1)) |
| 299 |
chrisfen |
940 |
endif |
| 300 |
|
|
endif |
| 301 |
|
|
if (rij.lt.rup) then |
| 302 |
|
|
if (rij.lt.rlp) then |
| 303 |
gezelter |
960 |
sp = 1.0_dp |
| 304 |
|
|
dspdr = 0.0_dp |
| 305 |
chrisfen |
940 |
else |
| 306 |
|
|
! we are in the switching region |
| 307 |
|
|
dx = rij - rlp |
| 308 |
|
|
sp = StickyMap(me1)%stickySplineP%y(1) + & |
| 309 |
|
|
dx*(dx*(StickyMap(me1)%stickySplineP%c(1) + & |
| 310 |
|
|
dx*StickyMap(me1)%stickySplineP%d(1))) |
| 311 |
gezelter |
960 |
dspdr = dx*(2.0_dp * StickyMap(me1)%stickySplineP%c(1) + & |
| 312 |
|
|
3.0_dp * dx * StickyMap(me1)%stickySplineP%d(1)) |
| 313 |
chrisfen |
940 |
endif |
| 314 |
|
|
endif |
| 315 |
|
|
else |
| 316 |
|
|
! calculate the switching function explicitly rather than from |
| 317 |
|
|
! the splines with mixed sticky maps |
| 318 |
|
|
call calc_sw_fnc(rij, rl, ru, rlp, rup, s, sp, dsdr, dspdr) |
| 319 |
|
|
endif |
| 320 |
|
|
|
| 321 |
gezelter |
960 |
wi = 2.0_dp*(xi2-yi2)*zi / r3 |
| 322 |
|
|
wj = 2.0_dp*(xj2-yj2)*zj / r3 |
| 323 |
gezelter |
115 |
w = wi+wj |
| 324 |
|
|
|
| 325 |
gezelter |
960 |
zif = zi/rij - 0.6_dp |
| 326 |
|
|
zis = zi/rij + 0.8_dp |
| 327 |
gezelter |
115 |
|
| 328 |
gezelter |
960 |
zjf = zj/rij - 0.6_dp |
| 329 |
|
|
zjs = zj/rij + 0.8_dp |
| 330 |
gezelter |
115 |
|
| 331 |
gezelter |
246 |
wip = zif*zif*zis*zis - w0 |
| 332 |
|
|
wjp = zjf*zjf*zjs*zjs - w0 |
| 333 |
gezelter |
115 |
wp = wip + wjp |
| 334 |
|
|
|
| 335 |
gezelter |
960 |
vpair = vpair + 0.5_dp*(v0*s*w + v0p*sp*wp) |
| 336 |
gezelter |
115 |
|
| 337 |
gezelter |
1386 |
pot = pot + 0.5_dp*(v0*s*w + v0p*sp*wp)*sw |
| 338 |
|
|
|
| 339 |
gezelter |
960 |
dwidx = 4.0_dp*xi*zi/r3 - 6.0_dp*xi*zi*(xi2-yi2)/r5 |
| 340 |
|
|
dwidy = - 4.0_dp*yi*zi/r3 - 6.0_dp*yi*zi*(xi2-yi2)/r5 |
| 341 |
|
|
dwidz = 2.0_dp*(xi2-yi2)/r3 - 6.0_dp*zi2*(xi2-yi2)/r5 |
| 342 |
gezelter |
115 |
|
| 343 |
gezelter |
960 |
dwjdx = 4.0_dp*xj*zj/r3 - 6.0_dp*xj*zj*(xj2-yj2)/r5 |
| 344 |
|
|
dwjdy = - 4.0_dp*yj*zj/r3 - 6.0_dp*yj*zj*(xj2-yj2)/r5 |
| 345 |
|
|
dwjdz = 2.0_dp*(xj2-yj2)/r3 - 6.0_dp*zj2*(xj2-yj2)/r5 |
| 346 |
gezelter |
115 |
|
| 347 |
|
|
uglyi = zif*zif*zis + zif*zis*zis |
| 348 |
|
|
uglyj = zjf*zjf*zjs + zjf*zjs*zjs |
| 349 |
|
|
|
| 350 |
gezelter |
960 |
dwipdx = -2.0_dp*xi*zi*uglyi/r3 |
| 351 |
|
|
dwipdy = -2.0_dp*yi*zi*uglyi/r3 |
| 352 |
|
|
dwipdz = 2.0_dp*(1.0_dp/rij - zi2/r3)*uglyi |
| 353 |
gezelter |
115 |
|
| 354 |
gezelter |
960 |
dwjpdx = -2.0_dp*xj*zj*uglyj/r3 |
| 355 |
|
|
dwjpdy = -2.0_dp*yj*zj*uglyj/r3 |
| 356 |
|
|
dwjpdz = 2.0_dp*(1.0_dp/rij - zj2/r3)*uglyj |
| 357 |
gezelter |
115 |
|
| 358 |
gezelter |
960 |
dwidux = 4.0_dp*(yi*zi2 + 0.5_dp*yi*(xi2-yi2))/r3 |
| 359 |
|
|
dwiduy = 4.0_dp*(xi*zi2 - 0.5_dp*xi*(xi2-yi2))/r3 |
| 360 |
|
|
dwiduz = - 8.0_dp*xi*yi*zi/r3 |
| 361 |
gezelter |
115 |
|
| 362 |
gezelter |
960 |
dwjdux = 4.0_dp*(yj*zj2 + 0.5_dp*yj*(xj2-yj2))/r3 |
| 363 |
|
|
dwjduy = 4.0_dp*(xj*zj2 - 0.5_dp*xj*(xj2-yj2))/r3 |
| 364 |
|
|
dwjduz = - 8.0_dp*xj*yj*zj/r3 |
| 365 |
gezelter |
115 |
|
| 366 |
gezelter |
960 |
dwipdux = 2.0_dp*yi*uglyi/rij |
| 367 |
|
|
dwipduy = -2.0_dp*xi*uglyi/rij |
| 368 |
|
|
dwipduz = 0.0_dp |
| 369 |
gezelter |
115 |
|
| 370 |
gezelter |
960 |
dwjpdux = 2.0_dp*yj*uglyj/rij |
| 371 |
|
|
dwjpduy = -2.0_dp*xj*uglyj/rij |
| 372 |
|
|
dwjpduz = 0.0_dp |
| 373 |
gezelter |
115 |
|
| 374 |
|
|
! do the torques first since they are easy: |
| 375 |
|
|
! remember that these are still in the body fixed axes |
| 376 |
|
|
|
| 377 |
gezelter |
960 |
txi = 0.5_dp*(v0*s*dwidux + v0p*sp*dwipdux)*sw |
| 378 |
|
|
tyi = 0.5_dp*(v0*s*dwiduy + v0p*sp*dwipduy)*sw |
| 379 |
|
|
tzi = 0.5_dp*(v0*s*dwiduz + v0p*sp*dwipduz)*sw |
| 380 |
gezelter |
115 |
|
| 381 |
gezelter |
960 |
txj = 0.5_dp*(v0*s*dwjdux + v0p*sp*dwjpdux)*sw |
| 382 |
|
|
tyj = 0.5_dp*(v0*s*dwjduy + v0p*sp*dwjpduy)*sw |
| 383 |
|
|
tzj = 0.5_dp*(v0*s*dwjduz + v0p*sp*dwjpduz)*sw |
| 384 |
gezelter |
115 |
|
| 385 |
|
|
! go back to lab frame using transpose of rotation matrix: |
| 386 |
|
|
|
| 387 |
gezelter |
1386 |
t1(1) = t1(1) + a1(1)*txi + a1(4)*tyi + a1(7)*tzi |
| 388 |
|
|
t1(2) = t1(2) + a1(2)*txi + a1(5)*tyi + a1(8)*tzi |
| 389 |
|
|
t1(3) = t1(3) + a1(3)*txi + a1(6)*tyi + a1(9)*tzi |
| 390 |
gezelter |
115 |
|
| 391 |
gezelter |
1386 |
t2(1) = t2(1) + a2(1)*txj + a2(4)*tyj + a2(7)*tzj |
| 392 |
|
|
t2(2) = t2(2) + a2(2)*txj + a2(5)*tyj + a2(8)*tzj |
| 393 |
|
|
t2(3) = t2(3) + a2(3)*txj + a2(6)*tyj + a2(9)*tzj |
| 394 |
gezelter |
115 |
|
| 395 |
|
|
! Now, on to the forces: |
| 396 |
|
|
|
| 397 |
|
|
! first rotate the i terms back into the lab frame: |
| 398 |
|
|
|
| 399 |
gezelter |
246 |
radcomxi = (v0*s*dwidx+v0p*sp*dwipdx)*sw |
| 400 |
|
|
radcomyi = (v0*s*dwidy+v0p*sp*dwipdy)*sw |
| 401 |
|
|
radcomzi = (v0*s*dwidz+v0p*sp*dwipdz)*sw |
| 402 |
gezelter |
115 |
|
| 403 |
gezelter |
246 |
radcomxj = (v0*s*dwjdx+v0p*sp*dwjpdx)*sw |
| 404 |
|
|
radcomyj = (v0*s*dwjdy+v0p*sp*dwjpdy)*sw |
| 405 |
|
|
radcomzj = (v0*s*dwjdz+v0p*sp*dwjpdz)*sw |
| 406 |
gezelter |
115 |
|
| 407 |
gezelter |
1386 |
fxii = a1(1)*(radcomxi) + a1(4)*(radcomyi) + a1(7)*(radcomzi) |
| 408 |
|
|
fyii = a1(2)*(radcomxi) + a1(5)*(radcomyi) + a1(8)*(radcomzi) |
| 409 |
|
|
fzii = a1(3)*(radcomxi) + a1(6)*(radcomyi) + a1(9)*(radcomzi) |
| 410 |
gezelter |
115 |
|
| 411 |
gezelter |
1386 |
fxjj = a2(1)*(radcomxj) + a2(4)*(radcomyj) + a2(7)*(radcomzj) |
| 412 |
|
|
fyjj = a2(2)*(radcomxj) + a2(5)*(radcomyj) + a2(8)*(radcomzj) |
| 413 |
|
|
fzjj = a2(3)*(radcomxj) + a2(6)*(radcomyj) + a2(9)*(radcomzj) |
| 414 |
gezelter |
115 |
|
| 415 |
|
|
fxij = -fxii |
| 416 |
|
|
fyij = -fyii |
| 417 |
|
|
fzij = -fzii |
| 418 |
|
|
|
| 419 |
|
|
fxji = -fxjj |
| 420 |
|
|
fyji = -fyjj |
| 421 |
|
|
fzji = -fzjj |
| 422 |
|
|
|
| 423 |
|
|
! now assemble these with the radial-only terms: |
| 424 |
|
|
|
| 425 |
gezelter |
960 |
fxradial = 0.5_dp*(v0*dsdr*drdx*w + v0p*dspdr*drdx*wp + fxii + fxji) |
| 426 |
|
|
fyradial = 0.5_dp*(v0*dsdr*drdy*w + v0p*dspdr*drdy*wp + fyii + fyji) |
| 427 |
|
|
fzradial = 0.5_dp*(v0*dsdr*drdz*w + v0p*dspdr*drdz*wp + fzii + fzji) |
| 428 |
gezelter |
115 |
|
| 429 |
gezelter |
1386 |
f1(1) = f1(1) + fxradial |
| 430 |
|
|
f1(2) = f1(2) + fyradial |
| 431 |
|
|
f1(3) = f1(3) + fzradial |
| 432 |
gezelter |
115 |
|
| 433 |
|
|
endif |
| 434 |
|
|
end subroutine do_sticky_pair |
| 435 |
|
|
|
| 436 |
|
|
!! calculates the switching functions and their derivatives for a given |
| 437 |
gezelter |
246 |
subroutine calc_sw_fnc(r, rl, ru, rlp, rup, s, sp, dsdr, dspdr) |
| 438 |
gezelter |
507 |
|
| 439 |
gezelter |
246 |
real (kind=dp), intent(in) :: r, rl, ru, rlp, rup |
| 440 |
gezelter |
115 |
real (kind=dp), intent(inout) :: s, sp, dsdr, dspdr |
| 441 |
gezelter |
507 |
|
| 442 |
gezelter |
115 |
! distances must be in angstroms |
| 443 |
gezelter |
960 |
s = 0.0_dp |
| 444 |
|
|
dsdr = 0.0_dp |
| 445 |
|
|
sp = 0.0_dp |
| 446 |
|
|
dspdr = 0.0_dp |
| 447 |
chrisfen |
940 |
|
| 448 |
|
|
if (r.lt.ru) then |
| 449 |
|
|
if (r.lt.rl) then |
| 450 |
gezelter |
960 |
s = 1.0_dp |
| 451 |
|
|
dsdr = 0.0_dp |
| 452 |
chrisfen |
940 |
else |
| 453 |
gezelter |
960 |
s = ((ru + 2.0_dp*r - 3.0_dp*rl) * (ru-r)**2) / & |
| 454 |
chrisfen |
940 |
((ru - rl)**3) |
| 455 |
gezelter |
960 |
dsdr = 6.0_dp*(r-ru)*(r-rl)/((ru - rl)**3) |
| 456 |
chrisfen |
940 |
endif |
| 457 |
gezelter |
115 |
endif |
| 458 |
|
|
|
| 459 |
chrisfen |
940 |
if (r.lt.rup) then |
| 460 |
|
|
if (r.lt.rlp) then |
| 461 |
gezelter |
960 |
sp = 1.0_dp |
| 462 |
|
|
dspdr = 0.0_dp |
| 463 |
chrisfen |
940 |
else |
| 464 |
gezelter |
960 |
sp = ((rup + 2.0_dp*r - 3.0_dp*rlp) * (rup-r)**2) / & |
| 465 |
chrisfen |
940 |
((rup - rlp)**3) |
| 466 |
gezelter |
960 |
dspdr = 6.0_dp*(r-rup)*(r-rlp)/((rup - rlp)**3) |
| 467 |
chrisfen |
940 |
endif |
| 468 |
gezelter |
115 |
endif |
| 469 |
gezelter |
507 |
|
| 470 |
gezelter |
115 |
return |
| 471 |
|
|
end subroutine calc_sw_fnc |
| 472 |
chuckv |
492 |
|
| 473 |
|
|
subroutine destroyStickyTypes() |
| 474 |
|
|
if(allocated(StickyMap)) deallocate(StickyMap) |
| 475 |
|
|
end subroutine destroyStickyTypes |
| 476 |
chrisfen |
523 |
|
| 477 |
gezelter |
1464 |
subroutine do_sticky_power_pair(me1, me2, d, rij, r2, sw, vpair, fpair, & |
| 478 |
|
|
pot, A1, A2, f1, t1, t2) |
| 479 |
chrisfen |
554 |
|
| 480 |
chrisfen |
523 |
!! i and j are pointers to the two SSD atoms |
| 481 |
chrisfen |
554 |
|
| 482 |
chrisfen |
523 |
real (kind=dp), intent(inout) :: rij, r2 |
| 483 |
|
|
real (kind=dp), dimension(3), intent(in) :: d |
| 484 |
|
|
real (kind=dp), dimension(3), intent(inout) :: fpair |
| 485 |
|
|
real (kind=dp) :: pot, vpair, sw |
| 486 |
gezelter |
1386 |
real (kind=dp), dimension(9) :: A1, A2 |
| 487 |
|
|
real (kind=dp), dimension(3) :: f1 |
| 488 |
|
|
real (kind=dp), dimension(3) :: t1, t2 |
| 489 |
chrisfen |
523 |
|
| 490 |
gezelter |
1464 |
|
| 491 |
chrisfen |
523 |
real (kind=dp) :: xi, yi, zi, xj, yj, zj, xi2, yi2, zi2, xj2, yj2, zj2 |
| 492 |
chrisfen |
527 |
real (kind=dp) :: xihat, yihat, zihat, xjhat, yjhat, zjhat |
| 493 |
|
|
real (kind=dp) :: rI, rI2, rI3, rI4, rI5, rI6, rI7, s, sp, dsdr, dspdr |
| 494 |
chrisfen |
554 |
real (kind=dp) :: wi, wj, w, wi2, wj2, eScale, v0scale |
| 495 |
chrisfen |
523 |
real (kind=dp) :: dwidx, dwidy, dwidz, dwjdx, dwjdy, dwjdz |
| 496 |
|
|
real (kind=dp) :: dwidux, dwiduy, dwiduz, dwjdux, dwjduy, dwjduz |
| 497 |
|
|
real (kind=dp) :: drdx, drdy, drdz |
| 498 |
|
|
real (kind=dp) :: txi, tyi, tzi, txj, tyj, tzj |
| 499 |
|
|
real (kind=dp) :: fxii, fyii, fzii, fxjj, fyjj, fzjj |
| 500 |
|
|
real (kind=dp) :: fxij, fyij, fzij, fxji, fyji, fzji |
| 501 |
|
|
real (kind=dp) :: fxradial, fyradial, fzradial |
| 502 |
|
|
real (kind=dp) :: rijtest, rjitest |
| 503 |
|
|
real (kind=dp) :: radcomxi, radcomyi, radcomzi |
| 504 |
|
|
real (kind=dp) :: radcomxj, radcomyj, radcomzj |
| 505 |
|
|
integer :: id1, id2 |
| 506 |
|
|
integer :: me1, me2 |
| 507 |
|
|
real (kind=dp) :: w0, v0, v0p, rl, ru, rlp, rup, rbig |
| 508 |
chrisfen |
527 |
real (kind=dp) :: zi3, zi4, zi5, zj3, zj4, zj5 |
| 509 |
chrisfen |
534 |
real (kind=dp) :: frac1, frac2 |
| 510 |
|
|
|
| 511 |
chrisfen |
523 |
if (.not.allocated(StickyMap)) then |
| 512 |
|
|
call handleError("sticky", "no StickyMap was present before first call of do_sticky_power_pair!") |
| 513 |
|
|
return |
| 514 |
|
|
end if |
| 515 |
|
|
|
| 516 |
|
|
if (me1.eq.me2) then |
| 517 |
|
|
w0 = StickyMap(me1)%w0 |
| 518 |
|
|
v0 = StickyMap(me1)%v0 |
| 519 |
|
|
v0p = StickyMap(me1)%v0p |
| 520 |
|
|
rl = StickyMap(me1)%rl |
| 521 |
|
|
ru = StickyMap(me1)%ru |
| 522 |
|
|
rlp = StickyMap(me1)%rlp |
| 523 |
|
|
rup = StickyMap(me1)%rup |
| 524 |
|
|
rbig = StickyMap(me1)%rbig |
| 525 |
|
|
else |
| 526 |
|
|
! This is silly, but if you want 2 sticky types in your |
| 527 |
|
|
! simulation, we'll let you do it with the Lorentz- |
| 528 |
|
|
! Berthelot mixing rules. |
| 529 |
|
|
! (Warning: you'll be SLLLLLLLLLLLLLLLOOOOOOOOOOWWWWWWWWWWW) |
| 530 |
|
|
rl = 0.5_dp * ( StickyMap(me1)%rl + StickyMap(me2)%rl ) |
| 531 |
|
|
ru = 0.5_dp * ( StickyMap(me1)%ru + StickyMap(me2)%ru ) |
| 532 |
|
|
rlp = 0.5_dp * ( StickyMap(me1)%rlp + StickyMap(me2)%rlp ) |
| 533 |
|
|
rup = 0.5_dp * ( StickyMap(me1)%rup + StickyMap(me2)%rup ) |
| 534 |
|
|
rbig = max(ru, rup) |
| 535 |
|
|
w0 = sqrt( StickyMap(me1)%w0 * StickyMap(me2)%w0 ) |
| 536 |
|
|
v0 = sqrt( StickyMap(me1)%v0 * StickyMap(me2)%v0 ) |
| 537 |
|
|
v0p = sqrt( StickyMap(me1)%v0p * StickyMap(me2)%v0p ) |
| 538 |
|
|
endif |
| 539 |
|
|
|
| 540 |
|
|
if ( rij .LE. rbig ) then |
| 541 |
|
|
|
| 542 |
gezelter |
960 |
rI = 1.0_dp/rij |
| 543 |
chrisfen |
527 |
rI2 = rI*rI |
| 544 |
|
|
rI3 = rI2*rI |
| 545 |
|
|
rI4 = rI2*rI2 |
| 546 |
|
|
rI5 = rI3*rI2 |
| 547 |
|
|
rI6 = rI3*rI3 |
| 548 |
chrisfen |
532 |
rI7 = rI4*rI3 |
| 549 |
chrisfen |
527 |
|
| 550 |
|
|
drdx = d(1) * rI |
| 551 |
|
|
drdy = d(2) * rI |
| 552 |
|
|
drdz = d(3) * rI |
| 553 |
chrisfen |
523 |
|
| 554 |
|
|
! rotate the inter-particle separation into the two different |
| 555 |
|
|
! body-fixed coordinate systems: |
| 556 |
|
|
|
| 557 |
gezelter |
1386 |
xi = A1(1)*d(1) + A1(2)*d(2) + A1(3)*d(3) |
| 558 |
|
|
yi = A1(4)*d(1) + A1(5)*d(2) + A1(6)*d(3) |
| 559 |
|
|
zi = A1(7)*d(1) + A1(8)*d(2) + A1(9)*d(3) |
| 560 |
chrisfen |
523 |
|
| 561 |
|
|
! negative sign because this is the vector from j to i: |
| 562 |
|
|
|
| 563 |
gezelter |
1386 |
xj = -(A2(1)*d(1) + A2(2)*d(2) + A2(3)*d(3)) |
| 564 |
|
|
yj = -(A2(4)*d(1) + A2(5)*d(2) + A2(6)*d(3)) |
| 565 |
|
|
zj = -(A2(7)*d(1) + A2(8)*d(2) + A2(9)*d(3)) |
| 566 |
chrisfen |
523 |
|
| 567 |
|
|
xi2 = xi*xi |
| 568 |
|
|
yi2 = yi*yi |
| 569 |
|
|
zi2 = zi*zi |
| 570 |
chrisfen |
527 |
zi3 = zi2*zi |
| 571 |
|
|
zi4 = zi2*zi2 |
| 572 |
chrisfen |
534 |
zi5 = zi3*zi2 |
| 573 |
chrisfen |
527 |
xihat = xi*rI |
| 574 |
|
|
yihat = yi*rI |
| 575 |
|
|
zihat = zi*rI |
| 576 |
|
|
|
| 577 |
chrisfen |
523 |
xj2 = xj*xj |
| 578 |
|
|
yj2 = yj*yj |
| 579 |
|
|
zj2 = zj*zj |
| 580 |
chrisfen |
527 |
zj3 = zj2*zj |
| 581 |
|
|
zj4 = zj2*zj2 |
| 582 |
chrisfen |
534 |
zj5 = zj3*zj2 |
| 583 |
chrisfen |
527 |
xjhat = xj*rI |
| 584 |
|
|
yjhat = yj*rI |
| 585 |
|
|
zjhat = zj*rI |
| 586 |
|
|
|
| 587 |
chrisfen |
523 |
call calc_sw_fnc(rij, rl, ru, rlp, rup, s, sp, dsdr, dspdr) |
| 588 |
chrisfen |
527 |
|
| 589 |
gezelter |
960 |
frac1 = 0.25_dp |
| 590 |
|
|
frac2 = 0.75_dp |
| 591 |
chrisfen |
527 |
|
| 592 |
gezelter |
960 |
wi = 2.0_dp*(xi2-yi2)*zi*rI3 |
| 593 |
|
|
wj = 2.0_dp*(xj2-yj2)*zj*rI3 |
| 594 |
chrisfen |
532 |
|
| 595 |
chrisfen |
523 |
wi2 = wi*wi |
| 596 |
|
|
wj2 = wj*wj |
| 597 |
|
|
|
| 598 |
chrisfen |
554 |
w = frac1*wi*wi2 + frac2*wi + frac1*wj*wj2 + frac2*wj + v0p |
| 599 |
chrisfen |
523 |
|
| 600 |
gezelter |
960 |
vpair = vpair + 0.5_dp*(v0*s*w) |
| 601 |
chrisfen |
527 |
|
| 602 |
gezelter |
1386 |
pot = pot + 0.5_dp*(v0*s*w)*sw |
| 603 |
chrisfen |
523 |
|
| 604 |
gezelter |
960 |
dwidx = ( 4.0_dp*xi*zi*rI3 - 6.0_dp*xi*zi*(xi2-yi2)*rI5 ) |
| 605 |
|
|
dwidy = ( -4.0_dp*yi*zi*rI3 - 6.0_dp*yi*zi*(xi2-yi2)*rI5 ) |
| 606 |
|
|
dwidz = ( 2.0_dp*(xi2-yi2)*rI3 - 6.0_dp*zi2*(xi2-yi2)*rI5 ) |
| 607 |
chrisfen |
532 |
|
| 608 |
gezelter |
960 |
dwidx = frac1*3.0_dp*wi2*dwidx + frac2*dwidx |
| 609 |
|
|
dwidy = frac1*3.0_dp*wi2*dwidy + frac2*dwidy |
| 610 |
|
|
dwidz = frac1*3.0_dp*wi2*dwidz + frac2*dwidz |
| 611 |
chrisfen |
523 |
|
| 612 |
gezelter |
960 |
dwjdx = ( 4.0_dp*xj*zj*rI3 - 6.0_dp*xj*zj*(xj2-yj2)*rI5 ) |
| 613 |
|
|
dwjdy = ( -4.0_dp*yj*zj*rI3 - 6.0_dp*yj*zj*(xj2-yj2)*rI5 ) |
| 614 |
|
|
dwjdz = ( 2.0_dp*(xj2-yj2)*rI3 - 6.0_dp*zj2*(xj2-yj2)*rI5 ) |
| 615 |
chrisfen |
523 |
|
| 616 |
gezelter |
960 |
dwjdx = frac1*3.0_dp*wj2*dwjdx + frac2*dwjdx |
| 617 |
|
|
dwjdy = frac1*3.0_dp*wj2*dwjdy + frac2*dwjdy |
| 618 |
|
|
dwjdz = frac1*3.0_dp*wj2*dwjdz + frac2*dwjdz |
| 619 |
chrisfen |
532 |
|
| 620 |
gezelter |
960 |
dwidux = ( 4.0_dp*(yi*zi2 + 0.5_dp*yi*(xi2-yi2))*rI3 ) |
| 621 |
|
|
dwiduy = ( 4.0_dp*(xi*zi2 - 0.5_dp*xi*(xi2-yi2))*rI3 ) |
| 622 |
|
|
dwiduz = ( -8.0_dp*xi*yi*zi*rI3 ) |
| 623 |
chrisfen |
523 |
|
| 624 |
gezelter |
960 |
dwidux = frac1*3.0_dp*wi2*dwidux + frac2*dwidux |
| 625 |
|
|
dwiduy = frac1*3.0_dp*wi2*dwiduy + frac2*dwiduy |
| 626 |
|
|
dwiduz = frac1*3.0_dp*wi2*dwiduz + frac2*dwiduz |
| 627 |
chrisfen |
527 |
|
| 628 |
gezelter |
960 |
dwjdux = ( 4.0_dp*(yj*zj2 + 0.5_dp*yj*(xj2-yj2))*rI3 ) |
| 629 |
|
|
dwjduy = ( 4.0_dp*(xj*zj2 - 0.5_dp*xj*(xj2-yj2))*rI3 ) |
| 630 |
|
|
dwjduz = ( -8.0_dp*xj*yj*zj*rI3 ) |
| 631 |
chrisfen |
532 |
|
| 632 |
gezelter |
960 |
dwjdux = frac1*3.0_dp*wj2*dwjdux + frac2*dwjdux |
| 633 |
|
|
dwjduy = frac1*3.0_dp*wj2*dwjduy + frac2*dwjduy |
| 634 |
|
|
dwjduz = frac1*3.0_dp*wj2*dwjduz + frac2*dwjduz |
| 635 |
chrisfen |
532 |
|
| 636 |
chrisfen |
523 |
! do the torques first since they are easy: |
| 637 |
|
|
! remember that these are still in the body fixed axes |
| 638 |
|
|
|
| 639 |
gezelter |
960 |
txi = 0.5_dp*(v0*s*dwidux)*sw |
| 640 |
|
|
tyi = 0.5_dp*(v0*s*dwiduy)*sw |
| 641 |
|
|
tzi = 0.5_dp*(v0*s*dwiduz)*sw |
| 642 |
chrisfen |
523 |
|
| 643 |
gezelter |
960 |
txj = 0.5_dp*(v0*s*dwjdux)*sw |
| 644 |
|
|
tyj = 0.5_dp*(v0*s*dwjduy)*sw |
| 645 |
|
|
tzj = 0.5_dp*(v0*s*dwjduz)*sw |
| 646 |
chrisfen |
523 |
|
| 647 |
|
|
! go back to lab frame using transpose of rotation matrix: |
| 648 |
|
|
|
| 649 |
gezelter |
1386 |
t1(1) = t1(1) + a1(1)*txi + a1(4)*tyi + a1(7)*tzi |
| 650 |
|
|
t1(2) = t1(2) + a1(2)*txi + a1(5)*tyi + a1(8)*tzi |
| 651 |
|
|
t1(3) = t1(3) + a1(3)*txi + a1(6)*tyi + a1(9)*tzi |
| 652 |
chrisfen |
523 |
|
| 653 |
gezelter |
1386 |
t2(1) = t2(1) + a2(1)*txj + a2(4)*tyj + a2(7)*tzj |
| 654 |
|
|
t2(2) = t2(2) + a2(2)*txj + a2(5)*tyj + a2(8)*tzj |
| 655 |
|
|
t2(3) = t2(3) + a2(3)*txj + a2(6)*tyj + a2(9)*tzj |
| 656 |
chrisfen |
523 |
|
| 657 |
|
|
! Now, on to the forces: |
| 658 |
|
|
|
| 659 |
|
|
! first rotate the i terms back into the lab frame: |
| 660 |
|
|
|
| 661 |
chrisfen |
534 |
radcomxi = (v0*s*dwidx)*sw |
| 662 |
|
|
radcomyi = (v0*s*dwidy)*sw |
| 663 |
|
|
radcomzi = (v0*s*dwidz)*sw |
| 664 |
chrisfen |
523 |
|
| 665 |
chrisfen |
534 |
radcomxj = (v0*s*dwjdx)*sw |
| 666 |
|
|
radcomyj = (v0*s*dwjdy)*sw |
| 667 |
|
|
radcomzj = (v0*s*dwjdz)*sw |
| 668 |
chrisfen |
523 |
|
| 669 |
gezelter |
1386 |
fxii = a1(1)*(radcomxi) + a1(4)*(radcomyi) + a1(7)*(radcomzi) |
| 670 |
|
|
fyii = a1(2)*(radcomxi) + a1(5)*(radcomyi) + a1(8)*(radcomzi) |
| 671 |
|
|
fzii = a1(3)*(radcomxi) + a1(6)*(radcomyi) + a1(9)*(radcomzi) |
| 672 |
chrisfen |
523 |
|
| 673 |
gezelter |
1386 |
fxjj = a2(1)*(radcomxj) + a2(4)*(radcomyj) + a2(7)*(radcomzj) |
| 674 |
|
|
fyjj = a2(2)*(radcomxj) + a2(5)*(radcomyj) + a2(8)*(radcomzj) |
| 675 |
|
|
fzjj = a2(3)*(radcomxj) + a2(6)*(radcomyj) + a2(9)*(radcomzj) |
| 676 |
chrisfen |
523 |
|
| 677 |
|
|
fxij = -fxii |
| 678 |
|
|
fyij = -fyii |
| 679 |
|
|
fzij = -fzii |
| 680 |
|
|
|
| 681 |
|
|
fxji = -fxjj |
| 682 |
|
|
fyji = -fyjj |
| 683 |
|
|
fzji = -fzjj |
| 684 |
|
|
|
| 685 |
|
|
! now assemble these with the radial-only terms: |
| 686 |
|
|
|
| 687 |
gezelter |
960 |
fxradial = 0.5_dp*(v0*dsdr*w*drdx + fxii + fxji) |
| 688 |
|
|
fyradial = 0.5_dp*(v0*dsdr*w*drdy + fyii + fyji) |
| 689 |
|
|
fzradial = 0.5_dp*(v0*dsdr*w*drdz + fzii + fzji) |
| 690 |
chrisfen |
523 |
|
| 691 |
gezelter |
1386 |
f1(1) = f1(1) + fxradial |
| 692 |
|
|
f1(2) = f1(2) + fyradial |
| 693 |
|
|
f1(3) = f1(3) + fzradial |
| 694 |
chrisfen |
523 |
|
| 695 |
|
|
endif |
| 696 |
|
|
end subroutine do_sticky_power_pair |
| 697 |
|
|
|
| 698 |
gezelter |
246 |
end module sticky |